CN114809125A - 一种钢圆筒抗倾稳定性预测方法 - Google Patents

一种钢圆筒抗倾稳定性预测方法 Download PDF

Info

Publication number
CN114809125A
CN114809125A CN202210396125.5A CN202210396125A CN114809125A CN 114809125 A CN114809125 A CN 114809125A CN 202210396125 A CN202210396125 A CN 202210396125A CN 114809125 A CN114809125 A CN 114809125A
Authority
CN
China
Prior art keywords
steel cylinder
soil
pressure
calculating
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210396125.5A
Other languages
English (en)
Other versions
CN114809125B (zh
Inventor
于长一
潘伟
李一勇
张乃受
曹永华
刘爱民
岳长喜
寇晓强
陈智军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCCC First Harbor Engineering Co Ltd
Tianjin Port Engineering Institute Ltd of CCCC Frst Harbor Engineering Co Ltd
Tianjin Harbor Engineering Quality Inspection Center Co Ltd
Original Assignee
CCCC First Harbor Engineering Co Ltd
Tianjin Port Engineering Institute Ltd of CCCC Frst Harbor Engineering Co Ltd
Tianjin Harbor Engineering Quality Inspection Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCCC First Harbor Engineering Co Ltd, Tianjin Port Engineering Institute Ltd of CCCC Frst Harbor Engineering Co Ltd, Tianjin Harbor Engineering Quality Inspection Center Co Ltd filed Critical CCCC First Harbor Engineering Co Ltd
Priority to CN202210396125.5A priority Critical patent/CN114809125B/zh
Publication of CN114809125A publication Critical patent/CN114809125A/zh
Priority to PCT/CN2023/085011 priority patent/WO2023197880A1/zh
Application granted granted Critical
Publication of CN114809125B publication Critical patent/CN114809125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开了一种钢圆筒抗倾稳定性预测方法,假设钢圆筒以任意旋转点向海侧倾倒,计算钢圆筒内部的填料压强、外部摩擦力、内部摩擦力、基床对钢圆筒的竖向反力和水平抗力,计算钢圆筒向海侧倾倒情况下的抗倾力矩和倾覆力矩,得到向海侧倾倒的安全系数;然后在相同的旋转点下再假设钢圆筒向陆侧旋转,计算钢圆筒向陆侧倾倒的安全系数,比较两个安全系数,将二者的较小值作为该旋转点下的安全系数。然后重新选取新的旋转点,按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数。

Description

一种钢圆筒抗倾稳定性预测方法
技术领域
本发明属于海上或水上钢圆筒稳定性计算技术领域,具体涉及一种钢圆筒抗倾稳定性预测方法。
背景技术
钢圆筒用于软土地基上建设岛屿与其他海岸工程已经被成功用于广州番禺护岸、港珠澳大桥链接岛、深中通道链接岛、香港机场等大型工程,但在应用中也发生了几次倾倒破坏,其稳定性设计计算方法还有不完善的地方。
目前钢圆筒抗倾稳定性的计算方法主要有:1.重力式结构稳定性法;2.摩阻力法;3.无锚板桩稳定性法;4.吸力式桶形基础水平承载力法;5.圆筒极限变位控制法。这五种方法的基本假设、思路、参数取值和计算结果,差异较大,其基本平衡方程都是力平衡或者力矩平衡,其受力模型如下表1所示:
表1钢圆筒稳定性计算模式对比
Figure BDA0003599025370000011
Figure BDA0003599025370000021
通过实际工程验证可知,方法1-重力式结构稳定性法和方法5-圆筒极限变位控制法在计算极端工况下不符合实际工程。方法4-吸力式桶形基础水平承载力法,没办法考虑后方填土时的稳定性。方法2-摩阻力法和方法3-无锚板桩稳定性法的区别在于力矩平衡的旋转点不同。通过实测和其他研究可知,钢圆筒在使用中其旋转点并一定在中心线上,也可能在别的地方。为此提出任意旋转点下的钢圆筒抗倾稳定性预测方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种钢圆筒抗倾稳定性预测方法。
本发明是通过以下技术方案实现的:
一种钢圆筒抗倾稳定性预测方法,包括以下步骤:
步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:土层的厚度hi、密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi
步骤2:假设钢圆筒向海侧倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pa1和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2;
在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;或者在钢圆筒埋土为任意土体以及陆侧填土坡脚为水平条件下,采用广义极限平衡理论计算钢圆筒外部的主动土压力和被动土压力;
步骤3:计算钢圆筒内部的填料压强
3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,
AB段的高度:
Figure BDA0003599025370000031
CD段的高度:
Figure BDA0003599025370000032
BC段的高度:h2=H-h1-h3
其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径;
3.2:AB段的填料压强计算:
钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A
Figure BDA0003599025370000033
K=λ0tan()
式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自然对数,q0是外荷载,A是待定参数;
Figure BDA0003599025370000034
λ0是填料侧推力系数;
则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy
3.3:BC段的填料压强计算:
BC段的填料压强认为是等强的,因此采用步骤3.2中的公式σx=λ0σy,计算出B点处的填料压强σBx,BC段其他位置的填料压强与B点处的填料压强σBx相等;
3.4:CD段的填料压强计算:
计算出C点处和D点处的填料压强大小,得到CD段的填料压强随深度变化的线性关系式,其中:
C点处的填料压强σCx=B点处的填料压强σBx
D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强;
步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1;
4.1:计算钢圆筒外部受到的土层的摩擦力:
土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi,Eaxi是土层i的主动土压力合力;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi,Epxi是土层i的被动土压力合力;
4.2:计算钢圆筒内部受到的填料的摩擦力:
钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
钢圆筒内部BC段受到的摩擦力Eyt1BC=tan(δ)·σCx·h2
钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5;
步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力;
步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩Mr和倾覆力矩Ms
钢圆筒外部的主动土压力提供倾覆力矩;被动土压力以及基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力提供抗倾力矩,外荷载按照力矩方向计算提供抗倾力矩或倾覆力矩;
步骤7:计算钢圆筒向海侧倾倒的安全系数Kl,
Figure BDA0003599025370000041
步骤8:在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土体为被动土压力;按照上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力、被动土压力、基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力;计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩,并计算钢圆筒向陆侧倾倒的安全系数Kr;
步骤9:比较Kl和Kr,将二者的较小值作为该旋转点下的安全系数Fi
步骤10:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
在上述技术方案中,步骤2中,在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力的步骤如下:
2.1:计算主动土压力
Figure BDA0003599025370000051
Figure BDA0003599025370000052
Figure BDA0003599025370000053
Figure BDA0003599025370000054
式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力;则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和;
2.2:计算被动土压力
Figure BDA0003599025370000055
Figure BDA0003599025370000056
Figure BDA0003599025370000061
Figure BDA0003599025370000062
其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力;则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
在上述技术方案中,步骤3.2中,为了简化计算,将AB段的填料压强变化看成线性变化,则根据公式σx=λ0σy计算出B点处的填料压强σBx,A点处的填料压强设为0。
在上述技术方案中,步骤5包括:
5.1:基床对钢圆筒的竖向反力
基床对钢圆筒的竖向反力平均压强为q=9·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到;
5.2:基床对钢圆筒的水平抗力
基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
本发明的优点和有益效果为:
本发明能够对任意旋转点下的钢圆筒抗倾稳定性进行预测,通过选取任意的旋转点,计算各旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数。
附图说明
图1是钢圆筒向海侧倾倒极限状态受力图。
图2是钢圆筒内侧及底部受力示意图。
图3是钢圆筒向陆侧倾倒极限状态受力图。
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。
实施例一
一种钢圆筒抗倾稳定性预测方法,参见附图,包括以下步骤:
步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:(1)土层几何数据:土层的厚度hi;(2)土层物理数据:密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi,其中,i表示第i层土。
步骤2:假设钢圆筒向海侧(图1中左侧)倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pa1和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2。
在钢圆筒埋土为无粘性土以及陆侧填土坡面水平(β=0)的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力。
2.1:计算主动土压力
Figure BDA0003599025370000071
Figure BDA0003599025370000072
Figure BDA0003599025370000073
Figure BDA0003599025370000074
式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力。则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和。
2.2:计算被动土压力
Figure BDA0003599025370000081
Figure BDA0003599025370000082
Figure BDA0003599025370000083
Figure BDA0003599025370000084
其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力。则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
步骤3:计算钢圆筒内部的填料压强。
3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,其中A点和D点分别为钢圆筒筒顶和筒底。
AB段的高度:
Figure BDA0003599025370000085
CD段的高度:
Figure BDA0003599025370000086
BC段的高度:h2=H-h1-h3
其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径。
3.2:AB段的填料压强计算:
钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A
Figure BDA0003599025370000087
K=λ0tan()
式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自然对数,q0是外荷载,A是待定参数。
Figure BDA0003599025370000091
λ0是填料侧推力系数;
则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy。本实施例中,为了简化计算,将AB段的填料压强变化看成线性变化,则计算出B点处的填料压强σBx即可,A点处的填料压强设为0。
3.3:BC段的填料压强计算:
BC段的填料压强认为是等强的,因此采用步骤3.2中的公式,σx=λ0σy,计算出B点处的填料压强σBx即可,BC段其他位置的填料压强与B点处的填料压强σBx相等。
3.4:CD段的填料压强计算:
CD段的填料压强是线性变化的,即CD段中,纵坐标是深度,横坐标是填料压强大小,二者是线性关系。
因此,计算出C点处和D点处的填料压强大小,即可得到CD段的填料压强随深度变化的线性关系式(即两点确定一条直线)。其中:
C点处的填料压强σCx=B点处的填料压强σBx
筒底部D点处的填料压强的计算是根据钢圆筒底部的平均压强σmid,根据现有实验资料分析,D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强。
步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1。
4.1:计算钢圆筒外部受到的土层的摩擦力:
土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi
4.2:计算钢圆筒内部受到的填料的摩擦力:
钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
钢圆筒内部BC段受到的摩擦力Eyt1BC=tan(δ)·σCx·h2
钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5
步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力。
5.1:基床对钢圆筒的竖向反力
基床对钢圆筒的竖向反力平均压强为q=9·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧(海侧)之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到。
5.2:基床对钢圆筒的水平抗力
基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩和倾覆力矩。
钢圆筒外部的主动土压力Pa1、Pa2提供倾覆力矩;被动土压力Pp1、Pp2以及基床对钢圆筒的竖向反力q、基床对钢圆筒的水平抗力F、钢圆筒内部摩擦力t1、钢圆筒外部摩擦力t2提供抗倾力矩,外荷载Fx、Fy按照力矩方向计算提供抗倾力矩或倾覆力矩。
步骤7:计算钢圆筒向海侧倾倒的安全系数Kl。
Figure BDA0003599025370000101
其中,Ms—倾覆力矩,Mr—抗倾力矩;
其中:
Figure BDA0003599025370000102
Ms=Pa1*|ya1-Ryi|+Pa2*|ya2-Ryi|
Pp1为陆侧被动土压力合力,yp1为Pp1的y坐标;Pp2为海侧被动土压力合力,yp2为Pp2的y坐标;N为筒体外部土层个数,xi为Eyi所在的x坐标,yF为基床对钢圆筒的水平抗力F的y坐标,Pa1为陆侧主动土压力合力,Pa2为海侧主动土压力合力,ya1为Pa1的y坐标,ya2为Pa2的y坐标。需要说明的是,式中,没有加入外载荷的计算,如果钢圆筒有外载荷作用,则外荷载Fx、Fy按照力矩方向计算提供抗倾力矩或倾覆力矩。
步骤8:参见附图3,在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力Pa1’和Pa2’,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土体为被动土压力Pp1’和Pp2’。
按照上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力Pa1’和Pa2’、被动土压力Pp1’和Pp2’、基床对钢圆筒的竖向反力q’、基床对钢圆筒的水平抗力F’、钢圆筒内部摩擦力t1’、钢圆筒外部摩擦力t2’。
步骤9:计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩。
步骤10:计算钢圆筒向陆侧倾倒的安全系数Kr。
步骤11:比较Kl和Kr,将二者的较小值作为该旋转点O下的安全系数Fi
步骤12:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
实施例二
本实施例与实施例一不同之处在于:实施例一中的步骤2是在钢圆筒埋土为无粘性土以及陆侧填土坡面水平(β=0)的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;而本实施例对所述步骤2的另一种实施方式是:当钢圆筒埋土为任意土体(即粘聚力C=0或者粘聚力C!=0都可以)以及陆侧填土坡脚为水平(β=0)条件下,采用广义极限平衡理论计算钢圆筒外部的主动土压力和被动土压力。
2.1计算主动土压力
Figure BDA0003599025370000111
Figure BDA0003599025370000112
Figure BDA0003599025370000113
Figure BDA0003599025370000114
Kci=(Kqi-1)λ (5)
Figure BDA0003599025370000115
Figure BDA0003599025370000116
Figure BDA0003599025370000117
Figure BDA0003599025370000118
Figure BDA0003599025370000119
Figure BDA00035990253700001110
Figure BDA00035990253700001111
其中Ci为土层i的粘聚力;φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重,q是地表均布荷载;Kqi为土层i地表荷载土压力系数;Kci为土层i粘聚力土压力系数;Kqi为土层i自重荷载土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力。
2.2计算被动土压力
Figure BDA0003599025370000121
Figure BDA0003599025370000122
Figure BDA0003599025370000123
其中epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力。被动土压力计算公式(12)和(13)中的系数按照公式(4)~公式(9)计算,但系数s0和s1分别按照下述公式(15)和(16)计算。
Figure BDA0003599025370000124
Figure BDA0003599025370000125
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (4)

1.一种钢圆筒抗倾稳定性预测方法,其特征在于,包括以下步骤:
步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:土层的厚度hi、密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi
步骤2:假设钢圆筒向海侧倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pal和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2;
在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;
步骤3:计算钢圆筒内部的填料压强
3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,
AB段的高度:
Figure FDA0003599025360000011
CD段的高度:
Figure FDA0003599025360000012
BC段的高度:h2=H-h1-h3
其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径;
3.2:AB段的填料压强计算:
钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A
Figure FDA0003599025360000013
K=λ0tan(δ)
式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自然对数,q0是外荷载,A是待定参数;
Figure FDA0003599025360000014
λ0是填料侧推力系数;
则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy
3.3:BC段的填料压强计算:
BC段的填料压强认为是等强的,因此采用步骤3.2中的公式σx=λ0σy,计算出B点处的填料压强σBx,BC段其他位置的填料压强与B点处的填料压强σBx相等;
3.4:CD段的填料压强计算:
计算出C点处和D点处的填料压强大小,得到CD段的填料压强随深度变化的线性关系式,其中:
C点处的填料压强σCx=B点处的填料压强σBx
D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强;
步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1;
4.1:计算钢圆筒外部受到的土层的摩擦力:
土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi
4.2:计算钢圆筒内部受到的填料的摩擦力:
钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
钢圆筒内部BC段受到的摩擦力Eyt1Bc=tan(δ)·σCx·h2
钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5;
步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力;
步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩Mr和倾覆力矩Ms
钢圆筒外部的主动土压力提供倾覆力矩;被动土压力以及基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力提供抗倾力矩,外荷载按照力矩方向计算提供抗倾力矩或倾覆力矩;
步骤7:计算钢圆筒向海侧倾倒的安全系数Kl,
Figure FDA0003599025360000021
步骤8:在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土体为被动土压力;按照上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力、被动土压力、基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力;计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩,并计算钢圆筒向陆侧倾倒的安全系数Kr;
步骤9:比较Kl和Kr,将二者的较小值作为该旋转点下的安全系数Fi
步骤10:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
2.根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤2包括:
2.1:计算主动土压力
Figure FDA0003599025360000031
Figure FDA0003599025360000032
Figure FDA0003599025360000033
Figure FDA0003599025360000034
式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力;则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和;
2.2:计算被动土压力
Figure FDA0003599025360000035
Figure FDA0003599025360000036
Figure FDA0003599025360000041
Figure FDA0003599025360000042
其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力;则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
3.根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤3.2中,为了简化计算,将AB段的填料压强变化看成线性变化,则根据公式σx=λ0σy计算出B点处的填料压强σBx,A点处的填料压强设为0。
4.根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤5包括:
5.1:基床对钢圆筒的竖向反力
基床对钢圆筒的竖向反力平均压强为q=9·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到;
5.2:基床对钢圆筒的水平抗力
基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
CN202210396125.5A 2022-04-15 2022-04-15 一种钢圆筒抗倾稳定性预测方法 Active CN114809125B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210396125.5A CN114809125B (zh) 2022-04-15 2022-04-15 一种钢圆筒抗倾稳定性预测方法
PCT/CN2023/085011 WO2023197880A1 (zh) 2022-04-15 2023-03-30 一种钢圆筒抗倾稳定性预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210396125.5A CN114809125B (zh) 2022-04-15 2022-04-15 一种钢圆筒抗倾稳定性预测方法

Publications (2)

Publication Number Publication Date
CN114809125A true CN114809125A (zh) 2022-07-29
CN114809125B CN114809125B (zh) 2023-09-12

Family

ID=82537452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210396125.5A Active CN114809125B (zh) 2022-04-15 2022-04-15 一种钢圆筒抗倾稳定性预测方法

Country Status (2)

Country Link
CN (1) CN114809125B (zh)
WO (1) WO2023197880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197880A1 (zh) * 2022-04-15 2023-10-19 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004086A (zh) * 2021-10-29 2022-02-01 南方海上风电联合开发有限公司 一种基于筒土分离的筒型基础抗倾覆稳定性验算方法
WO2022032994A1 (zh) * 2020-08-14 2022-02-17 山东建筑大学 一种建筑物托换基础旋转移位纠倾方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201814594A2 (tr) * 2018-10-04 2019-02-21 Sentez Insaat Yazilim Sanayi Ve Ticaret Ltd Sirketi Öngeri̇lmeli̇ betonarme boru kazik ve buna i̇li̇şki̇n bi̇r üreti̇m yöntemi̇
CN111859660B (zh) * 2020-07-16 2022-03-29 天津大学 大直径筒型基础抗倾覆稳定性验算方法
CN113806852B (zh) * 2021-11-22 2022-02-22 中交天津港湾工程研究院有限公司 一种深水薄壁钢圆筒稳定性预测方法
CN114809125B (zh) * 2022-04-15 2023-09-12 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法
CN115288213B (zh) * 2022-07-13 2024-02-09 中交天津港湾工程研究院有限公司 海上钢圆筒稳定性预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022032994A1 (zh) * 2020-08-14 2022-02-17 山东建筑大学 一种建筑物托换基础旋转移位纠倾方法
CN114004086A (zh) * 2021-10-29 2022-02-01 南方海上风电联合开发有限公司 一种基于筒土分离的筒型基础抗倾覆稳定性验算方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197880A1 (zh) * 2022-04-15 2023-10-19 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法

Also Published As

Publication number Publication date
CN114809125B (zh) 2023-09-12
WO2023197880A1 (zh) 2023-10-19

Similar Documents

Publication Publication Date Title
Zhang et al. Experimental study on installation of hybrid bucket foundations for offshore wind turbines in silty clay
Liu et al. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand
Jia et al. Bearing capacity of composite bucket foundations for offshore wind turbines in silty sand
CN106021753B (zh) 一种双排桩支护结构抗倾覆稳定性计算方法
CN114809125A (zh) 一种钢圆筒抗倾稳定性预测方法
Zhang et al. Experimental study on installation of composite bucket foundations for offshore wind turbines in silty sand
Zhu Analysis of the load sharing behaviour and cushion failure mode for a disconnected piled raft
CN115288213B (zh) 海上钢圆筒稳定性预测方法
Jin et al. The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes
CN109558659B (zh) 一种基于变形控制的悬臂式支护结构设计方法
CN113935098A (zh) 基于滑裂面形状修正的基坑支护主动土压力计算方法
CN108763833B (zh) 一种考虑土抗力突变的基坑支护桩挠度的计算方法
CN116815819B (zh) 顺层路堑边坡抗剪锚杆支护与挡墙加固设计方法及装置
Zhang et al. Model tests on sinking technique of composite bucket foundations for offshore wind turbines in silty clay
CN104404940B (zh) 一种深厚土层高压防水自稳型荷载测试装置
Wittekoek et al. Geogrid-anchored sheet pile walls; a small-scale experimental and numerical study
Fan et al. Horizontal bearing capacity of composite bucket foundation in clay: A case study
CN116484471A (zh) 一种圆形地连墙墙体等效模型的等效参数确定方法
Zhou et al. Engineering characteristics and reinforcement program of inclined pre-stressed concrete pipe piles
CN113128094B (zh) 考虑邻接地下工程中隔土宽度的有限土体土压力获取方法
CN110777799B (zh) 基于非对称载荷的基坑设计方法
Meng et al. Research on the calculation method of penetration resistance of bucket foundation for offshore wind turbines
Yan et al. Model tests on jacking installation and lateral loading performance of a new skirted foundation in sand
CN109137931B (zh) 一种适用于狭窄基坑的嵌固长度的计算方法
CN113591183A (zh) 一种黏性土地层多支点式围护结构非平衡计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant