WO2023197880A1 - 一种钢圆筒抗倾稳定性预测方法 - Google Patents

一种钢圆筒抗倾稳定性预测方法 Download PDF

Info

Publication number
WO2023197880A1
WO2023197880A1 PCT/CN2023/085011 CN2023085011W WO2023197880A1 WO 2023197880 A1 WO2023197880 A1 WO 2023197880A1 CN 2023085011 W CN2023085011 W CN 2023085011W WO 2023197880 A1 WO2023197880 A1 WO 2023197880A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cylinder
earth pressure
pressure
soil
soil layer
Prior art date
Application number
PCT/CN2023/085011
Other languages
English (en)
French (fr)
Inventor
于长一
潘伟
李一勇
张乃受
曹永华
刘爱民
岳长喜
寇晓强
陈智军
Original Assignee
中交天津港湾工程研究院有限公司
中交第一航务工程局有限公司
天津港湾工程质量检测中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交天津港湾工程研究院有限公司, 中交第一航务工程局有限公司, 天津港湾工程质量检测中心有限公司 filed Critical 中交天津港湾工程研究院有限公司
Publication of WO2023197880A1 publication Critical patent/WO2023197880A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention belongs to the technical field of stability calculation of steel cylinders on sea or water, and specifically relates to a method for predicting the anti-tilt stability of steel cylinders.
  • Steel cylinders are used in the construction of islands and other coastal projects on soft soil foundations. They have been successfully used in large-scale projects such as Guangzhou Panyu shore protection, Hong Kong-Zhuhai-Macao Bridge link island, Shenzhen-Zhongshan channel link island, Hong Kong Airport, etc. However, problems have also occurred during application. It has been toppled and damaged several times, and its stability design calculation method is still imperfect.
  • Method 1 Gravity Structural Stability Method and Method 5 - Cylinder Limit Displacement Control Method are not consistent with actual engineering under extreme working conditions.
  • Method 4 The horizontal bearing capacity method of the suction barrel foundation cannot consider the stability of the rear filling.
  • the difference between Method 2 - Frictional resistance method and Method 3 - Anchorless sheet pile stability method is that the rotation points of the moment balance are different. It can be known from actual measurements and other studies that the rotation point of the steel cylinder during use is not necessarily on the center line, but may also be elsewhere. To this end, a prediction method for the anti-tilt stability of steel cylinders at any rotation point is proposed.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for predicting the anti-tilt stability of a steel cylinder.
  • a method for predicting the anti-tilt stability of steel cylinders including the following steps:
  • Step 1 Obtain the water level information, soil layer information, and external load data of the steel cylinder burial environment.
  • the soil layer information includes: thickness hi, density ⁇ i , cohesion C i , friction angle ⁇ i , soil layer The friction coefficient ⁇ i between the body and the steel cylinder;
  • Step 2 Assume that the steel cylinder tips to the seaside, and the coordinates of the rotation point O where the steel cylinder tips are (R xi , R yi ), then the soil outside the landside steel cylinder above the rotation point O and the rotation
  • the soil outside the steel cylinder on the sea side below point O is the active earth pressure Pa1 and Pa2, the soil outside the steel cylinder on the land side below the rotation point O and the soil outside the steel cylinder on the sea side above the rotation point O
  • the soil is passive earth pressure Pp1 and Pp2;
  • Rankin theory is used to calculate the active earth pressure and passive earth pressure outside the steel cylinder; or the soil buried in the steel cylinder is any soil mass.
  • generalized limit equilibrium theory is used to calculate the active earth pressure and passive earth pressure outside the steel cylinder;
  • Step 3 Calculate the packing pressure inside the steel cylinder
  • is the friction angle of the filler in the steel cylinder
  • is the friction angle between the steel cylinder and the filler
  • D 0 is the diameter of the steel cylinder
  • ⁇ 0 is the packing side thrust coefficient
  • the packing pressure at other locations in the BC section is the same as the packing pressure at point B.
  • the pressure ⁇ Bx is equal;
  • Step 4 Calculate the external friction force t2 and internal friction force t1 of the steel cylinder when the steel cylinder tips to the seaside;
  • Step 5 Calculate the vertical reaction force and horizontal resistance force of the foundation bed on the steel cylinder when the steel cylinder tips to the seaside;
  • Step 6 Calculate the anti-tilting moment M r and overturning moment M s when the steel cylinder tips to the seaside;
  • the active earth pressure outside the steel cylinder provides the overturning moment; the passive earth pressure and the vertical reaction force of the foundation bed on the steel cylinder, the horizontal resistance of the foundation bed on the steel cylinder, the internal friction of the steel cylinder, and the external friction of the steel cylinder
  • the force provides an anti-tilting moment, and the external load is calculated according to the direction of the moment to provide an anti-tilting moment or overturning moment;
  • Step 7 Calculate the safety factor Kl for the steel cylinder to tip to the seaside
  • Step 8 At the same rotation point O, and assuming that the steel cylinder rotates toward the land side, the soil outside the steel cylinder on the sea side above the rotation point O and the soil outside the steel cylinder on the sea side below the rotation point O are equal to each other.
  • the soil mass outside the steel cylinder on the sea side below the rotation point O and the soil mass outside the steel cylinder on the land side above the rotation point O are passive earth pressure; recalculate the steel cylinder according to the above method
  • Step 9 Compare Kl and Kr, and use the smaller value of the two as the safety factor Fi at the rotation point;
  • Step 10 Re-select a new rotation point, then calculate the safety factor corresponding to the new rotation point according to the above steps, and take the minimum safety factor among all rotation points as the final safety factor F min under this working condition.
  • step 2 under the conditions that the soil buried in the steel cylinder is cohesionless soil and the landfill slope is horizontal, Rankin theory is used to calculate the active earth pressure and passive earth pressure outside the steel cylinder. as follows:
  • K axi is the active earth pressure coefficient of soil layer i
  • e axi1 is the active earth pressure at the top of soil layer i
  • e axi2 is the active earth pressure at the bottom of soil layer i
  • E axi is the active earth pressure of soil layer i
  • the active earth pressure resultant force; then the active earth pressure Pa1 is equal to the sum of the active earth pressure resultant E axi of all soil layers i outside the landside steel cylinder above the rotation point O, and the active earth pressure Pa2 is equal to the sea surface below the rotation point O
  • K pxi is the passive earth pressure coefficient of soil layer i
  • e pxi1 is the passive earth pressure at the top of soil layer i
  • e pxi2 is the passive earth pressure at the bottom of soil layer i
  • E pxi is the passive earth pressure resultant of soil layer i
  • the passive earth pressure Pp1 is equal to the sum of the passive earth pressure E pxi of all soil layers i outside the landside steel cylinder below the rotation point O
  • the passive earth pressure Pp2 is equal to the seaside steel cylinder outside the rotation point O.
  • the sum of the passive earth pressure results E pxi of all soil layers i.
  • step 5 includes:
  • This invention can predict the anti-tilt stability of the steel cylinder at any rotation point. By selecting any rotation point, calculating the safety factor corresponding to each rotation point, and taking the minimum safety factor among all rotation points as the safety factor under this working condition. ultimate safety factor.
  • Figure 1 is the stress diagram of the ultimate state of the steel cylinder tipping to the seaside.
  • Figure 2 is a schematic diagram of the stress on the inside and bottom of the steel cylinder.
  • Figure 3 is the force diagram of the steel cylinder in the ultimate state of tipping to the landside.
  • a method for predicting the anti-tilt stability of a steel cylinder see the attached figure, including the following steps:
  • Step 1 Obtain the water level information, soil layer information, and external load data of the steel cylinder burial environment.
  • the soil layer information includes: (1) Soil layer geometric data: the thickness of the soil layer hi; (2) Soil layer physical data: Density ⁇ i , cohesion force C i , friction angle ⁇ i , friction coefficient ⁇ i between soil and steel cylinder, where i represents the i-th layer of soil.
  • Step 2 Assume that the steel cylinder tips to the seaside (left side in Figure 1), and the coordinates of the rotation point O where the steel cylinder tips are (R xi , R yi ), then the landside steel cylinder above the rotation point O
  • the soil outside the cylinder and the soil outside the seaside steel cylinder below the rotation point O have active earth pressures Pa1 and Pa2, and the soil outside the landside steel cylinder below the rotation point O and above the rotation point O
  • the soil outside the steel cylinder on the sea side has passive earth pressures Pp1 and Pp2.
  • the active earth pressure Pa1 is equal to the sum of the active earth pressure E axi of all soil layers i outside the landside steel cylinder above the rotation point O, and the active earth pressure Pa2 is equal to the seaside steel cylinder below the rotation point O.
  • the sum of the active earth pressure results E axi of all soil layers i at the bottom.
  • the passive earth pressure Pp1 is equal to the sum of the passive earth pressure E pxi of all soil layers i outside the landside steel cylinder below the rotation point O
  • the passive earth pressure Pp2 is equal to the seaside steel cylinder outside the rotation point O.
  • the sum of the passive earth pressure results E pxi of all soil layers i.
  • Step 3 Calculate the packing pressure inside the steel cylinder.
  • is the friction angle of the filler in the steel cylinder
  • is the friction angle between the steel cylinder and the filler
  • D 0 is the diameter of the steel cylinder.
  • ⁇ 0 is the packing side thrust coefficient
  • the change in filler pressure in section AB is regarded as a linear change, then the filler pressure ⁇ Bx at point B can be calculated, and the filler pressure at point A is set to 0.
  • the packing pressure at other locations in the BC section is the same as that at point B.
  • the packing pressure ⁇ Bx at is equal.
  • the packing pressure in the CD section changes linearly. That is, in the CD section, the ordinate is the depth and the abscissa is the packing pressure. There is a linear relationship between the two.
  • Step 4 Calculate the external friction force t2 and internal friction force t1 of the steel cylinder when the steel cylinder tips to the seaside.
  • Step 5 Calculate the vertical reaction force and horizontal resistance force of the foundation bed on the steel cylinder when the steel cylinder tips to the seaside.
  • Step 6 Calculate the anti-tilting moment and overturning moment when the steel cylinder tips to the seaside.
  • the active earth pressures Pa1 and Pa2 outside the steel cylinder provide the overturning moment; the passive earth pressures Pp1 and Pp2 as well as the vertical reaction force q of the foundation bed on the steel cylinder, the horizontal resistance force F of the foundation bed on the steel cylinder, the internal force of the steel cylinder Friction force t1 and steel cylinder external friction force t2 provide anti-tilt moment, and external loads Fx and Fy are calculated according to the direction of the moment to provide anti-tilt moment or overturning moment.
  • Step 7 Calculate the safety factor Kl for the steel cylinder to tip to the seaside.
  • M s overturning moment
  • M r anti-overturning moment
  • M s P a1 *
  • P p1 is the resultant passive earth pressure on the land side
  • y p1 is the y coordinate of P p1
  • P p2 is the resultant passive earth pressure on the sea side
  • y p2 is the y coordinate of P p2
  • N is the number of soil layers outside the cylinder
  • x i is the x coordinate where E yi is located
  • y F is the y coordinate of the horizontal resistance F of the foundation bed to the steel cylinder
  • P a1 is the resultant active earth pressure on the land side
  • P a2 is the resultant active earth pressure on the sea side
  • y a1 is P a1 y coordinate of P a2
  • y a2 is the y coordinate of P a2 .
  • no external load is added to the calculation. If the steel cylinder has an external load, the external loads Fx and Fy are calculated according to the direction of the moment to provide an anti-tilt moment or overturning moment.
  • Step 8 Refer to Figure 3. At the same rotation point O, and assuming that the steel cylinder rotates to the land side, the soil outside the sea side steel cylinder above the rotation point O and the sea and land steel below the rotation point O The soil outside the cylinder is the active earth pressure Pa1' and Pa2', the soil outside the seaside steel cylinder below the rotation point O and the soil outside the landside steel cylinder above the rotation point O The bodies are passive earth pressures Pp1' and Pp2'.
  • Step 9 Calculate the anti-tilting moment and overturning moment when the steel cylinder tips to the landside.
  • Step 10 Calculate the safety factor Kr of the steel cylinder tipping to the landside.
  • Step 11 Compare Kl and Kr, and use the smaller value of the two as the safety factor Fi at the rotation point O.
  • Step 12 Re-select a new rotation point, then calculate the safety factor corresponding to the new rotation point according to the above steps, and take the minimum safety factor among all rotation points as the final safety factor F min under this working condition.
  • e pxi1 is the passive earth pressure at the top of soil layer i
  • e pxi2 is the passive earth pressure at the bottom of soil layer i
  • E pxi is the resultant passive earth pressure of soil layer i.
  • the coefficients in the passive earth pressure calculation formulas (12) and (13) are calculated according to formulas (4) to (9), but the coefficients s 0 and s 1 are calculated according to the following formulas (15) and (16) respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开了一种钢圆筒抗倾稳定性预测方法,假设钢圆筒以任意旋转点向海侧倾倒,计算钢圆筒内部的填料压强、外部摩擦力、内部摩擦力、基床对钢圆筒的竖向反力和水平抗力,计算钢圆筒向海侧倾倒情况下的抗倾力矩和倾覆力矩,得到向海侧倾倒的安全系数;然后在相同的旋转点下再假设钢圆筒向陆侧旋转,计算钢圆筒向陆侧倾倒的安全系数,比较两个安全系数,将二者的较小值作为该旋转点下的安全系数。然后重新选取新的旋转点,按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数。

Description

一种钢圆筒抗倾稳定性预测方法 技术领域
本发明属于海上或水上钢圆筒稳定性计算技术领域,具体涉及一种钢圆筒抗倾稳定性预测方法。
背景技术
钢圆筒用于软土地基上建设岛屿与其他海岸工程已经被成功用于广州番禺护岸、港珠澳大桥链接岛、深中通道链接岛、香港机场等大型工程,但在应用中也发生了几次倾倒破坏,其稳定性设计计算方法还有不完善的地方。
目前钢圆筒抗倾稳定性的计算方法主要有:1.重力式结构稳定性法;2.摩阻力法;3.无锚板桩稳定性法;4.吸力式桶形基础水平承载力法;5.圆筒极限变位控制法。这五种方法的基本假设、思路、参数取值和计算结果,差异较大,其基本平衡方程都是力平衡或者力矩平衡,其受力模型如下表1所示:
表1钢圆筒稳定性计算模式对比

通过实际工程验证可知,方法1-重力式结构稳定性法和方法5-圆筒极限变位控制法在计算极端工况下不符合实际工程。方法4-吸力式桶形基础水平承载力法,没办法考虑后方填土时的稳定性。方法2-摩阻力法和方法3-无锚板桩稳定性法的区别在于力矩平衡的旋转点不同。通过实测和其他研究可知,钢圆筒在使用中其旋转点并一定在中心线上,也可能在别的地方。为此提出任意旋转点下的钢圆筒抗倾稳定性预测方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种钢圆筒抗倾稳定性预测方法。
本发明是通过以下技术方案实现的:
一种钢圆筒抗倾稳定性预测方法,包括以下步骤:
步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:土层的厚度hi、密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi
步骤2:假设钢圆筒向海侧倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pa1和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2;
在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;或者在钢圆筒埋土为任意土体以及陆侧填土坡脚为水平条件下,采用广义极限平衡理论计算钢圆筒外部的主动土压力和被动土压力;
步骤3:计算钢圆筒内部的填料压强
3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,
AB段的高度:
CD段的高度:
BC段的高度:h2=H-h1-h3
其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径;
3.2:AB段的填料压强计算:
钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A

K=λ0tan(δ)
式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自然对数,q0是外荷载,A是待定参数;
λ0是填料侧推力系数;
则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy
3.3:BC段的填料压强计算:
BC段的填料压强认为是等强的,因此采用步骤3.2中的公式σx=λ0σy,计算出B点处的填料压强σBx,BC段其他位置的填料压强与B点处的填料压强σBx相等;
3.4:CD段的填料压强计算:
计算出C点处和D点处的填料压强大小,得到CD段的填料压强随深度变化的线性关系式,其中:
C点处的填料压强σCx=B点处的填料压强σBx
D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强;
步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1;
4.1:计算钢圆筒外部受到的土层的摩擦力:
土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi,Eaxi是土层i的主动土压力合力;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi,Epxi是土层i的被动土压力合力;
4.2:计算钢圆筒内部受到的填料的摩擦力:
钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
钢圆筒内部BC段受到的摩擦力Eyt1BC=tan(δ)·σCx·h2
钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5;
步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力;
步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩Mr和倾覆力矩Ms
钢圆筒外部的主动土压力提供倾覆力矩;被动土压力以及基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力提供抗倾力矩,外荷载按照力矩方向计算提供抗倾力矩或倾覆力矩;
步骤7:计算钢圆筒向海侧倾倒的安全系数Kl,
步骤8:在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土体为被动土压力;按照上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力、被动土压力、 基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力;计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩,并计算钢圆筒向陆侧倾倒的安全系数Kr;
步骤9:比较Kl和Kr,将二者的较小值作为该旋转点下的安全系数Fi
步骤10:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
在上述技术方案中,步骤2中,在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力的步骤如下:
2.1:计算主动土压力



式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力;则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和;
2.2:计算被动土压力



其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力;则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
在上述技术方案中,步骤3.2中,为了简化计算,将AB段的填料压强变化看成线性变化,则根据公式σx=λ0σy计算出B点处的填料压强σBx,A点处的填料压强设为0。
在上述技术方案中,步骤5包括:
5.1:基床对钢圆筒的竖向反力
基床对钢圆筒的竖向反力平均压强为q=9·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到;
5.2:基床对钢圆筒的水平抗力
基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
本发明的优点和有益效果为:
本发明能够对任意旋转点下的钢圆筒抗倾稳定性进行预测,通过选取任意的旋转点,计算各旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数。
附图说明
图1是钢圆筒向海侧倾倒极限状态受力图。
图2是钢圆筒内侧及底部受力示意图。
图3是钢圆筒向陆侧倾倒极限状态受力图。
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合具体实施例进一步说明本发明的技术方案。
实施例一
一种钢圆筒抗倾稳定性预测方法,参见附图,包括以下步骤:
步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:(1)土层几何数据:土层的厚度hi;(2)土层物理数据:密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi,其中,i表示第i层土。
步骤2:假设钢圆筒向海侧(图1中左侧)倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pa1和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2。
在钢圆筒埋土为无粘性土以及陆侧填土坡面水平(β=0)的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力。
2.1:计算主动土压力



式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力。则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外 部的所有土层i的主动土压力合力Eaxi之和。
2.2:计算被动土压力



其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力。则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
步骤3:计算钢圆筒内部的填料压强。
3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,其中A点和D点分别为钢圆筒筒顶和筒底。
AB段的高度:
CD段的高度:
BC段的高度:h2=H-h1-h3
其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径。
3.2:AB段的填料压强计算:
钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A

K=λ0tan(δ)
式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自 然对数,q0是外荷载,A是待定参数。
λ0是填料侧推力系数;
则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy。本实施例中,为了简化计算,将AB段的填料压强变化看成线性变化,则计算出B点处的填料压强σBx即可,A点处的填料压强设为0。
3.3:BC段的填料压强计算:
BC段的填料压强认为是等强的,因此采用步骤3.2中的公式,σx=λ0σy,计算出B点处的填料压强σBx即可,BC段其他位置的填料压强与B点处的填料压强σBx相等。
3.4:CD段的填料压强计算:
CD段的填料压强是线性变化的,即CD段中,纵坐标是深度,横坐标是填料压强大小,二者是线性关系。
因此,计算出C点处和D点处的填料压强大小,即可得到CD段的填料压强随深度变化的线性关系式(即两点确定一条直线)。其中:
C点处的填料压强σCx=B点处的填料压强σBx
筒底部D点处的填料压强的计算是根据钢圆筒底部的平均压强σmid,根据现有实验资料分析,D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强。
步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1。
4.1:计算钢圆筒外部受到的土层的摩擦力:
土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi
4.2:计算钢圆筒内部受到的填料的摩擦力:
钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
钢圆筒内部BC段受到的摩擦力Eyt1BC=tan(δ)·σCx·h2
钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5
步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力。
5.1:基床对钢圆筒的竖向反力
基床对钢圆筒的竖向反力平均压强为q=9·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧(海侧)之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到。
5.2:基床对钢圆筒的水平抗力
基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩和倾覆力矩。
钢圆筒外部的主动土压力Pa1、Pa2提供倾覆力矩;被动土压力Pp1、Pp2以及基床对钢圆筒的竖向反力q、基床对钢圆筒的水平抗力F、钢圆筒内部摩擦力t1、钢圆筒外部摩擦力t2提供抗倾力矩,外荷载Fx、Fy按照力矩方向计算提供抗倾力矩或倾覆力矩。
步骤7:计算钢圆筒向海侧倾倒的安全系数Kl。
其中,Ms—倾覆力矩,Mr—抗倾力矩;
其中:

Ms=Pa1*|ya1-Ryi|+Pa2*|ya2-Ryi|
Pp1为陆侧被动土压力合力,yp1为Pp1的y坐标;Pp2为海侧被动土压力合力,yp2为Pp2的y坐标;N为筒体外部土层个数,xi为Eyi所在的x坐标,yF为基床对钢圆筒的水平抗力F的y坐标,Pa1为陆侧主动土压力合力,Pa2为海侧主动土压力合力,ya1为Pa1的y坐标,ya2为Pa2的y坐标。需要说明的是,式中,没有加入外载荷的计算,如果钢圆筒有外载荷作用,则外荷载Fx、Fy按照力矩方向计算提供抗倾力矩或倾覆力矩。
步骤8:参见附图3,在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力Pa1’和Pa2’,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土 体为被动土压力Pp1’和Pp2’。
按照上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力Pa1’和Pa2’、被动土压力Pp1’和Pp2’、基床对钢圆筒的竖向反力q’、基床对钢圆筒的水平抗力F’、钢圆筒内部摩擦力t1’、钢圆筒外部摩擦力t2’。
步骤9:计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩。
步骤10:计算钢圆筒向陆侧倾倒的安全系数Kr。
步骤11:比较Kl和Kr,将二者的较小值作为该旋转点O下的安全系数Fi
步骤12:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
实施例二
本实施例与实施例一不同之处在于:实施例一中的步骤2是在钢圆筒埋土为无粘性土以及陆侧填土坡面水平(β=0)的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;而本实施例对所述步骤2的另一种实施方式是:当钢圆筒埋土为任意土体(即粘聚力C=0或者粘聚力C!=0都可以)以及陆侧填土坡脚为水平(β=0)条件下,采用广义极限平衡理论计算钢圆筒外部的主动土压力和被动土压力。
2.1计算主动土压力




Kci=(Kqi-1)λ          (5)





其中Ci为土层i的粘聚力;φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土 层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重,q是地表均布荷载;Kqi为土层i地表荷载土压力系数;Kci为土层i粘聚力土压力系数;Kqi为土层i自重荷载土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力。
2.2计算被动土压力


其中epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力。被动土压力计算公式(12)和(13)中的系数按照公式(4)~公式(9)计算,但系数s0和s1分别按照下述公式(15)和(16)计算。

以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (4)

  1. 一种钢圆筒抗倾稳定性预测方法,其特征在于,包括以下步骤:
    步骤1,获取钢圆筒埋设环境的水位线信息、土层信息、以及外荷载数据,土层信息包括:土层的厚度hi、密度γi、粘聚力Ci、摩擦角φi、土体与钢圆筒的摩擦系数δi
    步骤2:假设钢圆筒向海侧倾倒,设钢圆筒倾倒的旋转点O的坐标为(Rxi,Ryi),则旋转点O之上的陆侧钢圆筒外部的土体和旋转点O之下的海侧钢圆筒外部的土体为主动土压力Pa1和Pa2,旋转点O之下的陆侧钢圆筒外部的土体和旋转点O之上的海侧钢圆筒外部的土体为被动土压力Pp1和Pp2;
    在钢圆筒埋土为无粘性土以及陆侧填土坡面水平的条件下,采用Rankin理论计算钢圆筒外部的主动土压力和被动土压力;
    步骤3:计算钢圆筒内部的填料压强
    3.1:将钢圆筒内部自上而上分成三段,分别是:AB段、BC段和CD段,
    AB段的高度:
    CD段的高度:
    BC段的高度:h2=H-h1-h3
    其中,φ为钢圆筒内填料的摩擦角;δ为钢圆筒与填料的摩擦角;D0为钢圆筒的直径;
    3.2:AB段的填料压强计算:
    钢圆筒内填料的垂直压强σy为:σy=γAm+q0e-h/A

    K=λ0tan(δ)
    式中,γ是钢圆筒内填料的容重(kN/m3);m=1-e-y/A,y为计算深度(m),e为自然对数,q0是外荷载,A是待定参数;
    λ0是填料侧推力系数;
    则填料对钢圆筒AB段的内壁的水平向压强σx为:σx=λ0σy
    3.3:BC段的填料压强计算:
    BC段的填料压强认为是等强的,因此采用步骤3.2中的公式σx=λ0σy,计算出B点处的填料压强σBx,BC段其他位置的填料压强与B点处的填料压强σBx相等;
    3.4:CD段的填料压强计算:
    计算出C点处和D点处的填料压强大小,得到CD段的填料压强随深度变化的线性关系式,其中:
    C点处的填料压强σCx=B点处的填料压强σBx
    D点处的填料压强采用下式计算:σDx=λ0midx),其中,σmid是钢圆筒底部的平均压强;
    步骤4:分别计算钢圆筒向海侧倾倒情况下钢圆筒外部摩擦力t2和内部摩擦力t1;
    4.1:计算钢圆筒外部受到的土层的摩擦力:
    土层i与钢圆筒外部的摩擦力Eyi=tan(δi)·Eaxi或者Eyi=tan(δi)·Epxi
    上述公式取决于土层i是参与主动土压力计算还是被动土压力计算,当土层i参与主动土压力时,Eyi=tan(δi)·Eaxi;当土层i参与被动土压力时,Eyi=tan(δi)·Epxi
    4.2:计算钢圆筒内部受到的填料的摩擦力:
    钢圆筒内部AB段受到的摩擦力Eyt1AB=tan(δ)·σBx·h1·0.5
    钢圆筒内部BC段受到的摩擦力Eyt1BC=tan(δ)·σCx·h2
    钢圆筒内部CD段受到的摩擦力Eyt1CD=tan(δ)·(σCxDx)·h3·0.5;
    步骤5:分别计算钢圆筒向海侧倾倒情况下基床对钢圆筒的竖向反力和水平抗力;
    步骤6:计算钢圆筒向海侧倾倒情况下的抗倾力矩Mr和倾覆力矩Ms
    钢圆筒外部的主动土压力提供倾覆力矩;被动土压力以及基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力提供抗倾力矩,外荷载按照力矩方向计算提供抗倾力矩或倾覆力矩;
    步骤7:计算钢圆筒向海侧倾倒的安全系数Kl,
    步骤8:在相同的旋转点O,再假设钢圆筒向陆侧旋转,则旋转点O之上的海侧钢圆筒外部的土体和旋转点O之下的海陆钢圆筒外部的土体为主动土压力,旋转点O之下的海侧钢圆筒外部的土体和旋转点O之上的陆侧钢圆筒外部的土体为被动土压力;按照 上述方法重新计算钢圆筒向陆侧旋转情况下的钢圆筒外部的主动土压力、被动土压力、基床对钢圆筒的竖向反力、基床对钢圆筒的水平抗力、钢圆筒内部摩擦力、钢圆筒外部摩擦力;计算钢圆筒向陆侧倾倒情况下的抗倾力矩和倾覆力矩,并计算钢圆筒向陆侧倾倒的安全系数Kr;
    步骤9:比较Kl和Kr,将二者的较小值作为该旋转点下的安全系数Fi
    步骤10:重新选取新的旋转点,然后按照上述步骤计算新的旋转点对应的安全系数,取所有旋转点中安全系数最小值作为该工况下的最终安全系数Fmin
  2. 根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤2包括:
    2.1:计算主动土压力



    式中φi为土层i的摩擦角;δ为钢圆筒与土的摩擦角;hi为土层i的厚度,γi为土层i的容重,水位线以上的土采用天然容重,水位线以下采用浮容重;Kaxi为土层i的主动土压力系数;eaxi1为土层i的顶部主动土压力;eaxi2为土层i的底部主动土压力;Eaxi为土层i的主动土压力合力;则主动土压力Pa1等于旋转点O之上的陆侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和,主动土压力Pa2等于旋转点O之下的海侧钢圆筒外部的所有土层i的主动土压力合力Eaxi之和;
    2.2:计算被动土压力



    其中Kpxi为土层i的被动土压力系数;epxi1为土层i的顶部被动土压力;epxi2为土层i的底部被动土压力;Epxi为土层i的被动土压力合力;则被动土压力Pp1等于旋转点O之下的陆侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和,被动土压力Pp2等于旋转点O之上的海侧钢圆筒外部的所有土层i的被动土压力合力Epxi之和。
  3. 根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤3.2中,为了简化计算,将AB段的填料压强变化看成线性变化,则根据公式σx=λ0σy计算出B点处的填料压强σBx,A点处的填料压强设为0。
  4. 根据权利要求1所述的钢圆筒抗倾稳定性预测方法,其特征在于:步骤5包括:
    5.1:基床对钢圆筒的竖向反力
    基床对钢圆筒的竖向反力平均压强为q=q·Cu,其中,Cu为地基土体的不排水抗剪强度,则基床对钢圆筒的竖向反力为Fq=q*Lq,Lq为旋转点到倾斜侧之间的距离Lq,根据旋转点的坐标和钢圆筒的直径计算得到;
    5.2:基床对钢圆筒的水平抗力
    基床对钢圆筒的水平抗力F=π/4·D0·D0·Cu
PCT/CN2023/085011 2022-04-15 2023-03-30 一种钢圆筒抗倾稳定性预测方法 WO2023197880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210396125.5A CN114809125B (zh) 2022-04-15 2022-04-15 一种钢圆筒抗倾稳定性预测方法
CN202210396125.5 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023197880A1 true WO2023197880A1 (zh) 2023-10-19

Family

ID=82537452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085011 WO2023197880A1 (zh) 2022-04-15 2023-03-30 一种钢圆筒抗倾稳定性预测方法

Country Status (2)

Country Link
CN (1) CN114809125B (zh)
WO (1) WO2023197880A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114809125B (zh) * 2022-04-15 2023-09-12 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072015A1 (en) * 2018-10-04 2020-04-09 Sentez İnşaat Yazilim Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Prestressed reinforced concrete pipe pile and a production method thereof
CN111859660A (zh) * 2020-07-16 2020-10-30 天津大学 大直径筒型基础抗倾覆稳定性验算方法
CN113806852A (zh) * 2021-11-22 2021-12-17 中交天津港湾工程研究院有限公司 一种深水薄壁钢圆筒稳定性预测方法
CN114004086A (zh) * 2021-10-29 2022-02-01 南方海上风电联合开发有限公司 一种基于筒土分离的筒型基础抗倾覆稳定性验算方法
CN114809125A (zh) * 2022-04-15 2022-07-29 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法
CN115288213A (zh) * 2022-07-13 2022-11-04 中交天津港湾工程研究院有限公司 海上钢圆筒稳定性预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962910B (zh) * 2020-08-14 2021-08-31 山东建筑大学 一种建筑物托换基础旋转移位纠倾方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072015A1 (en) * 2018-10-04 2020-04-09 Sentez İnşaat Yazilim Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Prestressed reinforced concrete pipe pile and a production method thereof
CN111859660A (zh) * 2020-07-16 2020-10-30 天津大学 大直径筒型基础抗倾覆稳定性验算方法
CN114004086A (zh) * 2021-10-29 2022-02-01 南方海上风电联合开发有限公司 一种基于筒土分离的筒型基础抗倾覆稳定性验算方法
CN113806852A (zh) * 2021-11-22 2021-12-17 中交天津港湾工程研究院有限公司 一种深水薄壁钢圆筒稳定性预测方法
CN114809125A (zh) * 2022-04-15 2022-07-29 中交天津港湾工程研究院有限公司 一种钢圆筒抗倾稳定性预测方法
CN115288213A (zh) * 2022-07-13 2022-11-04 中交天津港湾工程研究院有限公司 海上钢圆筒稳定性预测方法

Also Published As

Publication number Publication date
CN114809125B (zh) 2023-09-12
CN114809125A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Liu et al. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand
Zhang et al. Experimental study on installation of hybrid bucket foundations for offshore wind turbines in silty clay
Lian et al. Bearing capacity and technical advantages of composite bucket foundation of offshore wind turbines
Zhu et al. Deflection-based bearing capacity of suction caisson foundations of offshore wind turbines
WO2021189612A1 (zh) 一种基坑开挖边坡安全系数的计算方法
WO2023197880A1 (zh) 一种钢圆筒抗倾稳定性预测方法
Chen et al. Large-scale experimental investigation of the installation of suction caissons in silt sand
CN107315893B (zh) 采用复合地基模式预测超长群桩沉降量的计算方法
CN106991239A (zh) 一种摩擦群桩布桩方法及其复合地基承载力的计算方法
Tian et al. Analysis of stress and deformation of a positive buried pipe using the improved Spangler model
Wang et al. Failure mechanism and lateral bearing capacity of monopile-friction wheel hybrid foundations in soft-over-stiff soil deposit
Wang et al. Effect of pile arrangement on lateral response of group-pile foundation for offshore wind turbines in sand
Zhang et al. Force transfer characteristics of composite bucket foundation for offshore wind turbines
Jin et al. The use of improved radial movement optimization to calculate the ultimate bearing capacity of a nonhomogeneous clay foundation adjacent to slopes
CN116815819B (zh) 顺层路堑边坡抗剪锚杆支护与挡墙加固设计方法及装置
CN115288213B (zh) 海上钢圆筒稳定性预测方法
CN113935098A (zh) 基于滑裂面形状修正的基坑支护主动土压力计算方法
Fan et al. Horizontal bearing capacity of composite bucket foundation in clay: A case study
CN116070325A (zh) 一种附加多层有限刚度梁的刚性桩水平承载力计算方法
Zhou et al. Engineering characteristics and reinforcement program of inclined pre-stressed concrete pipe piles
Zou et al. Lateral bearing behavior and failure mechanism of monopile-bucket hybrid foundations on sand deposit
Yang et al. Numerical modelling of lateral-moment bearing capacity of friction wheel foundation for offshore wind turbine
Zhang et al. Penetration Resistance of Composite Bucket Foundation with Eccentric Load for Offshore Wind Turbines
CN115982805A (zh) 一种基于环向应力修正的圆形基坑土压力计算方法
CN116227082A (zh) 附加有限刚度梁的桩基基础的竖向承载力实用计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787525

Country of ref document: EP

Kind code of ref document: A1