CN114807726A - 一种快速制备Fe-Mn阻尼合金的方法 - Google Patents

一种快速制备Fe-Mn阻尼合金的方法 Download PDF

Info

Publication number
CN114807726A
CN114807726A CN202210488695.7A CN202210488695A CN114807726A CN 114807726 A CN114807726 A CN 114807726A CN 202210488695 A CN202210488695 A CN 202210488695A CN 114807726 A CN114807726 A CN 114807726A
Authority
CN
China
Prior art keywords
powder
ball milling
alloy
damping
damping alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210488695.7A
Other languages
English (en)
Inventor
黄林
熊柯
冯威
宋杰
安旭光
孔清泉
喻林
王小炼
吴小强
张靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202210488695.7A priority Critical patent/CN114807726A/zh
Publication of CN114807726A publication Critical patent/CN114807726A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供一种快速制备Fe‑Mn阻尼合金的方法,包括以下步骤:(1)按比例称取金属粉末,金属粉末包括电解球形铁粉和不规则锰粉;(2)金属粉末进行球磨;(3)将球磨后的混合粉末倒入直径为30mm石墨模具中压实粉末,即10MPa压力保压20s;(4)将装有混合粉末的模具进行烧结。本发明获得的铁锰合金与传统阻尼合金相比具有更好的力学性能和经济效益,有望得到实际应用,烧结后合金的阻尼性能随应变振幅的增加而增大。应变振幅在650*10‑6时,Fe‑Mn合金阻尼性能达0.028。

Description

一种快速制备Fe-Mn阻尼合金的方法
技术领域
本发明属于功能材料技术领域,具体涉及一种快速制备Fe-Mn阻尼合金的方法。
背景技术
阻尼合金是一种具有将机械能转换为热能而耗散的功能材料,从根源上解决实际工程应用中的减震降噪问题。Mn-Cu合金由于其阻尼性能好,已形成产业化,主要应用在军工方面,但其使用条件苛刻,且该合金抗拉强度普遍在500-600Mpa。相比而言,Fe-Mn阻尼合金具有更高的强度且更好的经济性,而受到广泛关注。目前主要采用熔炼、锻造以及后续热加工的方法来制备兼具优良的力学性能与阻尼性能的Fe-Mn阻尼合金。但该方法制备周期长,经济成本高。
发明专利ZL202110065967.8公开了一种Fe-Mn系高强度高阻尼合金的制备方法。通过感应熔炼凝固获得铸锭、然后锻造成板坯,板坯经多道次热轧,并采用高低温热处理后酸洗冷轧,并再次做退火处理获得高强热轧阻尼合金。该方法经济成本高,制备周期长,成品率难以保证。
发明专利ZL201410143007.9公开了一种提高高强度Fe-Mn基阻尼合金阻尼性能的方法。该方法先将Fe-Mn基合金在950℃到1050℃做固溶处理,然后再100℃-150℃进行时效处理,最后室温变形4%-8%,获得阻尼合金。该方法制备的Fe-Mn阻尼合金力学性能较低。且未指出Fe-Mn基合金的制备方法。
发明专利ZL201610629730.7公开了含Nb铁锰基阻尼合金阻尼及其制备方法。该方法先按照所述的各组分质量分数称取原料,采用真空电弧熔炼得到铸锭,再对铸锭依次在850℃进行均匀化热处理、并在850℃进行热轧、定型和固溶处理。该方法制备周期长,生产成本较高。
发明内容
针对上述技术问题,本发明采用一种更加快速经济的制备方法,以期在实际的工程中得到应用。本发明采用如下的技术方案。
具体的制备,包括以下步骤:
(1)按比例称取金属粉末,包括电解球形铁粉和不规则锰粉,质量比为4:1;电解球形铁粉纯度99%,45~150μm,不规则锰粉纯度99.7%,45~150μm;
(2)金属粉末进行球磨;
球磨条件为:
球料质量比10:1,其中,直径10mm的大球与直径5mm小球的质量比为1:2;
通入高纯氩气作为保护气体;
球磨转速为400r/min,每隔5小时停一次,通过XRD及扫描电子显微镜观察混合粉末的颗粒形貌及相组成,确定合适的球磨时间;
(3)将球磨后的混合粉末倒入直径为30mm石墨模具中压实粉末,即10MPa压力保压20s;
(4)将装有混合粉末的模具进行烧结;
烧结参数为:
轴向压力为30Mpa;
室温到600℃的升温速度为100℃每分钟,600℃到800℃升温速度为50℃每分钟,800℃到目标温度的升温速度为25℃每分钟,在目标温度保温20分钟,随后随炉冷却获得烧结样品。
目标温度为900℃~1000℃。
本发明技术方案具有的有益效果:
本发明获得的铁锰合金与传统阻尼合金相比具有更好的力学性能,其拉强度达700Mpa,屈服强度为400Mpa,延伸率高达21%
本发明获得的铁锰合金可在较低的温度(1000℃)快速制备,对于通过高温(1300℃以上)熔炼获得铸锭制备方法更加高效经济,有望得到实际工程应用。
本发明的烧结后合金的阻尼性能随应变振幅的增加而增大。应变振幅在650*10-6时,Fe-Mn合金阻尼性能达0.028。
附图说明
图1为实施例中不同球磨时间混合粉末的XRD图谱;
图2a为实施例中10h球磨时间混合粉末的形貌;
图2b为实施例中20h球磨时间混合粉末的形貌;
图2c为实施例中30h球磨时间混合粉末的形貌;
图2d为实施例中40h球磨时间混合粉末的形貌;
图3为实施例中不同烧结温度试样的XRD;
图4为实施例中1000℃烧结合金应力应变曲线;
图5为实施例中1000℃烧结合金阻尼性能。
具体实施方式
为解决上述问题,本发明采用如下的技术方案。
选用电解球形铁粉(纯度99%,45~150μm)和不规则锰粉(纯度99.7%,45~150μm)。粉末总重量为100g,其中锰粉质量为20g,铁粉质量为80g。
制备铁锰合金的方法,包括以下步骤:
(1)首先用电子天平分别按比例称取上述金属粉末,总质量为100g;
(2)采用球料质量比10:1,其中大球(10mm)与小球(5mm)质量比为1:2;
(3)装入500ML的球磨罐中,并通入高纯氩气以排除球罐中的空气,防止样品氧化,最后密封;
(4)采用QM-QX2全方位行星式球磨机进行高能球磨,设置球磨转速为400r/min,为防止温度过高导致球磨粉末与球磨罐发生粘接现象,每隔5小时停一次,待其冷却之后,在充有高纯氩气的真空手套箱中取出粉末。通过XRD及扫描电子显微镜观察每10小时球磨的混合粉末的颗粒形貌及相组成,最后确定混合粉末的球磨时间为40小时;
图1为实施例中不同球磨时间混合粉末的XRD图谱;由图可见,随着球磨时间的增加,Mn的衍射峰强度逐渐减小并在球磨时间为40小时的时候几乎消失,这表明在球磨的过程中,Mn元素不断的固溶到Fe的晶格点阵当中,最终呈现为单一固溶体的衍射峰现象。
图2a~图2d分别为10h、20h、30h、40h球磨时间混合粉末的形貌。图2a中的混合金属粉末球磨10小时后呈棒状,随着球磨时间的进一步增加,由于混合金属粉末与不锈钢球体之间的相互作用,导致混合金属粉末被不断地破碎细化,并出现一定程度的冷焊,最终如图2d呈薄片状。
(5)将球磨40小时后的混合粉末倒入直径为30mm石墨模具中压实粉末,即10MPa压力保压20s。
(6)将装有混合粉末的模具放入到型号为LABOX-350脉冲放电等离子烧结系统进行烧结。烧结参数为:轴向压力为30Mpa,室温到600℃的升温速度为100℃每分钟,600℃到800℃升温速度为50℃每分钟,800℃到目标温度的升温速度为25℃每分钟,在目标温度保温20分钟,随后随炉冷却获得烧结样品。本实施例中目标温度分别为900℃、950℃、1000℃。
图3为实施例中不同烧结温度试样的XRD;经放电等离子烧结后的Fe-Mn合金主要由γ相奥氏体,α相及ε相的马氏体组成,且随着烧结温度的升高,马氏体相的相对含量程逐渐降低的趋势。
图4为实施例中1000℃烧结合金应力应变曲线;可见,该合金的抗拉强度达700Mpa,屈服强度为400Mpa,延伸率达21%。图5为实施例中不同烧结温度阻尼性能,该合金的阻尼性能随应变振幅的增加而增大。应变振幅在650*10-6时,Fe-Mn合金阻尼性能达0.028。

Claims (5)

1.一种快速制备Fe-Mn阻尼合金的方法,其特征在于,包括以下步骤:
(1)按比例称取金属粉末,金属粉末包括电解球形铁粉和不规则锰粉;
(2)金属粉末进行球磨;
(3)将球磨后的混合粉末倒入直径为30mm石墨模具中压实粉末,即10MPa压力保压20s;
(4)将装有混合粉末的模具进行烧结。
2.根据权利要求1所述的一种快速制备Fe-Mn阻尼合金的方法,其特征在于,步骤(1)中的金属粉末中电解球形铁粉和不规则锰粉的质量比为4:1;电解球形铁粉粒径45~150μm,不规则锰粉粉粒径45~150μm。
3.根据权利要求1所述的一种快速制备Fe-Mn阻尼合金的方法,其特征在于,步骤(2)中的球磨条件为:
球料质量比10:1,其中,直径10mm的大球与直径5mm小球的质量比为1:2;
通入高纯氩气作为保护气体;
球磨转速为400r/min,每隔5小时停一次,通过XRD及扫描电子显微镜观察混合粉末的颗粒形貌及相组成,确定合适的球磨时间。
4.根据权利要求1所述的一种快速制备Fe-Mn阻尼合金的方法,其特征在于,步骤(4)中的烧结参数为:
轴向压力为30Mpa;
室温到600℃的升温速度为100℃每分钟,600℃到800℃升温速度为50℃每分钟,800℃到目标温度的升温速度为25℃每分钟,在目标温度保温20分钟,随后随炉冷却获得烧结样品。
5.根据权利要求4所述的一种快速制备Fe-Mn阻尼合金的方法,其特征在于,所述的目标温度为900℃~1000℃。
CN202210488695.7A 2022-05-06 2022-05-06 一种快速制备Fe-Mn阻尼合金的方法 Pending CN114807726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210488695.7A CN114807726A (zh) 2022-05-06 2022-05-06 一种快速制备Fe-Mn阻尼合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210488695.7A CN114807726A (zh) 2022-05-06 2022-05-06 一种快速制备Fe-Mn阻尼合金的方法

Publications (1)

Publication Number Publication Date
CN114807726A true CN114807726A (zh) 2022-07-29

Family

ID=82511247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210488695.7A Pending CN114807726A (zh) 2022-05-06 2022-05-06 一种快速制备Fe-Mn阻尼合金的方法

Country Status (1)

Country Link
CN (1) CN114807726A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236925A (en) * 1977-08-10 1980-12-02 Hitachi, Ltd. Method of producing sintered material having high damping capacity and wearing resistance and resultant products
JPH06172812A (ja) * 1992-12-07 1994-06-21 Nisshin Steel Co Ltd 制振性を有する金属粉末焼結板の製造方法
KR950011633A (ko) * 1993-10-22 1995-05-15 최종술 Fe-Mn계 진동 감쇠 합금강과 그 제조 방법
WO2006109919A1 (en) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology High-strength damping alloys and low-noise diamond saw using the same
US20150111061A1 (en) * 2013-10-22 2015-04-23 Mo-How Herman Shen High strain damping method including a face-centered cubic ferromagnetic damping coating, and components having same
CN108342732A (zh) * 2018-04-02 2018-07-31 东莞理工学院 一种FeMn合金-ZnAl合金双层阻尼复合涂层的制备方法
CN109295399A (zh) * 2018-12-10 2019-02-01 西南交通大学 一种高阻尼高熵合金材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236925A (en) * 1977-08-10 1980-12-02 Hitachi, Ltd. Method of producing sintered material having high damping capacity and wearing resistance and resultant products
JPH06172812A (ja) * 1992-12-07 1994-06-21 Nisshin Steel Co Ltd 制振性を有する金属粉末焼結板の製造方法
KR950011633A (ko) * 1993-10-22 1995-05-15 최종술 Fe-Mn계 진동 감쇠 합금강과 그 제조 방법
WO2006109919A1 (en) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology High-strength damping alloys and low-noise diamond saw using the same
US20150111061A1 (en) * 2013-10-22 2015-04-23 Mo-How Herman Shen High strain damping method including a face-centered cubic ferromagnetic damping coating, and components having same
CN108342732A (zh) * 2018-04-02 2018-07-31 东莞理工学院 一种FeMn合金-ZnAl合金双层阻尼复合涂层的制备方法
CN109295399A (zh) * 2018-12-10 2019-02-01 西南交通大学 一种高阻尼高熵合金材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOONG-HWAN JUN等: "The influence of Mn content on microstructure and damping capacity in Fe–(17~23)%Mn alloys", 《MATERIALS SCIENCE AND ENGINEERING》 *

Similar Documents

Publication Publication Date Title
CN102808105B (zh) 一种形状记忆铜合金的制备方法
CN110760718B (zh) 一种高钨高钴的镍合金高纯净度细晶棒料的制备方法
CN113278896A (zh) 一种Fe-Mn-Al-C系高强度低密度钢及其制备方法
CN103276264B (zh) 一种低成本热强变形镁合金及其制备方法
WO2016127716A1 (zh) 一种高强韧合金材料及其半固态烧结制备方法和应用
CN108251695B (zh) 一种钛铝铌锆钼合金的制备方法
CN113122763B (zh) 一种高强韧性高熵合金制备方法
CN110284042B (zh) 超塑性高熵合金、板材及其制备方法
CN109706336B (zh) 一种超细晶高强塑性稀土镁合金的低成本制备方法
CN103938102A (zh) 一种铁铬铝系多元高电阻电热合金的制备方法
CN101935776B (zh) 一种β钛合金材料及其制备方法
CN102978552B (zh) 铸态镁-钆-钇-钕-锆稀土镁合金构件的塑性变形方法
CN113136531B (zh) 一种粉末冶金不锈钢
CN103122431A (zh) 一种长周期结构相增强的镁锂合金及其制备方法
JP2024504210A (ja) 高エントロピーのオーステナイト系ステンレス鋼及びその製造方法
CN102409258B (zh) 一种含硼的高强度、耐氢脆合金的组织均匀性控制方法
CN110241338A (zh) 一种Al-Zn-Mg-Cu系超高强铝合金及其制备方法
CN108342601B (zh) 基于粉末冶金法的Ti22Al25NbxV合金制备方法
EP4339315A1 (en) Aluminum alloy for new energy vehicle integral die-cast part, preparation method therefor and application thereof
CN105861935B (zh) 一种热塑性优良的Fe‑36Ni因瓦合金材料及其制备方法
CN102796954B (zh) 一种低锰铁基形状记忆合金
CN112981212B (zh) 一种非等原子比高熵合金半固态触变坯料的制备方法
CN109112374B (zh) 一种高强度镁-锡-锌-锂-钠合金及其制备方法
CN114807726A (zh) 一种快速制备Fe-Mn阻尼合金的方法
CN102534293B (zh) 一种高强度超细晶块体铜锗合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220729

RJ01 Rejection of invention patent application after publication