CN114807224A - 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用 - Google Patents

一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用 Download PDF

Info

Publication number
CN114807224A
CN114807224A CN202210442184.1A CN202210442184A CN114807224A CN 114807224 A CN114807224 A CN 114807224A CN 202210442184 A CN202210442184 A CN 202210442184A CN 114807224 A CN114807224 A CN 114807224A
Authority
CN
China
Prior art keywords
bile acid
zebra fish
acid metabolism
visual
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210442184.1A
Other languages
English (en)
Other versions
CN114807224B (zh
Inventor
赵宝全
骆媛
冯元州
李前
王永安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Military Medical Sciences AMMS of PLA
Original Assignee
Academy of Military Medical Sciences AMMS of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Military Medical Sciences AMMS of PLA filed Critical Academy of Military Medical Sciences AMMS of PLA
Priority to CN202210442184.1A priority Critical patent/CN114807224B/zh
Publication of CN114807224A publication Critical patent/CN114807224A/zh
Application granted granted Critical
Publication of CN114807224B publication Critical patent/CN114807224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/90Vectors containing a transposable element

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Endocrinology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Diabetes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用,所述应用包括如下步骤:在育有可视化斑马鱼胆汁酸代谢模型幼鱼的培养液中,加入黑色素合成抑制剂,再分为加药组和对照组,在加药组加入待评价的调节胆汁酸代谢的药物,继续培养1天‑4天;在荧光显微镜下观察上述模型的斑马鱼的肝脏及肠道荧光情况,如果加药组的荧光强度比对照组增强,则判定该调节胆汁酸代谢的药物有效。本发明提出的可视化斑马鱼胆汁酸代谢模型可用于评价调节胆汁酸、脂肪或葡萄糖代谢的药物效果。

Description

一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用
技术领域
本发明涉及生物医学技术领域,具体为一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用。
背景技术
近年来,胆汁酸、脂肪、葡萄糖等代谢类药物不断涌现,各种胆汁酸、脂肪和葡萄糖等代谢研究如火如荼,但评价药效的动物模型十分匮乏,虽然有致石性饲料制作的胆石症鼠模型、高脂饮食制作肥胖鼠模型、糖尿病模型、转基因鼠模型,但其是非自然状态下的,并且个体差异很大,实验数据靠大量推断,重复性差,误差很大。开发能够直观可见,实验结果不用大量推断就能判定的快速、直观、灵敏、高效、高通量的评价模型十分必要。
法尼醇X受体(farnesoid X receptor,FXR)是核受体(nuclear receptor,NR)超家族的成员。1995年,Forman等发现FXR能够被法尼醇及其代谢物激活,因而得名。然而,在1999年人们发现胆汁酸才是FXR的真正内源性配体,所以又称胆汁酸受体。目前已知的FXR基因有两个,FXRα(NR1H4)和FXRβ(NR1H5),FXRα从鱼类到人类在进化上是保守的,它编码四种FXRα亚型(FXRα1、FXRα2、FXRα3和FXRα4),而FXRβ是人类和灵长类的假基因,其功能尚不清楚。FXR主要在肝、肠、肾和肾上腺等组织中表达,在脂肪组织和心脏中表达较少,此外,在胰岛β细胞中也发现了FXR的存在。肝脏表达FXRα1/2和FXRα3/4,肠主要表达FXRα3/4亚型。FXR是多种代谢途径的重要调节因子,包括胆汁酸、脂肪和葡萄糖代谢,最近的研究表明,FXR还在调节肝脏再生和抑制肝脏肿瘤方面发挥了关键作用。
近年来的流行病学调查显示,胆石症在成年人中的发病率10%~15%,欧美国家多于亚非国家,女性明显多于男性,男女比例约为1:2.5,多发于40~60岁人群,随着人口的老龄化、饮食结构的改变,其发病率还在逐年上升,所以胆石症防治药物研究尤其重要。目前胆石症动物模型非常缺乏,以金黄地鼠,豚鼠等为模型,成功率低,耗时长,并且很难形成自身对照。
斑马鱼(Zebrafish)是近年来发展起来的模式生物,在毒理学和药理学研究方面有其独特优势。1.斑马鱼胚胎和幼鱼透明,易于在显微镜下实现活体观察各种器官特征,荧光标记可以实现可视化的检测;2.斑马鱼具有与人类高度相似的基因组,大多数斑马鱼的器官与人类的器官功能相似,生理功能与人类相近;3.斑马鱼繁殖能力强,发育快速,可以缩短药物筛选的周期;4.斑马鱼产卵量大,适合高通量的药物筛选。近年来,斑马鱼已广泛应用于肝脏代谢相关的疾病研究中,如高脂血症、酒精性脂肪肝、非酒精脂肪肝、肝纤维化、肝硬化、肝炎和肝癌等,因其脂质成分、脂质吸收和脂质代谢过程与人类基本一致。
发明内容
为解决以上问题,本发明提供了一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用。
本发明利用法尼醇X受体作为细胞内胆汁酸水平的主要传感器的机理,研发思路是将法尼醇X受体基因进行修饰,赋予荧光,构建斑马鱼模型,当与胆汁酸代谢相关的药物作用后,在荧光表达上就会产生变化,既可以实现可视化的检测。
本发明提供的可视化斑马鱼胆汁酸代谢模型的构建方法,包括如下步骤:
(1)通过网址http://genome.ucsc.edu/检索斑马鱼法尼醇X受体基因调控序列,斑马鱼法尼醇X受体基因调控序列的名称为nr1h4,利用Promoter 2.0软件对上述调控序列nr1h4进行优化,设计并合成引物;
(2)以斑马鱼基因组为模板,加入上述设计合成的引物,利用PCR方法钓取斑马鱼nr1h4调控序列,钓取获得的斑马鱼nr1h4调控序列如SEQ ID NO:1所示;
(3)将钓取的斑马鱼nr1h4调控序列通过酶切连接构建于pT2AL200R150G转座载体克隆位点,获得转座质粒pTol2-nr1h4-EGFP;
(4)将转座质粒pTol2-nr1h4-EGFP与pCS-TP转座酶mRNA共同注入野生型斑马鱼受精卵单细胞,孵化培养后,在荧光显微镜下筛选出在肝脏和肠道中特异性表达的荧光个体为F0代;所述荧光个体为阳性个体,即为可视化斑马鱼胆汁酸代谢模型;
(5)将上述F0代阳性个体与野生型斑马鱼杂交,筛选出F1代阳性个体;将F1代阳性个体再与野生型斑马鱼杂交,筛选出F2代阳性个体;在F2代阳性个体间进行杂交,筛选出阳性个体,再通过三代遗传筛选,即获得稳定遗传的可视化斑马鱼胆汁酸代谢模型Tg(-1.6nr1h4-EGFP)。
进一步,所述引物为:
上游引物:5'-CGCGGATCCTGCAGCATCATGCTTGTGGAAG-3'(SEQ ID NO:2);
下游引物:5'-CCGCTCGAGTCATCGTGTGAACCACAATGCTC-3'(SEQ ID NO:3)。
本发明提出的可视化斑马鱼胆汁酸代谢模型可用于评价调节胆汁酸、脂肪或葡萄糖代谢的药物效果。
进一步,所述可视化斑马鱼胆汁酸代谢模型在评价调节胆汁酸代谢药物效果上的应用,包括如下步骤:
(1)在育有可视化斑马鱼胆汁酸代谢模型幼鱼的培养液中,加入黑色素合成抑制剂,再分为加药组和对照组,在加药组加入待评价的调节胆汁酸代谢的药物,继续培养1天-4天;
(2)在荧光显微镜下观察上述模型的斑马鱼的肝脏及肠道荧光情况,如果加药组的荧光强度比对照组增强,则判定该调节胆汁酸代谢的药物有效。
进一步,所述黑色素合成抑制剂为10-50mg/L的1-苯基-2-硫脲或30%的双氧水。
进一步,在观察前将斑马鱼麻醉。
进一步,所述可视化斑马鱼胆汁酸代谢模型幼鱼的鱼龄在加药时为受精卵孵化后的第4天-10天。
进一步,所述调节胆汁酸代谢的药物的在培养液中的浓度低于半数致死浓度LD50的1/10-1倍。
进一步,所述荧光强度比对照组增强是指:荧光强度比对照组增强5%以上。
进一步,所述麻醉斑马鱼的麻醉剂包括三卡因或巴比妥类麻醉剂。
与现有技术相比,本发明在应用中具备以下有益效果:
1、本发明利用转基因技术建立了FXR调控序列调控的组织特异性荧光标记的转基因斑马鱼,可以利用活体斑马鱼进行药物筛选,通过观察肝脏及肠道的荧光强度的变化来判断胆汁酸代谢药物的作用,由此建立了斑马鱼胆汁酸代谢药物评价模型。本发明是基于法尼醇X受体调控序列调控绿色荧光蛋白建立组织特异性转基因斑马鱼模型的方法,利用此方法构建的斑马鱼模型可用于筛选调节胆汁酸代谢的药物,还可以用于筛选调节脂肪和葡萄糖代谢的药物,以及筛选与法尼醇X受体相关的抗肿瘤药物。本发明在应用时具有快速、直观、灵敏、高效的优势,并且能进行高通量筛选,为基于法尼醇X受体的药物评价动物模型的构建提供了一条崭新的途径。
2、利用本发明构建的斑马鱼模型评价胆汁酸代谢药物时,将胆汁酸代谢药物按一定浓度梯度加入斑马鱼模型幼鱼培养液中,观察荧光变化。当药物具有增加胆汁酸代谢作用时,绿色荧光会变强;当具有抑制胆汁酸代谢的药物作用时,绿色荧光减弱或消失,如果荧光没有变化证明与胆汁酸代谢无关。
3、本发明中,加入胆汁酸代谢药物后所述的继续培养时间可以根据不同胆汁酸代谢药物调整。由于刚孵出的幼鱼内脏还未发育完全,因此选择最早从幼鱼孵化后的第4天开始加药。
4、由于胆汁酸代谢药物有可溶性和微溶或难溶性之分,可溶性的用E3溶解即可,微溶或难溶的先要用DMSO助溶,但DMSO尽可能少用,因DMSO对机体有一定的毒性,能保证溶解即可。为了避免药物成分高浓度时抑制的本发明构建的斑马鱼模型荧光表达,所以先确定该药物的半数致死浓度(LD50),然后加药浓度要低于LD50,如低于LD50的1/10-1倍的浓度。
5、为了提高荧光显色效果,避免幼鱼生长过程中色素沉积对荧光显色的影响,本发明在培养液中添加了所述黑色素合成抑制剂,可以抑制黑色素形成,例如1-苯基-2-硫脲(PTU)或30%的双氧水。在本发明的一个实施方案中,所述黑色素合成抑制剂为1-苯基-2-硫脲。
6、本发明中,所述荧光强度增强,是指与未用胆汁酸代谢药物的对照相比,荧光强度在目测条件下明显增强,或者通过计算为对照的5%以上,例如荧光强度比对照增强5%、10%、20%、30%、40%,或50%以上。
7、本发明中,为了便于处理和观察荧光,采用麻醉剂麻醉斑马鱼,需要选用对荧光显色反应无影响的麻醉剂,包括但Tricaine(三卡因)或巴比妥类麻醉剂。
附图说明
图1 pTol2-nr1h4-EGFP载体构建示意图
A:PCR钓取nr1h4基因凝胶电泳图,B:TOL2载体凝胶电泳图,C、D:分别是FXR和Tol2质粒经XhoⅠ和BamHⅠ双酶切后的凝胶电泳图,E:链接后的质粒的凝胶电泳图
图2实施例1FXR荧光标记转基因斑马鱼组织荧光表达效果
图3实施例3验证本可视化斑马鱼胆汁酸代谢模型有效性的荧光表达效果
图4实施例4低浓度药物暴露荧光表达效果
图5实施例5中浓度药物暴露荧光荧光表达效果
图6实施例6高浓度药物暴露荧光表达效果
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
溶液配制:
E3:5mmol/L NaCl,0.17mmol/L KCl,0.33mmol/L CaCl2和0.33mmol/L MgSO4,用水补至终体积;
Holt Buffer:NaCl3.5g,KCl 0.05g,NaHCO4 0.025g,CaCl2 0.1g,用水补至1L;
斑马鱼麻醉剂Tricaine(sigma产品),以0.4%质量百分比溶于Holt Buffer溶液中配制成25倍(25×)母液;
0.3×Danieau溶液:17mmol/L NaCl,2mmol/L KCl,0.12mmol/L MgSO4,1.8mmol/LCa(NO3)2,1.5mmol/L HEPES用水补至终体积;
PTU溶液,将PTU粉末(sigma产品)按0.001%-0.01%的浓度溶于0.3×Danieau液中;也可将PTU直接溶于丙酮溶液中配制成0.5mol/L的母液,室温下封闭备用。
所用试剂均为分析纯。
胆汁酸代谢药物:将受精后第4天的Tg(-1.6nr1h4-EGFP)斑马鱼幼鱼加药干预,分别予以10ug/ml、20ug/ml、40ug/ml、60ug/ml等浓度的熊去氧胆酸、胆宁片、大黄酸和芦荟大黄素浸泡给药,连续观察4天,观察各组该转基因斑马鱼不同时间的荧光强度及发育情况,并对荧光强度进行分析。
荧光图像分析方法:Image J软件进行灰度面积扫描分析。
通常情况下,荧光减弱程度不一,要对每条鱼进行检测扫描,从总体来衡量。给药前后拿出相同数量的鱼进行检测扫描,计算平均值之后进行比较。
实施例1构建可视化斑马鱼胆汁酸代谢模型
(1)通过UCSC网站(http://genome.ucsc.edu/)检索斑马鱼FXR基因调控序列,斑马鱼法尼醇X受体(FXR)基因调控序列的名称为nr1h4,利用Promoter2.0软件对上述调控序列nr1h4进行优化,为了插入pT2AL200R150G载体,引入XhoⅠ、BamHⅠ酶切位点和和保护碱基,设计并合成引物;所述引物为:
上游引物:5'-CGCGGATCCTGCAGCATCATGCTTGTGGAAG-3';
下游引物:5'-CCGCTCGAGTCATCGTGTGAACCACAATGCTC-3'
(2)以斑马鱼基因组为模板,加入上述设计合成的引物,利用PCR方法钓取斑马鱼nr1h4调控序列,其序列如SEQ ID NO:1所示;
(3)将钓取的斑马鱼nr1h4调控序列通过XhoⅠ和BamHⅠ双酶切连接构建于pT2AL200R150G转座载体克隆位点,回收调控序列片段和载体片段,获得转座质粒pTol2-nr1h4-EGFP(如图1所示);将连接产物加入到大肠杆菌感受态细胞中进行转化,LB固体培养基培养过夜,得到单菌落,挑取单菌落,摇菌扩大培养,公司测序鉴定序列的正确性;
(4)将腹部膨大、沉于鱼缸底且不愿动的野生型斑马鱼雌鱼挑出,和雄鱼按1:1比例放于斑马鱼产卵器内,第二天早晨抽板,让其自由追尾受精,立即吸出受精卵,洗净,放于事先准备好的4℃放置的“V”型凝胶槽内;将转座质粒pTol2-nr1h4-EGFP与pCS-TP转座酶mRNA共同注入野生型斑马鱼受精卵单细胞,孵化培养后,在荧光显微镜下筛选出在肝脏和肠道中特异性表达的荧光个体为F0代;所述荧光个体为阳性个体,即可视化斑马鱼胆汁酸代谢模型;
荧光观察方法:斑马鱼幼鱼孵出后(通常在受精后48-72小时),将幼鱼吸出,用3×Tricaine溶液麻醉,在荧光显微镜下观察斑马鱼幼鱼荧光表达情况;不同时间荧光表达部位可能有所变化,见图2,本模型在受精后第20小时(20hpf,体节期),转基因斑马鱼在腹部有微弱荧光表达,受精后第1天(1dpf),荧光集中在腹部内侧,受精后第2天和第3天荧光仍在腹部表达,受精后第4天,荧光主要在肝脏和肠道中表达,之后稳定在肝脏和肠道表达。
(5)将上述F0代阳性个体与野生型斑马鱼杂交,筛选出F1代阳性个体;将F1代阳性个体再与野生型斑马鱼杂交,筛选出F2代阳性个体;在F2代阳性个体间进行杂交,筛选出阳性个体,再通过三代遗传筛选,即获得稳定遗传的可视化斑马鱼胆汁酸代谢模型Tg(-1.6nr1h4-EGFP)。
实施例2利用可视化斑马鱼胆汁酸代谢模型评价调节胆汁酸代谢药物的效果操作步骤如下:
1)挑选性成熟的可视化斑马鱼胆汁酸代谢模型雌鱼,将腹部膨大、沉于鱼缸底且不愿动的雌鱼挑出,和雄鱼按1:1比例放于斑马鱼产卵器内,第二天早晨抽板,让其自由追尾受精,受精后4-6小时将受精卵取出,洗涤,放于24孔板的E3溶液内,28.5℃条件下培养,通常培养48-72小时即可孵出,待孵出后,在荧光显微镜下观察,将具有荧光的健康的鱼选出,培养液中培养4天;
2)在可视化斑马鱼胆汁酸代谢模型幼鱼鱼龄4天时,按一定浓度加入预先稀释的胆汁酸代谢药物母液,充分混匀加入24孔板,同时设立不加胆汁酸代谢药物的孔为对照,为了便于观察,加入终浓度为10-50mg/L的1-苯基-2-硫脲防止色素沉着,每天换液一次,连续4天;
3)将斑马鱼取出,用0.016%-0.08%(质量百分比)Tricaine麻醉,在荧光显微镜下观察荧光变化;
4)结果判定:给予胆汁酸代谢药物的斑马鱼肝脏及肠道的荧光增强,而没加入胆汁酸代谢药物的对照组荧光增强不明显,说明该待评价的胆汁酸代谢药物有效。
实验验证本可视化斑马鱼胆汁酸代谢模型的有效性
利用FXR的抑制剂甘氨酸-β-鼠胆酸(Gly-β-MCA)和其激动剂奥贝胆酸(OCA)作用于Tg(-1.6nr1h4:EGFP)转基因斑马鱼,验证模型的有效性。将受精后第4天的转基因斑马鱼幼鱼随机分为空白对照组(CK)、溶媒对照组(DMSO)、抑制剂组(Gly-β-MCA)、激动剂组(OCA),每组20条。采用浸泡给药的方式,在六孔细胞培养板中进行。为了阻止色素沉积,将3.75mg 1-苯基-2-硫脲(PTU)溶于1L的E3培养液中,配成浓度为0.025mmol/L的PTU保存备用;将药物溶于DMSO后,再溶于含PTU的E3培养液,配成DMSO体积分数为0.3%、药物浓度为1mg/mL的母液4℃保存备用;实验前,用含0.025mmol/L PTU的E3培养液将药物稀释成各自浓度。在给药期间,每隔24h更换50%培养液,置于28.5℃恒温生化培养箱进行培养。药物暴露时间分别为1d、2d、3d和4d(鱼龄第4天时开始,早上给药,晚上拍照),荧光显微镜下观察斑马鱼幼鱼肝脏和肠道绿色荧光的变化。从图3可见,抑制剂组(Gly-β-MCA)的荧光强度显著低于空白对照组(CK),激动剂组(OCA)的荧光强度显著高于空白对照组(CK),溶媒对照组(DMSO)的荧光强度与空白对照组(CK)无显著区别,说明本可视化斑马鱼胆汁酸代谢模型在评价胆汁酸代谢调节组分的效果方面是有效的。
实施例4低浓度药物暴露时斑马鱼荧光的变化
1)熊去氧胆酸(UDCA)、胆宁片(DT)、大黄酸(R)和芦荟大黄素(AE)对胆汁酸代谢具有一定作用,所以利用它们作用于转基因斑马鱼,验证模型的有效性。
2)将受精后第4天的转基因斑马鱼幼鱼随机分为对照组、熊去氧胆酸组、胆宁片组、大黄酸组和芦荟大黄素组,每组20条。采用浸泡给药的方式,在六孔细胞培养板中进行。药物浓度为10μg/mL;
3)为了阻止色素沉积,将3.75mg 1-苯基-2-硫脲(PTU)溶于1L的E3培养液中,配成浓度为0.025mmol/L的PTU保存备用;
4)将药物溶于DMSO后,再溶于含PTU的E3培养液,配成DMSO体积分数为0.3%、药物浓度为1mg/mL的母液4℃保存备用;
5)实验前,用含0.025mmol/L PTU的E3培养液将药物稀释成各自浓度;
6)在给药期间,每隔24h更换50%培养液,置于28.5℃恒温生化培养箱进行培养;
7)药物暴露时间分别为1d、2d、3d和4d,荧光显微镜下观察斑马鱼幼鱼肝脏和肠道绿色荧光的变化;
8)采用Image J图像分析软件对各组进行灰度分析,计算每组幼鱼不同时间的平均荧光强度(Mean=Integrated Density/Area)。
参见图4,10μg/mL各组Tg(-1.6nr1h4:EGFP)转基因斑马鱼的荧光表达水平均随时间的推移而呈现不同程度的增强。在5dpf(给药第2天),芦荟大黄素(AE)组和熊去氧胆酸(UDCA)组斑马鱼的荧光表达水平开始缓慢增强(P<0.0001),且芦荟大黄素组较熊去氧胆酸组上升明显,胆宁片(DT)组和大黄酸(R)组荧光增强水平与对照组无显著差异。随给药时间延长,荧光表达逐渐增强。说明在低浓度药物暴露时,待评价的4种药物种,芦荟大黄素对增强胆汁酸代谢的效果最好。
实施例5中浓度药物暴露时斑马鱼荧光的变化
实验步骤同实施例4,药物浓度为20μg/mL;
参见图5,在20μg/mL各药物组中,与对照组相比,芦荟大黄素组、熊去氧胆酸组和胆宁片组斑马鱼的荧光表达水平自给药第1天即显著增强(P<0.0001、0.001),其中芦荟大黄素组荧光急剧增强,大黄酸组荧光表达水平在给药第2天开始缓慢增强(P<0.0001)。说明在中浓度药物暴露时,待评价的4种药物种,芦荟大黄素对增强胆汁酸代谢的效果最好,大黄酸对增强胆汁酸代谢的效果比低浓度时好。
实施例6高浓度药物暴露时斑马鱼荧光的变化
实验步骤同实施例4,药物浓度为40μg/mL;
参见图6,在40μg/mL各药物组中,对照组相比,胆宁片组和芦荟大黄素组的荧光表达水平分别在给药第1天和第2天开始缓慢增强(P<0.0001),芦荟大黄素组荧光增强水平不及低、中浓度组,大黄酸组荧光表达水平出现下降趋势(P<0.0001),熊去氧胆酸组荧光增强水平与对照组无显著差异。说明在高浓度药物暴露时,待评价的4种药物中,芦荟大黄素对增强胆汁酸代谢的效果出现高浓度抑制现象;大黄酸对增强胆汁酸代谢的效果是从20μg/mL中浓度才起作用,但是适用范围较窄,到40μg/mL时也出现了高浓度抑制。
根据以上实施例,说明采用本发明的可视化斑马鱼胆汁酸代谢模型可以评价调节胆汁酸代谢药物的效果。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Figure BDA0003614405480000111
Figure BDA0003614405480000121
序列表
<110> 中国人民解放军军事科学院军事医学研究院
<120> 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 546
<212> DNA
<213> 斑马鱼(Danio rerio)
<400> 1
tgcagcatca tgcttgtgga agagcaattg gaagacttat aatctctggc aagaccaaca 60
acagtgacac gatgttcacc aatagttttt gttcatggat gtttattttg tattattttt 120
gtgtatttgt agtaaaatag gaaatatgaa atgtacaata caatacctga acaagcaaga 180
ctggactttg catgtaatac atttgtacaa aaataaacat actgtatcaa tacaataaat 240
attactattc tcaacatata ccagatcaag ccttaatttt tatggttgac tgtcttggtg 300
aaaaaacaac taatcatttt gagcaggggt caccaaactt gttcctggag ggccgctgtc 360
ctgcagattt tagctccaac cctaatcaaa gacacctgaa caagctaatc aaggtcttac 420
taggtatact tgaaacatca aggcagatgt gttgaagcaa gttggagcta aaccctgcag 480
ggacaccggc cctctaggac cgagattggt gacccctgat tttgagcatt gtggttcaca 540
cgatga 546
<210> 2
<211> 31
<212> DNA
<213> Danio rerio
<400> 2
cgcggatcct gcagcatcat gcttgtggaa g 31
<210> 3
<211> 32
<212> DNA
<213> Danio rerio
<400> 3
ccgctcgagt catcgtgtga accacaatgc tc 32

Claims (10)

1.一种可视化斑马鱼胆汁酸代谢模型的构建方法,其特征在于,包括如下步骤:
(1)通过网址http://genome.ucsc.edu/检索斑马鱼法尼醇X受体基因调控序列,斑马鱼法尼醇X受体基因调控序列的名称为nr1h4,利用Promoter2.0软件对上述调控序列nr1h4进行优化,设计并合成引物;
(2)以斑马鱼基因组为模板,加入上述设计合成的引物,利用PCR方法钓取斑马鱼nr1h4调控序列,钓取获得的斑马鱼nr1h4调控序列如SEQ ID NO:1所示;
(3)将钓取的斑马鱼nr1h4调控序列通过酶切连接构建于pT2AL200R150G转座载体克隆位点,获得转座质粒pTol2-nr1h4-EGFP;
(4)将转座质粒pTol2-nr1h4-EGFP与pCS-TP转座酶mRNA共同注入野生型斑马鱼受精卵单细胞,孵化培养后,在荧光显微镜下筛选出在肝脏和肠道中特异性表达的荧光个体为F0代;所述荧光个体为阳性个体,即可视化斑马鱼胆汁酸代谢模型;
(5)将上述F0代阳性个体与野生型斑马鱼杂交,筛选出F1代阳性个体;将F1代阳性个体再与野生型斑马鱼杂交,筛选出F2代阳性个体;在F2代阳性个体间进行杂交,筛选出阳性个体,再通过三代遗传筛选,即获得稳定遗传的可视化斑马鱼胆汁酸代谢模型Tg(-1.6nr1h4-EGFP)。
2.根据权利要求1所述可视化斑马鱼胆汁酸代谢模型的构建方法,其特征在于,所述引物为:
上游引物:5'-CGCGGATCCTGCAGCATCATGCTTGTGGAAG-3';
下游引物:5'-CCGCTCGAGTCATCGTGTGAACCACAATGCTC-3'。
3.权利要求1所述可视化斑马鱼胆汁酸代谢模型在评价调节胆汁酸、脂肪或葡萄糖代谢的药物效果上的应用。
4.根据权利要求3所述可视化斑马鱼胆汁酸代谢模型在评价调节胆汁酸代谢药物效果上的应用,其特征在于,包括如下步骤:
(1)在育有可视化斑马鱼胆汁酸代谢模型幼鱼的培养液中,加入黑色素合成抑制剂,再分为加药组和对照组,在加药组加入待评价的调节胆汁酸代谢的药物,继续培养1天-4天;
(2)在荧光显微镜下观察上述模型的斑马鱼的肝脏及肠道荧光情况,如果加药组的荧光强度比对照组增强,则判定该调节胆汁酸代谢的药物有效。
5.根据权利要求4所述的应用,其特征在于,所述黑色素合成抑制剂为10-50mg/L的1-苯基-2-硫脲或30%的双氧水。
6.根据权利要求4所述的应用,其特征在于,在观察前将斑马鱼麻醉。
7.根据权利要求4所述的应用,其特征在于,所述可视化斑马鱼胆汁酸代谢模型幼鱼的鱼龄在加药时为受精卵孵化后的第4天-10天。
8.根据权利要求4所述的应用,其特征在于,所述调节胆汁酸代谢的药物的在培养液中的浓度低于半数致死浓度LD50的1/10-1倍。
9.根据权利要求4所述的应用,其特征在于,所述荧光强度比对照组增强是指:荧光强度比对照组增强5%以上。
10.根据权利要求6所述的应用,其特征在于,所述麻醉斑马鱼的麻醉剂包括三卡因或巴比妥类麻醉剂。
CN202210442184.1A 2022-04-25 2022-04-25 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用 Active CN114807224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210442184.1A CN114807224B (zh) 2022-04-25 2022-04-25 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210442184.1A CN114807224B (zh) 2022-04-25 2022-04-25 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用

Publications (2)

Publication Number Publication Date
CN114807224A true CN114807224A (zh) 2022-07-29
CN114807224B CN114807224B (zh) 2023-09-29

Family

ID=82507465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210442184.1A Active CN114807224B (zh) 2022-04-25 2022-04-25 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN114807224B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210660A1 (en) * 2006-08-29 2010-08-19 Phenex Pharmaceuticals Ag Heterocyclic FXR Binding Compounds
CN102845335A (zh) * 2011-06-27 2013-01-02 中国人民解放军军事医学科学院毒物药物研究所 一种卵黄囊和/或脂肪细胞的染色方法及其用途
CN105907837A (zh) * 2016-07-07 2016-08-31 贵州医科大学 转基因斑马鱼系在评价药物耐药性上的应用
CN106318959A (zh) * 2016-09-28 2017-01-11 河南大学 一种fxr基因表达载体的构建方法及其应用
CN107306853A (zh) * 2016-04-25 2017-11-03 南方医科大学 c-myb异常激活的斑马鱼及其在高通量药物筛选中的用途
KR20200064430A (ko) * 2018-11-29 2020-06-08 인하대학교 산학협력단 수면장애에 의해 유발되는 학습 및 기억 장애 치료용 약학적 조성물
CN112020561A (zh) * 2018-02-22 2020-12-01 阿库斯股份有限公司 用于治疗人受试者中非年龄相关的听力损害的组合物和方法
WO2021127651A1 (en) * 2019-12-21 2021-06-24 NemaMetrix, Inc Model organisms humanized for drug discovery and screening

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210660A1 (en) * 2006-08-29 2010-08-19 Phenex Pharmaceuticals Ag Heterocyclic FXR Binding Compounds
CN102845335A (zh) * 2011-06-27 2013-01-02 中国人民解放军军事医学科学院毒物药物研究所 一种卵黄囊和/或脂肪细胞的染色方法及其用途
CN107306853A (zh) * 2016-04-25 2017-11-03 南方医科大学 c-myb异常激活的斑马鱼及其在高通量药物筛选中的用途
CN105907837A (zh) * 2016-07-07 2016-08-31 贵州医科大学 转基因斑马鱼系在评价药物耐药性上的应用
CN106318959A (zh) * 2016-09-28 2017-01-11 河南大学 一种fxr基因表达载体的构建方法及其应用
CN112020561A (zh) * 2018-02-22 2020-12-01 阿库斯股份有限公司 用于治疗人受试者中非年龄相关的听力损害的组合物和方法
KR20200064430A (ko) * 2018-11-29 2020-06-08 인하대학교 산학협력단 수면장애에 의해 유발되는 학습 및 기억 장애 치료용 약학적 조성물
WO2021127651A1 (en) * 2019-12-21 2021-06-24 NemaMetrix, Inc Model organisms humanized for drug discovery and screening

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAI, PC 等: "Farnesoid X Receptor Is Required for the Redifferentiation of Bipotential Progenitor Cells During Biliary-Mediated Zebrafish Liver Regeneration", HEPATOLOGY, vol. 74, no. 6, pages 3345 - 3361 *
刘彩萍等: "nr1h4调控转基因斑马鱼模型建立及相关研究", 中国药物警戒, vol. 19, no. 8, pages 873 - 880 *
李春杰等: "细胞色素P450CYP3A65斑马鱼模型建立及对环境污染物的生物响应", 中国药理学与毒理学杂志, vol. 28, no. 6 *

Also Published As

Publication number Publication date
CN114807224B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
Vergauwen et al. Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish
Levy et al. Production of WW males lacking the masculine Z chromosome and mining the Macrobrachium rosenbergii genome for sex-chromosomes
CN111386038A (zh) 鱼类及鱼类的生产方法
Sasado et al. The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences
Huan et al. CRISPR/Cas9-mediated mutagenesis reveals the roles of calaxin in gastropod larval cilia
Liang et al. Analysis of opsin gene family of Crimson snapper (Lutjanus erythropterus)
Pandey et al. TALEN-mediated gene editing of slc24a5 (solute carrier family 24, member 5) in kawakawa, Euthynnus affinis
Ma et al. Physiological trade-off of marine fish under Zn deficient and excess conditions
CN113491255A (zh) 一种肥胖性ii型糖尿病斑马鱼模型的构建方法及应用
Dou et al. Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology
CN114807224A (zh) 一种可视化斑马鱼胆汁酸代谢模型的构建方法及其应用
Cavalieri Model organisms and their application in environmental epigenetics
Holloway et al. Expression of the sodium iodide symporter (NIS) in reproductive and neural tissues of teleost fish
WO2004066909A2 (en) Method for identifying novel treatments of inflammatory disease in the gut
CN108138131A (zh) 增加嗅觉系统中的气味受体表示的dna序列
Kurokawa et al. Distribution of pepsinogen-and ghrelin-producing cells in the digestive tract of Japanese eel (Anguilla japonica) during metamorphosis and the adult stage
Oku et al. Characterization of differentially expressed genes in liver in response to the rearing temperature of rainbow trout Oncorhynchus mykiss and their heritable differences
CN110506676A (zh) Elovl1基因及其应用
Zhang et al. Functional analysis of the cell cycle protein E gene (ccne) in ovarian development of the white ridgetail prawn, Exopalaemon carinicauda
Orlova et al. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species
CN101532018B (zh) 含有人源原癌基因c-Ha-ras的转基因小鼠的制作方法及其用途
Nakajima et al. Generation of translucent Xenopus tropicalis through triple knockout of pigmentation genes
JP4660774B2 (ja) 心不全治療薬のスクリーニング方法
CN101469346A (zh) 白介素1β特异分子小鼠光学成像系统的建立及其应用
Hilsdorf et al. The genetic bases of physiological processes in fish

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant