CN114807163B - Application of TaSBE I Gene in Promoting Wheat Starch Synthesis - Google Patents
Application of TaSBE I Gene in Promoting Wheat Starch Synthesis Download PDFInfo
- Publication number
- CN114807163B CN114807163B CN202210310071.6A CN202210310071A CN114807163B CN 114807163 B CN114807163 B CN 114807163B CN 202210310071 A CN202210310071 A CN 202210310071A CN 114807163 B CN114807163 B CN 114807163B
- Authority
- CN
- China
- Prior art keywords
- tasbe
- wheat
- gene
- amylopectin
- starch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 45
- 101150017040 I gene Proteins 0.000 title claims description 39
- 229940100445 wheat starch Drugs 0.000 title abstract description 14
- 230000015572 biosynthetic process Effects 0.000 title abstract description 12
- 238000003786 synthesis reaction Methods 0.000 title abstract description 12
- 230000001737 promoting effect Effects 0.000 title abstract description 7
- 241000209140 Triticum Species 0.000 claims abstract description 58
- 235000021307 Triticum Nutrition 0.000 claims abstract description 55
- 229920000945 Amylopectin Polymers 0.000 claims abstract description 48
- 235000019698 starch Nutrition 0.000 claims abstract description 31
- 239000008107 starch Substances 0.000 claims abstract description 30
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 230000008961 swelling Effects 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 abstract description 17
- 238000010411 cooking Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 230000009261 transgenic effect Effects 0.000 description 35
- 235000013339 cereals Nutrition 0.000 description 26
- 239000013598 vector Substances 0.000 description 19
- 241000196324 Embryophyta Species 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 230000002018 overexpression Effects 0.000 description 9
- 229920000856 Amylose Polymers 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 3
- 244000098338 Triticum aestivum Species 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 235000015927 pasta Nutrition 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 1
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 108010073032 Grain Proteins Proteins 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 101500021084 Locusta migratoria 5 kDa peptide Proteins 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 240000000359 Triticum dicoccon Species 0.000 description 1
- 235000001468 Triticum dicoccon Nutrition 0.000 description 1
- 229930003571 Vitamin B5 Natural products 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000003501 hydroponics Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 235000009492 vitamin B5 Nutrition 0.000 description 1
- 239000011675 vitamin B5 Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Nutrition Science (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明属于基因工程技术领域,具体涉及TaSBEI基因在促进小麦淀粉合成方面的应用。The invention belongs to the technical field of genetic engineering, and in particular relates to the application of TaSBEI gene in promoting the synthesis of wheat starch.
背景技术Background technique
小麦(Triticum aestivum L.)为全世界约1/3的人口提供口粮,是世界上最重要的粮食作物之一(He M,Zhu C,Dong K,et al.Comparative proteome analysis ofembryo and endosperm reveals central differential expression proteinsinvolved in wheat seed germination[J].BMC Plant Biology,2015,15(1):1-17.)。淀粉是小麦籽粒的主要组成成分,占小麦籽粒总组分的75%左右;淀粉主要以碳水化合物的形式存在,为人类提供日常所需的能量。淀粉的含量高低、种类(直链淀粉、支链淀粉、直链淀粉与支链淀粉的比值)和理化性质(糊化特性、膨胀势)等都影响着面食制品的外观及口感。近年来,随着人民生活水平的提高,越来越多的人对面食制品的质量有了更高的要求,因此小麦淀粉的研究也越来越重要。Wheat (Triticum aestivum L.) provides food for about one-third of the world's population and is one of the most important food crops in the world (He M, Zhu C, Dong K, et al. Comparative proteome analysis of embryo and endosperm reveals central Differential expression proteins involved in wheat seed germination [J]. BMC Plant Biology, 2015, 15(1): 1-17.). Starch is the main component of wheat grains, accounting for about 75% of the total components of wheat grains; starch mainly exists in the form of carbohydrates, which provide human with daily energy. The starch content, type (amylose, amylopectin, ratio of amylose to amylopectin) and physical and chemical properties (gelatinization properties, swelling potential) all affect the appearance and taste of pasta products. In recent years, with the improvement of people's living standards, more and more people have higher requirements for the quality of pasta products, so the research on wheat starch is becoming more and more important.
淀粉根据分子结构的不同被分为直链淀粉和支链淀粉,分别占总淀粉含量的20%~35%和65%~80%(方先文,姜东,戴廷波,等.不同品质类型小麦籽粒蛋白质、淀粉积累过程的基因型差异[J].麦类作物学报,2002,22:42-45)。直链淀粉和支链淀粉都包括α-1,4-葡萄糖残基的骨架,但是直链淀粉的分子量较低,一般在105-106Da之间,很少有分支点(α-1,6分支点少于0.5%);直链淀粉主要由葡萄糖分子经α-1,4-糖苷键连接而成的聚合物,易溶于水形成胶体溶液,是人体可以很快消化吸收的一类淀粉;而支链淀粉主要由葡萄糖基通过α-1,4-糖苷键和α-1,6-糖苷键连接而成的具有分支的聚合物,具有类似树杈状的复杂分子结构(金丽晨,耿志明,李金州,等.稻米淀粉组成及分子结构与食味品质的关系[J].江苏农业学报,2011,27(01):13-18.),聚合度(Degree of polymerization,DP),不易溶于水,但与热水作用会膨胀形成糊状物,与碘结合后溶液呈红紫色(Chen P,Yu L,SimonG P,et al.Internal structures and phase-transitions of starch granules duringgelatinization[J].Carbohydrate Polymers,2011,83(4):1975-1983.)。其中,支链淀粉的链可以分为三类:支链淀粉中的葡萄糖通过α-1,4-糖苷键连接形成不具有分支的直链,称为A链;在A链上通过α-1,6-苷键形成的侧链,称为B链;在B链上出现的另一个具有还原性末端的分支侧链,称为C链。线性链的非随机分布以及分支连接簇的规则有序性要求A链和B链具有特定的长度,而这种结构上的差异会导致淀粉粒晶体结构间出现差异,进一步影响支链淀粉分支簇的结构,最终影响小麦籽粒内淀粉的晶化度、糊化特性和膨胀性等(BagaM,Glaze S,Mallard CS,et al.A starch branching enzyme gene in wheat producesalternatively spliced transcripts.Plant Molecular Biology,1999,40:1019-1030;Mohan B H,Malleshi N G.Characteristics of native and enzymatically hydrolyzedcommon wheat(Triticum aestivum)and dicoccum wheat(Triticum dicoccum)starches[J].European Food Research and Technology,2006,223(3):355-361.),进而影响面食制品的品质。然而,目前研究小麦淀粉合成的报道几乎没有,多数只是猜测其功能,未能有效验证。Starch is divided into amylose and amylopectin according to different molecular structures, accounting for 20%-35% and 65%-80% of the total starch content respectively (Fang Xianwen, Jiang Dong, Dai Tingbo, etc. Different quality types of wheat grain protein , Genotype differences in the process of starch accumulation [J]. Journal of Wheat Crops, 2002, 22:42-45). Both amylose and amylopectin include a backbone of α-1,4-glucose residues, but the molecular weight of amylose is low, generally between 105-106 Da, and there are few branch points (α-1,6 branch points less than 0.5%); amylose is mainly composed of glucose molecules connected by α-1,4-glucosidic bonds. It is easily soluble in water to form a colloidal solution. It is a type of starch that can be quickly digested and absorbed by the human body; Amylopectin is a branched polymer mainly composed of glucose groups connected by α-1,4-glycosidic bonds and α-1,6-glycosidic bonds, and has a complex molecular structure similar to tree branches (Jin Lichen, Geng Zhiming , Li Jinzhou, et al. The relationship between rice starch composition and molecular structure and eating quality [J]. Journal of Jiangsu Agricultural Science, 2011, 27(01): 13-18.), degree of polymerization (Degree of polymerization, DP), not easily soluble in Water, but it will swell to form a paste when it reacts with hot water, and the solution is reddish purple after combining with iodine (Chen P, Yu L, SimonG P, et al.Internal structures and phase-transitions of starch granules during gelatinization[J].Carbohydrate Polymers, 2011, 83(4):1975-1983.). Among them, the chains of amylopectin can be divided into three types: the glucose in amylopectin is connected by α-1,4-glycosidic bonds to form a straight chain without branches, called A chain; , The side chain formed by the 6-glycoside bond is called the B chain; another branched side chain with a reducing end that appears on the B chain is called the C chain. The non-random distribution of linear chains and the regular order of branched clusters require specific lengths of A and B chains, and this structural difference will lead to differences in the crystal structure of starch granules, further affecting the amylopectin branched clusters. structure, ultimately affecting the degree of crystallization, gelatinization properties and expansibility of wheat grain starch (BagaM, Glaze S, Mallard CS, et al. A starch branching enzyme gene in wheat produce salt alternatively spliced transcripts. Plant Molecular Biology, 1999, 40:1019-1030; Mohan B H, Malleshi N G.Characteristics of native and enzymatically hydrolyzed common wheat(Triticum aestivum)and dicoccum wheat(Triticum dicoccum)starches[J].European Food Research and Technology,2006,223(3):355 -361.), thereby affecting the quality of pasta products. However, there are almost no reports on the synthesis of wheat starch, and most of them are just speculations about its function, which have not been effectively verified.
发明内容Contents of the invention
本发明的目的在于提供TaSBE I基因在促进小麦淀粉合成方面的应用,提高小麦的淀粉和千粒重,改善支链淀粉的品质。The purpose of the present invention is to provide the application of TaSBE I gene in promoting the synthesis of wheat starch, improve the starch and thousand-grain weight of wheat, and improve the quality of amylopectin.
本发明提供了TaSBE I基因在促进小麦淀粉合成中的应用;The invention provides the application of TaSBE I gene in promoting the synthesis of wheat starch;
所述TaSBE I基因的核苷酸序列如SEQ ID NO.1所示。The nucleotide sequence of the TaSBE I gene is shown in SEQ ID NO.1.
优选的,所述小麦淀粉包括小麦支链淀粉。Preferably, the wheat starch includes wheat amylopectin.
本发明还提供了TaSBE I基因在培育高淀粉和/或高千粒重转基因植物中的应用;The present invention also provides the application of the TaSBE I gene in cultivating high starch and/or high thousand-grain weight transgenic plants;
所述TaSBE I基因的核苷酸序列如SEQ ID NO.1所示。The nucleotide sequence of the TaSBE I gene is shown in SEQ ID NO.1.
优选的,所述转基因植物包括小麦。Preferably, the transgenic plants include wheat.
本发明提供了TaSBE I基因在改善植物支链淀粉品质中的应用;The invention provides the application of TaSBE I gene in improving the quality of plant amylopectin;
所述TaSBE I基因的核苷酸序列如SEQ ID NO.1所示。The nucleotide sequence of the TaSBE I gene is shown in SEQ ID NO.1.
本发明提供了一种转基因小麦的培育方法,在小麦中过表达SEQ ID NO.1 所述的基因。The invention provides a method for cultivating transgenic wheat, in which the gene described in SEQ ID NO.1 is overexpressed in wheat.
本发明所述TaSBE I基因参与小麦淀粉合成,能够增大小麦籽粒的千粒重、总淀粉含量和支链淀粉含量均显著高于野生型植株,降低小麦直链淀粉与支链淀粉的比值,提高籽粒淀粉的膨胀势和糊化特性,如峰值粘度、稀懈值、低谷粘度、反弹值和糊化时间,提高籽粒支链淀粉的分支度,增加小麦支链淀粉的分支数目,有利于提高小麦籽粒支链淀粉相关的蒸煮品质。The TaSBE I gene of the present invention participates in the synthesis of wheat starch, which can increase the thousand-grain weight, total starch content and amylopectin content of wheat grains significantly higher than that of wild-type plants, reduce the ratio of wheat amylose to amylopectin, and improve the grain yield. The expansion potential and gelatinization characteristics of starch, such as peak viscosity, slack value, trough viscosity, rebound value and gelatinization time, increase the branching degree of grain amylopectin and the number of branches of wheat amylopectin, which is beneficial to improve the wheat grain Amylopectin-related cooking qualities.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings required in the embodiments.
图1为基因TaSBE I PCR扩增结果;Fig. 1 is the PCR amplification result of gene TaSBE I;
图2为pWMB172-TaSBE I重组载体酶切检测结果;Fig. 2 is pWMB172-TaSBE I recombinant vector enzyme digestion detection result;
图3为量表达载体pWMB172-TaSBE I图谱;Fig. 3 is the map of quantitative expression vector pWMB172-TaSBE I;
图4为过量表达载体pWMB172-TaSBE I的遗传转化过程;Fig. 4 is the genetic transformation process of overexpression vector pWMB172-TaSBE I;
图5为转基因植株中Bar基因的PCR扩增结果;Fig. 5 is the PCR amplification result of Bar gene in the transgenic plant;
图6为转基因植株中TaSBE I基因的PCR扩增结果;Fig. 6 is the PCR amplification result of TaSBE I gene in the transgenic plant;
图7为转基因株系与野生型支链淀粉链长分布;Figure 7 is the chain length distribution of transgenic lines and wild-type amylopectin;
图8为转基因植株支链淀粉的分支度。Figure 8 is the branching degree of amylopectin in transgenic plants.
具体实施方式Detailed ways
本发明提供了TaSBE I基因在促进小麦淀粉合成中的应用;The invention provides the application of TaSBE I gene in promoting the synthesis of wheat starch;
所述TaSBE I基因的核苷酸序列如SEQ ID NO.1所示。The nucleotide sequence of the TaSBE I gene is shown in SEQ ID NO.1.
本发明所述TaSBE I基因的具体核苷酸序列为The specific nucleotide sequence of the TaSBE I gene of the present invention is
5’-ATGCTCTGCCTCACCGCCCCCTCCTGCTCGCCATCTCTCCCGCCGCGCCC CTCCCGTCCCGCTGCTGACCGGCCCGGACCGGGGATCTCGGGCGGCGGCAATGTGCGGCTGAGCGCGGTGCCCGCGCCCTCTTCGCTCCGCTGGTCGTGG CCGCGGAAGGCCAAGAGCAAGTTCTCTGTTCCCGTGTCTGCGCCAAGAGACTACACCATGGCAACAGCTGAAGATGGTGTTGGCGACCTTCCGATATACGA TCTGGATCCGAAGTTTGCCGGCTTCAAGGAACACTTCAGTTATAGGATGAAAAAGTACCTTGACCAGAAACATTCGATTGAGAAGCACGAGGGAGGCCTTG AAGAGTTCTCTAAAGGCTATTTGAAGTTTGGGATCAACACAGAAAATGACGCAACTGTGTACCGGGAATGGGCCCCTGCAGCAATGGATGCACAACTTATT GGTGACTTCAACAACTGGAATGGCTCTGGGCACAGGATGACAAAGGATAATTATGGTGTTTGGTCAATCAGGATTTCCCATGTCAATGGGAAACCTGCCATC CCCCATAATTCCAAGGTTAAATTTCGATTTCACCGTGGAGATGGACTATGGGTCGATCGGGTTCCTGCATGGATTCGTTATGCAACTTTTGATGCCTCTAAATT TGGAGCTCCATATGACGGTGTTCACTGGGATCCACCTTCTGGTGAAAGGTATGTGTTTAAGCATCCTCGGCCTCGAAAGCCTGACGCTCCACGTATTTACGA GGCTCATGTGGGGATGAGTGGTGAAAAGCCTGAAGTAAGCACATACAGAGAATTTGCAGACAATGTGTTACCGCGCATAAAGGCAAACAACTACAACACA GTTCAGCTGATGGCAATCATGGAACATTCATATTATGCTTCTTTTGGGTACC ATGTGACGAATTTCTTCGCAGTTAGCAGCAGATCAGGAACGCCAGAGGACCTCAAATATCTTGTTGACAAGGCACATAGTTTAGGGTTACGTGTTCTGATGG ATGTTGTCCATAGCCATGCGAGCAGTAATAAGACAGATGGTCTTAATGGCTATGATGTTGGGCAAAACACACAGGAGTCCTATTTCCACACAGGAGAAAGGGGCTATCATAAACTGTGGGATAGCCGCCTGTTCAACTATGCCAATTGGGAGG TCTTACGATTTCTTCTTTCTAATCTGAGATATTGGATGGACGAATTCATGTTTGATGGCTTCCGATTTGATGGGGTAACATCCATGCTATATAATCACCATGGTAT CAATATGTCATTCGCTGGAAGTTACAAGGAATATTTTGGTTTGGATACTGATGTAGATGCAGTTGTTTACCTGATGCTTGCGAACCATTTAATGCACAAACTCT TGCCAGAAGCAACTGTTGTTGCAGAAGATGTTTCAGGCATGCCAGTGCTTTGTCGGTCAGTTGATGAAGGTGGAGTAGGGTTTGACTATCGCCTGGCTATGG CTATTCCTGATAGATGGATCGACTACTTGAAGAACAAAGATGACCTTGAATGGTCAATGAGTGGAATAGCACATACTCTGACCAACAGGAGATATACGGAA AAGTGCATTGCATATGCTGAGAGCCATGATCAGTCTATTGTTGGCGACAAG ACTATGGCATTTCTCTTGATGGACAAGGAAATGTATACTGGCATGTCAGACTTGCAGCCTGCTTCGCCTACAATTGATCGTGGAATTGCACTTCAAAAGATGA TTCACTTCATCACCATGGCCCTTGGAGGTGATGGCTACTTGAATTTTATGGGTAATGAGTTTGGCCACCCAGAATGGATTGACTTTCCAAGAGAAGGCAACA ACTGGAGTTATGATAAATGCAGACGCCAGTGGAGCCTCGCAGACATTGATC ACCTACGATACAAGTACATGAACGCATTTGATCAAGCAATGAATGCGCTCGACGACAAATTTTCCTTCCTATCATCATCAAAGCAGATTGTCAGCGACATGAA TGAGGAAAAGAAGATTATTGTATTTGAACGTGGAGATCTGGTCTTCGTCTTCAATTTTCATCCCAGTAAAACTTATGATGGTTACAAAGTCGGATGTGACTTGCCTGGGAAGTACAAGGTAGCTCTGGACTCTGATGCTCTGATGTTTGGTGGA CATGGAAGAGTGGCCCATGACAACGATCACTTTACGTCACCTGAAGGAGTACCAGGAGTACCTGAAACAAACTTCAACAACCGCCCTAACTCATTCAAAATCCTGTCTCCATCCCGCACTTGTGTGGCTTACTATCGCGTCGAGGAGAAAGCGGAAAAGCCCAAGGATGAAGGAGCTGCTTCTTGGGGGAAAACTGCTCTC GGGTACATCGATGTTGAAGCCACTGGCGTCAAAGACGCAGCAGATGGTGAGGCGACTTCTGGTTCCGAAAAGGCGTCTACAGGAGGTGACTCCAGCAAGAAGGGAATTAACTTTGTCTTTCTGTCACCCGACAAAGACAACAAATAA。本发明对TaSBE I基因的来源没有严格要求,可采用人工合成或扩增方式获得。5’-ATGCTCTGCCTCACCGCCCCCTCCTGCTCGCCATCTCTCCCGCCGCGCCC CTCCCGTCCCGCTGCTGACCGGCCCGGACCGGGGATCTCGGGCGGCGGCAATGTGCGCTGAGCGCGGTGCCCGCGCCCTCTTCGCTCCGCTGGTCGTGGCCGCGGAAGGCCAAGAGCAAGTTCTCTGTTCCCGTGTCTGCGCCAAGAGACTACC ATGGCAACAGCTGAAGATGGTGTTGGCGACCTTCCGATATACGA TCTGGATCCGAAGTTTGCCGGCTTCAAGGAACACTTCAGTTATAGGATGAAAAAGTACCTTGACCAGAAACATTCGATTGAGAAGCACGAGGGAGGCCTTG AAGAGTTCTCTAAAGGCTATTTGAAGTTTGGGATCAACACAGAAAATGACGCAACTGTGTACCGGGAATG GGCCCCTGCAGCAATGGATGCACAACTTATT GGTGACTTCAACAACTGGAATGGCTCTGGGCACAGGATGACAAAGGATAATTATGGTGTTTGGTCAATCAGGATTTCCCATGTCAATGGGAAACCTGCCATC CCCCATAATTCCAAGGTTAAAATTTCGATTTCACCGTGGAGATGGACTATGGGTCGATCGGGTTCCTGCATGGATTCGTTAT GCAACTTTTGATGCCTCTAAATT TGGAGCTCCATATGACGGTGTTCACTGGGATCCACCTTCTGGTGAAAGGTATGTGTTTAAGCATCCTCGGCCTCGAAAGCCTGACGCTCCACGTATTTACGA GGCTCATGTGGGGATGAGTGGTGAAAAGCCTGAAGTAAGCACATACAGAGAATTTGCAGACAATGTGTTACCGCGCATAAAGGCAACAACTACAA CACA GTTCAGCTGATGGCAATCATGGAACATTCATATTATGCTTCTTTTGGGTACC ATGTGACGAATTTCTTCGCAGTTAGCAGCAGATCAGGAACGCCAGAGGACCTCAAATATCTTGTTGACAAGGCACATAGTTTAGGGTTACGTGTTCTGATGG ATGTTGTCCATAGCCATGCGAGCAGTAATAAGACAGATGGTCTTAATGGCTATGAT GTTGGGCAAAACACACAGGAGTCCTATTTCCACACAGGAGAAAGGGGCTATCATAAACTGTGGGATAGCCGCCTGTTCAACTATGCCAATTGGGAGG TCTTACGATTTCTTCTTTCTAATCTGAGATATTGGATGGACGAATTCATGTTTGATGGCTTCCGATTTGATGGGGTAACATCCATGCTATATAATCACCATGGTAT CAATATG TCATTCGCTGGAAGTTACAAGGAATATTTTGGTTTGGATACTGATGTAGATGCAGTTGTTTACCTGATGCTTGCGAACCATTTAATGCACAAACTCT TGCCAGAAGCAACTGTTGTTGCAGAAGATGTTTCAGGCATGCCAGTGCTTTGTCGGTCAGTTGATGAAGGTGGAGTAGGGTTTGACTATCGCCTGGCTATGGCTATTCCTGATAGATG GATCGACTACTTGAAGAACAAAGATGACCTTGAATGGTCAATGAGTGGAATAGCACATACTCTGACCAACAGGAGATACATCGGAA AAGTGCATTGCATATGCTGAGAGCCATGATCAGTCTATTGTTGGCGACAAG ACTATGGCATTTCTCTTGATGGACAAGGAAATGTATACTGGCATGTCAGACTTGCAGCCTGCTTCGCCTACAATTGATCGTGGA ATTGCACTTCAAAAAGATGA TTCACTTCATCACCATGGCCCTTGGAGGTGATGGCTACTTGAATTTTATGGGTAATGAGTTTGGCCACCCAGAATGGATTGACTTTCCAAGAGAAGGCAACA ACTGGAGTTATGATAAATGCAGACGCCAGTGGAGCCTCGCAGACATTGATC ACCTACGATACAAGTACATGAACGCATTTGATCAAGCAATGAATGCGC TCGACGACAAATTTTCCTTCCTATCATCATCAAAGCAGATTGTCAGCGACATGAA TGAGGAAAAGAAGATTATTGTATTTGAACGTGGAGATCTGGTCTTCGTCTTCAATTTCATCCCAGTAAAACTTATGATGGTTACAAAGTCGGATGTGACTTGCCTGGGAAGTACAAGGTAGCTCTGGACTCTGATGCTCTGATGTTTGGTGGA CATGGAAGAGT GGCCCATGACAACGATCACTTTACGTCACCTGAAGGAGTACCAGGAGTACCTGAAACAAACTTCAACAACCGCCCTAACTCAATTCAAAATCCTGTCTCCATCCCGCACTTGTGTGGCTTACTATCGCGTCGAGGAGAAAGCGGAAAAGCCCAAGGATGAAGGAGCTGCTTCTTGGGGGAAAACTGCTCTCGGGTACATCGATGTTGAAGCCACTGGCGTCA AAGACGCAGCAGATGGTGAGGCGACTTCTGGTTCCGAAAAGGCGTCTACAGGAGGTGACTCCAGCAAGAAGGGAATTAACTTTGTCTTTCTGTCACCCGACAAAGACAACAAATAA. The present invention has no strict requirements on the source of the TaSBE I gene, which can be obtained by artificial synthesis or amplification.
本发明所述TaSBE I基因的核苷酸序列长度为2493bp,编码得到的蛋白能够将促进小麦支链淀粉合成。实施例结果表明,所述TaSBE I基因参与小麦淀粉合成,影响小麦籽粒淀粉含量和千粒重,并且影响小麦籽粒支链淀粉品质和特性。实施例结果表明,本发明TaSBE I基因能使小麦籽粒千粒重增加 8.16%~12.51%,总淀粉含量增加2.80%~3.75%,支链淀粉含量增加4.27%~5.27%,小麦直链淀粉与支链淀粉的比值降低1.57%~2.32%。过表达TaSBE I基因可以影响籽粒淀粉特性,提高籽粒淀粉的膨胀势和糊化特性如峰值粘度、稀懈值、低谷粘度、反弹值和糊化时间;提高籽粒支链淀粉的分支度,增加小麦支链淀粉的分支数目,有利于提高小麦籽粒支链淀粉相关的蒸煮品质。The nucleotide sequence length of the TaSBE I gene of the present invention is 2493bp, and the encoded protein can promote the synthesis of wheat amylopectin. The results of the examples show that the TaSBE I gene is involved in the synthesis of wheat starch, affects the starch content and thousand-grain weight of wheat grains, and affects the quality and characteristics of wheat grain amylopectin. The results of the examples show that the TaSBE I gene of the present invention can increase the thousand-grain weight of wheat grains by 8.16% to 12.51%, the total starch content by 2.80% to 3.75%, and the amylopectin content by 4.27% to 5.27%. The ratio of starch decreased by 1.57%-2.32%. Overexpression of TaSBE I gene can affect grain starch characteristics, improve swelling potential and gelatinization properties of grain starch, such as peak viscosity, slack value, trough viscosity, rebound value and gelatinization time; increase the branching degree of grain amylopectin, increase wheat The number of branches of amylopectin is beneficial to improve the cooking quality of wheat grain amylopectin.
本发明还提供了一种转基因小麦的培育方法,在小麦中过表达TaSBE I基因。本发明对过表达所述TaSBE I基因的方式没有严格要求,优选采用同源重组的方式将TaSBE I基因与表达载体相结合,获得重组载体,再将所述重组载体转入目标小麦,获得转基因小麦。本发明所述表达载体优选为pMWB172载体 (Wang et al.,Plant Biotechnol J.2017,15:61-623)。The invention also provides a method for cultivating transgenic wheat, in which the TaSBE I gene is overexpressed in the wheat. The present invention does not have strict requirements on the way of overexpressing the TaSBE I gene, preferably using homologous recombination to combine the TaSBE I gene with an expression vector to obtain a recombinant vector, and then transfer the recombinant vector into target wheat to obtain a transgenic wheat. The expression vector of the present invention is preferably a pMWB172 vector (Wang et al., Plant Biotechnol J.2017, 15:61-623).
为了进一步说明本发明,下面结合附图和实施例对本发明提供的技术方案进行详细地描述,但不能将它们理解为对本发明保护范围的限定。In order to further illustrate the present invention, the technical solutions provided by the present invention will be described in detail below in conjunction with the accompanying drawings and examples, but they should not be construed as limiting the protection scope of the present invention.
实施例1Example 1
TaSBE I超表达载体的构建Construction of TaSBE I overexpression vector
1.根据pMWB172载体的图谱(中国农业科学院叶兴国实验室提供),设计 TaSBE I的上游引物TaSBE I-F和下游引物TaSBE I-R,上游引物TaSBEI-F的核苷酸序列如SEQ IDNO.2所示,具体为:5’-TGCAGGTCGACTCTAGAGGA TCCCCGGG(Sma I)ATGCTCTGCCTCACCGCCCCCT-3’;下游引物TaSBE I-R的核苷酸序列如SEQ ID NO.3所示,具体为:5’-CGGGGAAATTCGAGCTC TCTAGAACTAGT(Spe I)TTATTTGTTGTCTTTGTCGGGT-3’。以郑麦7698 的cDNA为模板,采用上述引物进行PCR扩增(98℃,5min预变性;然后98℃变性10s,53℃退火5s,72℃延伸20s,共35个循环;72℃终延伸7min;16℃,保存),扩增结束后进行琼脂糖凝胶电泳,检测扩增条带的大小,结果如图1 (进行4组PCR扩增)。根据图1可以看出,扩增片段的大小与目的基因TaSB EI大小一致(2493bp),说明PCR扩增成功。1. According to the map of the pMWB172 carrier (provided by Ye Xingguo Laboratory, Chinese Academy of Agricultural Sciences), design the upstream primer TaSBE I-F and downstream primer TaSBE I-R of TaSBE I, the nucleotide sequence of the upstream primer TaSBEI-F is as shown in SEQ ID NO.2, Specifically: 5'-TGCAGGTCGACTCTAGAGGA TCCCCGGG(Sma I)ATGCTCTGCCTCACCGCCCCCT-3'; the nucleotide sequence of the downstream primer TaSBE I-R is shown in SEQ ID NO.3, specifically: 5'-CGGGGAAATTCGAGCTC TCTAGAACTAGT(Spe I)TTATTTGTTGTCTTTGTCGGGT-3 '. Using the cDNA of Zhengmai 7698 as a template, the above primers were used for PCR amplification (pre-denaturation at 98°C for 5 min; then denaturation at 98°C for 10 s, annealing at 53°C for 5 s, extension at 72°C for 20 s, a total of 35 cycles; final extension at 72°C for 7 min ; 16°C, stored), agarose gel electrophoresis was performed after the amplification was completed, and the size of the amplified band was detected. The results are shown in Figure 1 (4 sets of PCR amplifications were performed). As can be seen from Figure 1, the size of the amplified fragment is consistent with the size of the target gene TaSB EI (2493bp), indicating that the PCR amplification was successful.
2.回收扩增条带单一2493bp目的片段(胶回收试剂盒,购自天根公司),同时,使用Sma I和Spe I双酶切载体pMWB172,具体过程如下:取载体质粒 10μL(1mg)、10x酶切缓冲液5μL、Sma I1μL、Spe I1.0μL,加ddH2O补充反应体系至50μL,在37℃条件下酶切2h。用琼脂糖凝胶电泳对酶切产物进行分离,回收载体pMWB172双酶切后得到的大片段。然后,将pMWB172酶切回收的载体大片段和TaSBE I的PCR扩增目的片段利用同源重组的方式进行连接,具体过程如下:取载体和大片段,将载体和大片段分别稀释到10ng/μL和 30ng/μL,加入载体2.0μL和片段6.0μL,之后加入同源重组连接酶0.75μL和 10×连接酶缓冲液1.25μL,将其混匀,离心,16℃连接1.5h。然后连接产物转化大肠杆菌DH5α感受态细胞,进行转化大肠杆菌。随机挑取5株单克隆进行扩大培养,并利用天根质粒提取试剂盒提取质粒,使用Sma I和Spe I双酶切验证,结果如图2所示:双酶切5个质粒中泳道2,泳道4和泳道5所切下目的条带和构建进入pMWB172载体的TaSBE I的大小一致,双酶切验证泳道2,泳道4和泳道5成功构建了pMWB172-TaSBE I的过量表达载体,TaSBE I插入了表达载体pMWB172的Sma I和Spe I两内切酶位点之间,过量表达载体 pMWB172-TaSBE I的图谱如图3所示,包含Dx5(胚乳特异性)启动子,TaSBE I基因,以及Nos(农杆菌胭脂碱合成酶终止子)。2. Recover a single 2493bp target fragment of the amplified band (gel recovery kit, purchased from Tiangen Company), and at the same time, use Sma I and Spe I to double-enzyme-cut the vector pMWB172. The specific process is as follows: take 10 μL (1 mg) of the vector plasmid, Add 5 μL of 10x digestion buffer, 1 μL of Sma I, and 1.0 μL of Spe I, add ddH 2 O to supplement the reaction system to 50 μL, and digest at 37°C for 2 hours. The digested products were separated by agarose gel electrophoresis, and the large fragments obtained after the double digested vector pMWB172 were recovered. Then, the large fragment of the vector recovered by pMWB172 digestion and the PCR-amplified target fragment of TaSBE I were connected by homologous recombination. The specific process was as follows: take the vector and the large fragment, and dilute the vector and the large fragment to 10 ng/μL respectively and 30ng/μL, add 2.0 μL of carrier and 6.0 μL of fragment, then add 0.75 μL of homologous recombination ligase and 1.25 μL of 10× ligase buffer, mix well, centrifuge, and ligate at 16°C for 1.5h. Then the ligation product was transformed into Escherichia coli DH5α competent cells to transform Escherichia coli. Randomly pick 5 single clones for expansion culture, and use the Tiangen Plasmid Extraction Kit to extract the plasmid, and use Sma I and Spe I double enzyme digestion to verify, the results are shown in Figure 2: Lane 2 of the 5 plasmids was double digested, The target band cut out in lane 4 and lane 5 is the same size as the TaSBE I constructed into the pMWB172 vector. Double enzyme digestion verified that lane 2, lane 4 and lane 5 successfully constructed the overexpression vector of pMWB172-TaSBE I, and inserted TaSBE I Between the Sma I and Spe I endonuclease sites of the expression vector pMWB172, the map of the overexpression vector pMWB172-TaSBE I is shown in Figure 3, including the Dx5 (endosperm-specific) promoter, the TaSBE I gene, and the Nos (Agrobacterium nopaline synthase terminator).
实施例2Example 2
TaSBE I转基因小麦植株的获得及鉴定Obtaining and Identification of TaSBE I Transgenic Wheat Plants
(1)TaSBE I转基因小麦植株的获得(1) Obtaining of TaSBE I transgenic wheat plants
采用基因枪的方法转化小麦幼胚。具体过程如下:首先,选取小麦开花后幼穗,低温水培培养1周左右;分离小麦种子,将其消毒;用消毒的镊子和手术刀剥取小麦的幼胚,放置到培养皿中待用。同时,采用基因枪向小麦的幼胚轰击实施例1过量表达载体pMWB172-TaSBE I;轰击后的小麦幼胚培养过程如下:在N6诱导培养基(包含MS大量元素、MS微量元素、2,4-D、维生素B5 等)上25℃暗培养;之后将产生了愈伤组织的幼胚转移到分化培养基(包含MS、 2,4-D、MEG、G418等)上,在25℃,12h光照/12h黑暗的生长间培养;然后,将产生了不定芽的受体材料转移到筛选培养基(包含1/2MS、NAA、G418等) 上,在25℃,12h光照/12h黑暗的生长间培养,使受体材料生根并筛选阳性幼苗,将筛选后的阳性幼苗转移到冷库,春化培养14天后,再转移到土中培养(刘会云,2017,中国农业科学院作物科学研究所,硕士毕业论文)。生长过程如图4所示。Wheat immature embryos were transformed by gene gun method. The specific process is as follows: First, select the young ears of wheat after flowering, and culture them in low-temperature hydroponics for about 1 week; separate the wheat seeds and sterilize them; use sterilized tweezers and a scalpel to peel off the young wheat embryos, and place them in a petri dish for later use . Simultaneously, the immature embryos of wheat were bombarded with a gene gun to the overexpression vector pMWB172-TaSBE I of Example 1 ; 4-D, vitamin B5, etc.) at 25°C for dark culture; then transfer the immature embryos with callus to differentiation medium (including MS, 2,4-D, MEG, G418, etc.), at 25°C, 12h light/12h dark inter-growth culture; then, the recipient material that produced adventitious buds was transferred to the selection medium (including 1/2MS, NAA, G418, etc.), at 25°C, 12h light/12h dark growth Interculture, root the receptor material and screen positive seedlings, transfer the screened positive seedlings to cold storage, vernalize for 14 days, and then transfer to soil for cultivation (Liu Huiyun, 2017, Institute of Crop Science, Chinese Academy of Agricultural Sciences, master's degree paper). The growth process is shown in Figure 4.
(2)TaSBE I转基因小麦植株的鉴定(2) Identification of TaSBE I transgenic wheat plants
利用之前报道方法CTAB法(Li et al.2018)提取步骤(1)T0代转基因苗子的DNA,利用筛选标记基因潮霉素引物检测转TaSBEI是否含有带有潮霉素 (bar)基因,设计引物为F(SEQ ID NO.4): 5’-ACCATCGTCAACCACTACATCG-3’;R(SEQ ID NO.5): 5’-GCTGCCAGAAACCACGTCATG-3’,检测结果如图5所示,其中图5从左到右依次为M:DL2000;P:pWMB172-TaSBE I质粒;WT:郑麦7698;1-16: TaSBE I转基因株系;H:阴性对照。根据图5可以看出,除野生型(WT)和阴性对照(H),转基因株系9外,其他检测植株均含有潮霉素基因。说明这些株系携带了过表达载体的筛选标记基因。Use the previously reported method CTAB method (Li et al.2018) to extract the DNA of the T0 transgenic seedlings in step (1), use the screening marker gene hygromycin primer to detect whether the transgenic TaSBEI contains the hygromycin (bar) gene, and design primers For F (SEQ ID NO.4): 5'-ACCATCGTCAACCACTACATCG-3'; R (SEQ ID NO.5): 5'-GCTGCCAGAAACCACGTCATG-3', the detection results are shown in Figure 5, where Figure 5 is from left to right M: DL2000; P: pWMB172-TaSBE I plasmid; WT: Zhengmai 7698; 1-16: TaSBE I transgenic line; H: negative control. According to Fig. 5, it can be seen that except for the wild type (WT) and the negative control (H) and the transgenic line 9, all other detected plants contain the hygromycin gene. It shows that these lines carry the selection marker gene of the overexpression vector.
在此基础上,在插入目的基因设计上游正向引物F(SEQ ID NO.6): 5’-CAGTGGAGCCTCGCAGACATTG-3’,在载体上设计下游反向引物R(SEQ ID NO.7):5’-TGCGGGACTCTAATCATAAAAA-3’对上述植株进行目的基因扩增,结果如图6所示,其中图6从左到右依次为M:DL2000;P:pWMB172-TaSBE I质粒;WT:郑麦7698;1-16:TaSBE I转基因株系;H:阴性对照。根据图6 可以看出,相对对照植株,转基因株系1-16均检测目的基因和载体组合出现的条带,说明TaSBE I基因在这些转基因小麦株系中被过量表达。On this basis, the upstream forward primer F (SEQ ID NO.6): 5'-CAGTGGAGCCTCGCAGACATTG-3' was designed on the insertion target gene, and the downstream reverse primer R (SEQ ID NO.7): 5' was designed on the vector -TGCGGGACTCTAATCATAAAAA-3'Amplify the target gene of the above plants, and the results are shown in Figure 6, in which Figure 6 from left to right is M: DL2000; P: pWMB172-TaSBE I plasmid; WT: Zhengmai 7698; 1- 16: TaSBE I transgenic line; H: negative control. According to Figure 6, it can be seen that compared with the control plants, the transgenic lines 1-16 all detected the bands of the combination of the target gene and the vector, indicating that the TaSBE I gene was overexpressed in these transgenic wheat lines.
实施例3Example 3
(1)TaSBE I基因对小麦籽粒淀粉含量和千粒重的影响(1) Effect of TaSBE I gene on wheat starch content and thousand-grain weight
将实施例2转基因株系1~3单株种植,在收获期对其千粒重和淀粉含量测定,结果如表1所示。The transgenic lines 1-3 of Example 2 were planted individually, and the thousand-grain weight and starch content were measured at the harvest stage. The results are shown in Table 1.
表1转基因植株千粒重和淀粉含量Table 1 Thousand-grain weight and starch content of transgenic plants
注:TaSBE I-OE1、TaSBE I-OE2、TaSBE I-OE3代表实施例2转基因株系1~3;WT代表郑麦7698。Note: TaSBE I-OE1, TaSBE I-OE2, and TaSBE I-OE3 represent the transgenic lines 1-3 of Example 2; WT represents Zhengmai 7698.
根据表2可以看出,转TaSBE I基因的3个株系,小麦籽粒的千粒重的增幅分别是8.16%、12.51%和8.78%、总淀粉含量的增幅分别是3.53%、2.80%和3.75%、支链淀粉含量的增幅分别是5.14%、4.27%和5.27%,转基因小麦的籽粒的千粒重、总淀粉含量和支链淀粉的含量均显著高于野生型(WT)小麦郑麦 7698;并且转基因小麦直链淀粉含量低于野生型,降幅分别是2.09%、2.321%和1.57%,转基因株系的直/支比(直链淀粉与支链淀粉的比值)显著低于野生型,降幅均为6.90%。说明转TaSBE I基因影响小麦籽粒的支链淀粉含量。According to Table 2, it can be seen that for the three lines transfected with the TaSBE I gene, the increases in thousand-grain weight of wheat grains were 8.16%, 12.51% and 8.78%, and the increases in total starch content were 3.53%, 2.80% and 3.75%, respectively. The increases of amylopectin content were 5.14%, 4.27% and 5.27%, respectively, and the thousand-grain weight, total starch content and amylopectin content of the transgenic wheat grains were significantly higher than those of the wild-type (WT) wheat Zhengmai 7698; and the transgenic wheat The amylose content of the transgenic lines was lower than that of the wild type by 2.09%, 2.321% and 1.57%, respectively. %. It indicated that the transfer of TaSBE I gene affected the amylopectin content of wheat grain.
(2)TaSBE I基因对小麦籽粒支链淀粉品质特性的影响(2) Effect of TaSBE I gene on quality characteristics of wheat grain amylopectin
在步骤(1)的基础上进一步探究TaSBE I基因对小麦淀粉品质的影响,测定籽粒淀粉的糊化特性(如峰值粘度、稀懈值、低谷粘度、反弹值、糊化时间、糊化温度等)和膨胀势,结果如表2所示,其中TaSBE I-OE1、TaSBE I-OE2、 TaSBE I-OE3代表实施例2转基因株系1~3。On the basis of step (1), further explore the influence of TaSBE I gene on the quality of wheat starch, and measure the gelatinization characteristics of grain starch (such as peak viscosity, slack value, trough viscosity, rebound value, gelatinization time, gelatinization temperature, etc. ) and expansion potential, the results are shown in Table 2, wherein TaSBE I-OE1, TaSBE I-OE2, and TaSBE I-OE3 represent the transgenic lines 1-3 of Example 2.
表2转基因植株千粒重和淀粉含量Table 2 Thousand-grain weight and starch content of transgenic plants
注:TaSBE I-OE1、TaSBE I-OE2、TaSBE I-OE3代表TaSBE I的3个转基因株系;WT代表郑麦7698。Note: TaSBE I-OE1, TaSBE I-OE2, and TaSBE I-OE3 represent three transgenic lines of TaSBE I; WT represents Zhengmai 7698.
根据表2可以看出,3个转基因株系的峰值粘度、稀懈值、低谷粘度、反弹值和糊化时间均显著高于野生型,其中3个转基因株系的峰值粘度增幅分别为 5.40%、4.56%、15.72%;稀懈值的增幅为7.63%、3.12%、23.79%;低谷粘度的增幅为4.0%、4.7%、11.9%;反弹值的增幅为2.1%,2.5%和7.6%;糊化时间增加了0.5%、1.1%、0.7%;转基因株系的膨胀势也均显著高于野生型,增幅分别为2.28%、1.17%和2.73%。但只有TaSBEI-OE3的最终粘度显著高于野生型,增加幅度达到了9.5%,TaSBE I-OE1和TaSBE I-OE2的最终粘度高于野生型,但差异不显著;转基因株系与野生型的糊化温度没有显著差异。过量表达TaSBE I基因可以影响籽粒淀粉特性,提高籽粒淀粉的膨胀势和糊化特性如峰值粘度、稀懈值、低谷粘度、反弹值和糊化时间。According to Table 2, it can be seen that the peak viscosity, thinning value, trough viscosity, rebound value and gelatinization time of the three transgenic lines were significantly higher than those of the wild type, and the peak viscosity of the three transgenic lines increased by 5.40% respectively , 4.56%, 15.72%; the increase of slack value is 7.63%, 3.12%, 23.79%; the increase of trough viscosity is 4.0%, 4.7%, 11.9%; the increase of rebound value is 2.1%, 2.5% and 7.6%; Gelatinization time increased by 0.5%, 1.1%, and 0.7%. The expansion potential of the transgenic lines was also significantly higher than that of the wild type, with an increase of 2.28%, 1.17%, and 2.73%, respectively. But only the final viscosity of TaSBEI-OE3 was significantly higher than that of the wild type, with an increase of 9.5%. The final viscosity of TaSBE I-OE1 and TaSBE I-OE2 was higher than that of the wild type, but the difference was not significant; There was no significant difference in gelatinization temperature. Overexpression of TaSBE I gene can affect grain starch properties, improve grain starch swelling potential and gelatinization properties such as peak viscosity, thinning value, trough viscosity, rebound value and gelatinization time.
(3)TaSBE I基因对小麦支链淀粉特性的影响(3) Effect of TaSBE I gene on wheat amylopectin characteristics
在步骤(1)的基础上进一步研究TaSBE I基因对小麦支链淀粉特性的影响,测定转基因株系和野生型的支链淀粉链长分布以及分支度,结果如表2和图7~8 所示。On the basis of step (1), the influence of TaSBE I gene on wheat amylopectin characteristics was further studied, and the distribution and branching degree of amylopectin chain lengths of transgenic lines and wild type were determined. The results are shown in Table 2 and Figures 7-8. Show.
表3转基因株系与野生型支链淀粉链长分布Table 3 Transgenic lines and wild-type amylopectin chain length distribution
注:TaSBE I-OE1、TaSBE I-OE2、TaSBE I-OE3代表TaSBE I的3个转基因株系;WT代表郑麦7698。Note: TaSBE I-OE1, TaSBE I-OE2, and TaSBE I-OE3 represent three transgenic lines of TaSBE I; WT represents Zhengmai 7698.
根据表3和图7~8记载的内容可以看出,3个转基因株系与野生型之间的支链淀粉链长分布趋势几乎一致,链长最高峰均在(根据标样的离子色谱确定各个峰所对应的聚合度,degree of polymerization,DP)DP 11,链长分布主要集中在DP 11-24。转TaSBE I基因株系和野生型的链长分布(ΣDP6-10)的变化范围是12.77-15.54,其中ΣDP6-10值最小的是TaSBE I-OE2,值最大的是TaSBE I-OE1;ΣDP11-24的变化范围是53.11-62.50,其中ΣDP11-24最小值的是TaSBE I-OE3,最大值的是TaSBE I-OE1;ΣDP>25的变化范围是18.80-22.58,其中ΣDP>25最小值的是TaSBE I-OE3,最大值的是TaSBE I-OE1;转TaSBE I 基因三个小麦株系的分支度均高于野生型植株,增幅分别为21.8%、17.5%和 33.7%,达到显著差异水平。本发明TaSBE I基因影响小麦支链淀粉的链长分布,过量表达TaSBE I基因能提高籽粒支链淀粉的分支度,增加小麦支链淀粉的分支数目,有利于提高小麦籽粒支链淀粉相关的蒸煮品质。According to the contents recorded in Table 3 and Figures 7 to 8, it can be seen that the distribution trend of the amylopectin chain length between the 3 transgenic lines and the wild type is almost the same, and the highest peak of the chain length is at (determined according to the ion chromatogram of the standard sample) The degree of polymerization corresponding to each peak, degree of polymerization, DP) DP 11, the chain length distribution is mainly concentrated in DP 11-24. The variation range of the chain length distribution (ΣDP6-10) between TaSBE I gene lines and the wild type was 12.77-15.54, among which the smallest value of ΣDP6-10 was TaSBE I-OE2, and the largest value was TaSBE I-OE1; ΣDP11- The variation range of 24 is 53.11-62.50, among which the minimum value of ΣDP11-24 is TaSBE I-OE3, and the maximum value is TaSBE I-OE1; the variation range of ΣDP>25 is 18.80-22.58, and the minimum value of ΣDP>25 is TaSBE I-OE3, the largest was TaSBE I-OE1; the branching degree of the three wheat lines transfected with TaSBE I gene was higher than that of the wild-type plants, the increases were 21.8%, 17.5% and 33.7%, respectively, reaching a significant difference level. The TaSBE I gene of the present invention affects the chain length distribution of wheat amylopectin, and overexpression of the TaSBE I gene can improve the branching degree of grain amylopectin, increase the branch number of wheat amylopectin, and is beneficial to improve cooking related to wheat grain amylopectin quality.
本发明所述TaSBE I基因能提高小麦籽粒淀粉含量和千粒重,影响小麦支链淀粉的链长分布,提高籽粒支链淀粉的分支度,增加小麦支链淀粉的分支数目,有利于提高小麦籽粒支链淀粉相关的蒸煮品质。The TaSBE I gene of the present invention can improve the starch content and thousand-grain weight of wheat grains, affect the chain length distribution of wheat amylopectin, improve the branching degree of grain amylopectin, increase the number of branches of wheat amylopectin, and help improve the amylopectin of wheat grains. Amylopectin-related cooking qualities.
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。Although the foregoing embodiment has described the present invention in detail, it is only a part of the embodiments of the present invention, rather than all embodiments, and people can also obtain other embodiments according to the present embodiment without inventive step, these embodiments All belong to the protection scope of the present invention.
序列表sequence listing
<110> 河南农业大学<110> Henan Agricultural University
<120> TaSBE I基因在促进小麦淀粉合成方面的应用<120> Application of TaSBE I Gene in Promoting Wheat Starch Synthesis
<160> 7<160> 7
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 2493<211> 2493
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 1<400> 1
atgctctgcc tcaccgcccc ctcctgctcg ccatctctcc cgccgcgccc ctcccgtccc 60atgctctgcc tcaccgcccc ctcctgctcg ccatctctcc cgccgcgccc ctcccgtccc 60
gctgctgacc ggcccggacc ggggatctcg ggcggcggca atgtgcggct gagcgcggtg 120gctgctgacc ggcccggacc ggggatctcg ggcggcggca atgtgcggct gagcgcggtg 120
cccgcgccct cttcgctccg ctggtcgtgg ccgcggaagg ccaagagcaa gttctctgtt 180cccgcgccct cttcgctccg ctggtcgtgg ccgcggaagg ccaagagcaa gttctctgtt 180
cccgtgtctg cgccaagaga ctacaccatg gcaacagctg aagatggtgt tggcgacctt 240cccgtgtctg cgccaagaga ctacaccatg gcaacagctg aagatggtgt tggcgacctt 240
ccgatatacg atctggatcc gaagtttgcc ggcttcaagg aacacttcag ttataggatg 300ccgatatacg atctggatcc gaagtttgcc ggcttcaagg aacacttcag ttataggatg 300
aaaaagtacc ttgaccagaa acattcgatt gagaagcacg agggaggcct tgaagagttc 360aaaaagtacc ttgaccagaa acattcgatt gagaagcacg agggaggcct tgaagagttc 360
tctaaaggct atttgaagtt tgggatcaac acagaaaatg acgcaactgt gtaccgggaa 420tctaaaggct atttgaagtt tgggatcaac acagaaaatg acgcaactgt gtaccgggaa 420
tgggcccctg cagcaatgga tgcacaactt attggtgact tcaacaactg gaatggctct 480tgggcccctg cagcaatgga tgcacaactt attggtgact tcaacaactg gaatggctct 480
gggcacagga tgacaaagga taattatggt gtttggtcaa tcaggatttc ccatgtcaat 540gggcacagga tgacaaagga taattatggt gtttggtcaa tcaggatttc ccatgtcaat 540
gggaaacctg ccatccccca taattccaag gttaaatttc gatttcaccg tggagatgga 600gggaaacctg ccatccccca taattccaag gttaaatttc gatttcaccg tggagatgga 600
ctatgggtcg atcgggttcc tgcatggatt cgttatgcaa cttttgatgc ctctaaattt 660ctatgggtcg atcgggttcc tgcatggatt cgttatgcaa cttttgatgc ctctaaattt 660
ggagctccat atgacggtgt tcactgggat ccaccttctg gtgaaaggta tgtgtttaag 720ggagctccat atgacggtgt tcactgggat ccaccttctg gtgaaaggta tgtgtttaag 720
catcctcggc ctcgaaagcc tgacgctcca cgtatttacg aggctcatgt ggggatgagt 780catcctcggc ctcgaaagcc tgacgctcca cgtatttacg aggctcatgt ggggatgagt 780
ggtgaaaagc ctgaagtaag cacatacaga gaatttgcag acaatgtgtt accgcgcata 840ggtgaaaagc ctgaagtaag cacatacaga gaatttgcag acaatgtgtt accgcgcata 840
aaggcaaaca actacaacac agttcagctg atggcaatca tggaacattc atattatgct 900aaggcaaaca actacaacac agttcagctg atggcaatca tggaacattc atattatgct 900
tcttttgggt accatgtgac gaatttcttc gcagttagca gcagatcagg aacgccagag 960tcttttgggt accatgtgac gaatttcttc gcagttagca gcagatcagg aacgccagag 960
gacctcaaat atcttgttga caaggcacat agtttagggt tacgtgttct gatggatgtt 1020gacctcaaat atcttgttga caaggcacat agtttagggt tacgtgttct gatggatgtt 1020
gtccatagcc atgcgagcag taataagaca gatggtctta atggctatga tgttgggcaa 1080gtccatagcc atgcgagcag taataagaca gatggtctta atggctatga tgttgggcaa 1080
aacacacagg agtcctattt ccacacagga gaaaggggct atcataaact gtgggatagc 1140aacacacagg agtcctattt ccacacagga gaaaggggct atcataaact gtgggatagc 1140
cgcctgttca actatgccaa ttgggaggtc ttacgatttc ttctttctaa tctgagatat 1200cgcctgttca actatgccaa ttgggaggtc ttacgatttc ttctttctaa tctgagatat 1200
tggatggacg aattcatgtt tgatggcttc cgatttgatg gggtaacatc catgctatat 1260tggatggacg aattcatgtt tgatggcttc cgatttgatg gggtaacatc catgctatat 1260
aatcaccatg gtatcaatat gtcattcgct ggaagttaca aggaatattt tggtttggat 1320aatcaccatg gtatcaatat gtcattcgct ggaagttaca aggaatattt tggtttggat 1320
actgatgtag atgcagttgt ttacctgatg cttgcgaacc atttaatgca caaactcttg 1380actgatgtag atgcagttgt ttacctgatg cttgcgaacc atttaatgca caaactcttg 1380
ccagaagcaa ctgttgttgc agaagatgtt tcaggcatgc cagtgctttg tcggtcagtt 1440ccagaagcaa ctgttgttgc agaagatgtt tcaggcatgc cagtgctttg tcggtcagtt 1440
gatgaaggtg gagtagggtt tgactatcgc ctggctatgg ctattcctga tagatggatc 1500gatgaaggtg gagtaggggtt tgactatcgc ctggctatgg ctattcctga tagatggatc 1500
gactacttga agaacaaaga tgaccttgaa tggtcaatga gtggaatagc acatactctg 1560gactacttga agaacaaaga tgaccttgaa tggtcaatga gtggaatagc acatactctg 1560
accaacagga gatatacgga aaagtgcatt gcatatgctg agagccatga tcagtctatt 1620accaacagga gatatacgga aaagtgcatt gcatatgctg agagccatga tcagtctatt 1620
gttggcgaca agactatggc atttctcttg atggacaagg aaatgtatac tggcatgtca 1680gttggcgaca agactatggc atttctcttg atggacaagg aaatgtatac tggcatgtca 1680
gacttgcagc ctgcttcgcc tacaattgat cgtggaattg cacttcaaaa gatgattcac 1740gacttgcagc ctgcttcgcc tacaattgat cgtggaattg cacttcaaaa gatgattcac 1740
ttcatcacca tggcccttgg aggtgatggc tacttgaatt ttatgggtaa tgagtttggc 1800ttcatcacca tggcccttgg aggtgatggc tacttgaatt ttatgggtaa tgagtttggc 1800
cacccagaat ggattgactt tccaagagaa ggcaacaact ggagttatga taaatgcaga 1860cacccagaat ggattgactt tccaagagaa ggcaacaact ggagttatga taaatgcaga 1860
cgccagtgga gcctcgcaga cattgatcac ctacgataca agtacatgaa cgcatttgat 1920cgccagtgga gcctcgcaga cattgatcac ctacgataca agtacatgaa cgcatttgat 1920
caagcaatga atgcgctcga cgacaaattt tccttcctat catcatcaaa gcagattgtc 1980caagcaatga atgcgctcga cgacaaattt tccttcctat catcatcaaa gcagattgtc 1980
agcgacatga atgaggaaaa gaagattatt gtatttgaac gtggagatct ggtcttcgtc 2040agcgacatga atgaggaaaa gaagattatt gtatttgaac gtggagatct ggtcttcgtc 2040
ttcaattttc atcccagtaa aacttatgat ggttacaaag tcggatgtga cttgcctggg 2100ttcaattttc atcccagtaa aacttatgat ggttacaaag tcggatgtga cttgcctggg 2100
aagtacaagg tagctctgga ctctgatgct ctgatgtttg gtggacatgg aagagtggcc 2160aagtacaagg tagctctgga ctctgatgct ctgatgtttg gtggacatgg aagagtggcc 2160
catgacaacg atcactttac gtcacctgaa ggagtaccag gagtacctga aacaaacttc 2220catgacaacg atcactttac gtcacctgaa ggagtaccag gagtacctga aacaaacttc 2220
aacaaccgcc ctaactcatt caaaatcctg tctccatccc gcacttgtgt ggcttactat 2280aacaaccgcc ctaactcatt caaaatcctg tctccatccc gcacttgtgt ggcttactat 2280
cgcgtcgagg agaaagcgga aaagcccaag gatgaaggag ctgcttcttg ggggaaaact 2340cgcgtcgagg agaaagcgga aaagcccaag gatgaaggag ctgcttcttg ggggaaaact 2340
gctctcgggt acatcgatgt tgaagccact ggcgtcaaag acgcagcaga tggtgaggcg 2400gctctcgggt acatcgatgt tgaagccact ggcgtcaaag acgcagcaga tggtgaggcg 2400
acttctggtt ccgaaaaggc gtctacagga ggtgactcca gcaagaaggg aattaacttt 2460acttctggtt ccgaaaaggc gtctacagga ggtgactcca gcaagaaggg aattaacttt 2460
gtctttctgt cacccgacaa agacaacaaa taa 2493gtctttctgt cacccgacaa agacaacaaa taa 2493
<210> 2<210> 2
<211> 50<211> 50
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 2<400> 2
tgcaggtcga ctctagagga tccccgggat gctctgcctc accgccccct 50tgcaggtcga ctctagagga tccccgggat gctctgcctc accgccccct 50
<210> 3<210> 3
<211> 51<211> 51
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 3<400> 3
cggggaaatt cgagctctct agaactagtt tatttgttgt ctttgtcggg t 51cggggaaatt cgagctctct agaactagtt tatttgttgt ctttgtcggg t 51
<210> 4<210> 4
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 4<400> 4
accatcgtca accactacat cg 22accatcgtca accactacat cg 22
<210> 5<210> 5
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 5<400> 5
gctgccagaa accacgtcat g 21gctgccagaa accacgtcat g 21
<210> 6<210> 6
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 6<400> 6
cagtggagcc tcgcagacat tg 22cagtggagcc tcgcagacat tg 22
<210> 7<210> 7
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 7<400> 7
tgcgggactc taatcataaa aa 22tgcgggactc taatcataaa aa 22
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210310071.6A CN114807163B (en) | 2022-03-28 | 2022-03-28 | Application of TaSBE I Gene in Promoting Wheat Starch Synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210310071.6A CN114807163B (en) | 2022-03-28 | 2022-03-28 | Application of TaSBE I Gene in Promoting Wheat Starch Synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114807163A CN114807163A (en) | 2022-07-29 |
CN114807163B true CN114807163B (en) | 2023-08-25 |
Family
ID=82530598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210310071.6A Active CN114807163B (en) | 2022-03-28 | 2022-03-28 | Application of TaSBE I Gene in Promoting Wheat Starch Synthesis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114807163B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1623370A (en) * | 2004-11-08 | 2005-06-08 | 安徽农业大学 | Method for transgenically improving grain starch quality of cereal crops |
CN102212523A (en) * | 2011-05-19 | 2011-10-12 | 中国农业大学 | DNA molecule for expressing hairpin RNA for inhibiting wheat starch branching enzyme IIa (SBEIIa) and application thereof |
CN103160541A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院上海生命科学研究院 | Transcription factor for regulating physical and chemical properties of plant seed starch |
CN104017829A (en) * | 2011-12-06 | 2014-09-03 | 中国科学院上海生命科学研究院 | Method for increasing amylose content of plants |
CN110759979A (en) * | 2019-09-04 | 2020-02-07 | 中国科学院遗传与发育生物学研究所 | Transcription factor bZIP2 for improving starch synthesis of wheat grains and application thereof |
-
2022
- 2022-03-28 CN CN202210310071.6A patent/CN114807163B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1623370A (en) * | 2004-11-08 | 2005-06-08 | 安徽农业大学 | Method for transgenically improving grain starch quality of cereal crops |
CN102212523A (en) * | 2011-05-19 | 2011-10-12 | 中国农业大学 | DNA molecule for expressing hairpin RNA for inhibiting wheat starch branching enzyme IIa (SBEIIa) and application thereof |
CN104017829A (en) * | 2011-12-06 | 2014-09-03 | 中国科学院上海生命科学研究院 | Method for increasing amylose content of plants |
CN103160541A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院上海生命科学研究院 | Transcription factor for regulating physical and chemical properties of plant seed starch |
CN110759979A (en) * | 2019-09-04 | 2020-02-07 | 中国科学院遗传与发育生物学研究所 | Transcription factor bZIP2 for improving starch synthesis of wheat grains and application thereof |
Non-Patent Citations (1)
Title |
---|
"不同小麦品种籽粒淀粉合成酶基因的表达及其与淀粉积累的关系";谭彩霞 等;《麦类作物学报》;第31卷(第6期);第1063-1070页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114807163A (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Utsumi et al. | Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava | |
Xiao et al. | Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes | |
Zhong et al. | FLOURY ENDOSPERM12 encoding alanine aminotransferase 1 regulates carbon and nitrogen metabolism in rice | |
CN105349559A (en) | Application of corn ZmWx gene in increase of corn yield and improvement of grain characteristics | |
CN107058343B (en) | Application of transcription factor VP1 in regulating plant height and grain starch content of crops | |
WO2022007747A1 (en) | Phosphorus-efficient and high-yield gene of crops, and application thereof | |
CN103146746B (en) | Transgenic rice with excellent eating quality and cultivation method | |
CN107245490B (en) | method for adjusting starch content of rice grains based on ZmMIKC2a gene | |
CN114807163B (en) | Application of TaSBE I Gene in Promoting Wheat Starch Synthesis | |
CN107254475B (en) | A method of based on ZmMIKC2a Gene regulation Seed Starch Content in Maize | |
CN104232681B (en) | Plant expression vector and application thereof in preparing phosphorylation modified rice starch | |
CN109929851B (en) | Corn kernel starch synthesis regulation gene ZmDof36 and application thereof | |
CN110184279A (en) | New a promotion branch development gene SrDREB2A and its expression vector and application in stevia rebaudianum | |
CN107142268B (en) | A kind of cornstarch synthesis regulation gene Zmend1a and its application | |
CN102212523B (en) | DNA molecule for expressing hairpin RNA for inhibiting wheat starch branching enzyme IIa (SBEIIa) and application thereof | |
CN102791740B (en) | There is the amylopectin-type starch of the stability to aging of enhancing | |
CN116555279A (en) | A gene fragment for enhancing pepper lodging resistance and its encoded protein, detection kit, rapid detection method and application | |
CN105399804B (en) | With the application of rice grain shape and the relevant albumen of Leaf angle and its encoding gene | |
CN107058378A (en) | A kind of method based on Zmend1a Gene regulation Seed Starch Content in Maize | |
CN101892212B (en) | Tomato phosphoenolpyruvate carboxykinase as well as coding gene and application thereof | |
CN113337522A (en) | Application of cotton GhNFYC4 gene in promoting plant flowering | |
CN105420250A (en) | Lychee cell wall acid invertase gene and application thereof | |
CN117089568A (en) | Application of wheat TaERFL1a gene in improving the physical and chemical properties and/or digestion properties of wheat starch | |
CN115160423B (en) | Sweet potato root and leaf development-related protein IbbZIP11 and its encoding gene and application | |
CN112521470B (en) | Plant starch synthesis related protein OsFLO18, and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |