CN114806990A - 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用 - Google Patents

一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用 Download PDF

Info

Publication number
CN114806990A
CN114806990A CN202210507662.2A CN202210507662A CN114806990A CN 114806990 A CN114806990 A CN 114806990A CN 202210507662 A CN202210507662 A CN 202210507662A CN 114806990 A CN114806990 A CN 114806990A
Authority
CN
China
Prior art keywords
nattokinase
primer
recombinant
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210507662.2A
Other languages
English (en)
Other versions
CN114806990B (zh
Inventor
刘宏生
于晓淼
赵允章
赵健
冯华炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202210507662.2A priority Critical patent/CN114806990B/zh
Publication of CN114806990A publication Critical patent/CN114806990A/zh
Application granted granted Critical
Publication of CN114806990B publication Critical patent/CN114806990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用。基于模拟计算方法筛选到了纳豆激酶蛋白Y256P突变位点,构建含有突变位点的PGEX‑6P‑NKY256P重组质粒载体,并将其转入大肠杆菌BL21中进行表达,获得重组基因工程菌LNUB571。本发明成功构建耐热性纳豆激酶重组基因工程菌,纳豆激酶热稳定性显著提高,为今后纳豆激酶工业化生产及大规模应用奠定了基础。

Description

一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用
技术领域
本发明属于基因工程领域,具体涉及一株耐热性纳豆激酶重组基因工程菌的构建和应用。
本发明中所称的耐热性纳豆激酶重组基因工程菌为大肠埃希氏菌(Escherichiacoli)LNUB571,该菌株已于2021年12月15日在中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.24107。
背景技术
纳豆是一种传统的日本食品,由大豆和枯草芽孢杆菌发酵而成,纳豆激酶(Nattokinase,NK)是一种由275个氨基酸组成的丝氨酸蛋白酶。纳豆激酶除具有极高的溶栓活性作用外,对心脑血管疾病中:高血液黏度、高血压、高血脂、高胆固醇症状,改善血液循环状况方面有良好效果,有望于在心脑血管疾病的预防和治疗中起到积极地作用,未来极有可能成为治疗血栓病的特效药。
与市面上其他治疗血栓的药物相比,纳豆激酶具有安全、高效、价廉、易得等优点,应用前景十分广阔。然而,耐热性差、纯化工作困难等问题的存在,导致纳豆激酶的产量很低,极大地限制了纳豆激酶的批量加工生产。鉴于纳豆激酶功效及发展前景,通过对纳豆激酶进行基因改造,构建一株耐热性强的纳豆激酶重组基因工程菌株,对于提高纳豆激酶的产量,促进纳豆激酶的产业化具有重要意义。
发明内容
本发明的目的是构建一株耐热性纳豆激酶重组基因工程菌。
本发明采用的技术方案是:一种耐热性纳豆激酶重组基因工程菌,所述耐热性纳豆激酶重组基因工程菌为大肠埃希氏菌(Escherichia coli)LNUB571,保藏编号为:CGMCCNo.24107。
一种耐热性纳豆激酶重组基因工程菌的构建方法,包括如下步骤:
1)以枯草芽孢杆菌DNA为模板,以Primer 1和Primer 2为引物,通过PCR反应,获得两端添加酶切位点EcoR I和Xho I的纳豆激酶前导肽-成熟肽基因片段NKt;
Primer 1:CCGCTCGAGTCTAGAAATTGAGCAGCAGC
Primer 2:GCGGAATTCGCTGGTAAGTCCTCCACCG
进一步的,PCR反应的条件为:
Figure BDA0003638035010000021
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
进一步的,所述基因片段NKt的DNA序列如SEQ ID NO.1所示。
2)构建重组表达载体PGEX-6P-NKY256P:以基因片段NKt DNA为模板,以Primer 3和Primer 4,Primer 5和Primer 6为引物,通过重叠延伸PCR反应,获得NKY256P基因片段;将NKY256P基因片段和PGEX-6P-1载体进行双酶切连接,获得重组表达载体PGEX-6P-NKY256P
Primer 3:CCGCTCGAGTCTAGAAATTGAGCAGCAGC
Primer 4:TAGAAGGAGTTACCCAGTGGGGTTGCAGTGGATTCCAATCT
Primer 5:CCACTGGGTAACTCCTTCTACTACGGTAAGGGTTTGATCAA
Primer 6:GCGGAATTCGCTGGTAAGTCCTCCACCG
进一步的,重叠延伸PCR反应的条件为:
Figure BDA0003638035010000022
Figure BDA0003638035010000031
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
进一步的,所述NKY256P基因片段的DNA序列如SEQ ID NO.2所示。
3)转化:将重组表达载体PGEX-6P-NKY256P转化到大肠杆菌BL21中,获得重组基因工程菌,为耐热性纳豆激酶重组基因工程菌。
本发明提供的一种耐热性纳豆激酶重组基因工程菌在表达纳豆激酶中的应用。
进一步的,方法如下:筛选耐热性纳豆激酶重组基因工程菌的阳性菌落,接种于含Ampicillin的LB液体培养基中,37℃,180rpm/min,摇床培养14-16h,收集菌液;将收集到的菌液进行离心处理,离心条件为4℃,20min,离心结束后,弃上清液,收集菌体沉淀;PBS缓冲液稀释菌体沉淀,功率25w,开2s,关3s,进行细胞破碎,破碎20min后,冷冻离心收集蛋白上清液,得到纳豆激酶蛋白,命名为纳豆激酶蛋白RNKT2。
进一步的,所述纳豆激酶蛋白RNKT2的氨基酸序列如SEQ ID NO.4所示。
本发明提供的一种耐热性纳豆激酶重组基因工程菌在制备纳豆激酶蛋白中的应用。
本发明的有益效果是:
1、本发明,首先基于模拟计算方法筛选到了纳豆激酶蛋白的Y256P突变位点,在Y256P突变位点由Tyr突变为Pro,以PGEX-6P-1为载体,构建含有突变位点的重组表达载体PGEX-6P-NKY256P,并将其转入大肠杆菌BL21中进行表达,获得重组基因工程菌LNUB571。本发明成功构建耐热性纳豆激酶重组基因工程菌,纳豆激酶热稳定性显著提高,为今后纳豆激酶工业化生产及大规模应用奠定了基础。
2、本发明采用基因工程技术,构建了耐热性纳豆激酶原核表达系统重组基因工程菌LNUB571,该重组基因工程菌LNUB571的酶活比原始菌株提高了51.7%。
3、本发明构建的重组基因工程菌LNUB571,可高效表达纳豆激酶并有效提高耐热性,与原始菌株表达纳豆激酶相比,耐热性提高了5℃,为今后纳豆激酶大规模工业化生产奠定基础。
附图说明
耐热性纳豆激酶重组基因工程菌,即大肠埃希氏菌(Escherichia coli)LNUB571。该菌株,保藏日期为2021年12月15日,保藏编号为CGMCC No.24107,保藏单位名称:中国微生物菌种保藏管理委员会普通微生物中心,简称:CGMCC,保藏单位地址:北京市朝阳区北辰西路1号院3号,邮政编码:100101。
图1为纳豆激酶前导肽-成熟肽基因片段NKt扩增结果。
其中,M:Marker;1-3:纳豆激酶前导肽-成熟肽基因片段。
图2为重组表达载体PGEX-6P-NKY256P构建结果。
其中,M:Marker;1-3:纳豆激酶突变位点Y256P上游扩增结果,4-6:纳豆激酶突变位点Y256P下游扩增结果。
图3为纳豆激酶突变位点Y256P重叠延伸PCR扩增结果。
其中,M:Marker;1-3:纳豆激酶突变位点Y256P重叠延伸PCR扩增片段。
图4为验证重组表达载体PGEX-6P-NKY256P
其中,M:Marker;1-4:完整PGEX-6P-NKY256P载体;5-8:PGEX-6P-NKY256P双酶切结果(含有酶切位点EcoR I和Xho I)。
图5为原始菌株和基因突变菌株LNUB571分别在0℃和65℃条件下的酶活测定分析。
图6为原始菌株和基因突变菌株LNUB571在37-70℃的耐热性分析。
具体实施方式
实施例1一株耐热性纳豆激酶重组基因工程菌(LNUB571)的构建
构建方法如下:
1、反复冻融法提取枯草芽孢杆菌DNA
以本实验室保藏的枯草芽孢杆菌(Bacillus subtilis)LNUB014为模板,在LB平板培养基上划线过夜培养。挑取单菌落,接种于10mL LB液体培养基,180rpm/min,37℃过夜培养。取1mL菌体,100℃水浴10min,之后置于-80℃冰箱10min,重复两次,6000rpm/min离心5min,取上清液,获得枯草芽孢杆菌DNA。
2、纳豆激酶前导肽-成熟肽基因片段NKt的获得
通过对纳豆激酶NKt基因序列比对,分别设计引入酶切位点EcoR I的Primer 1以及引入酶切位点Xho I的Primer 2。以枯草芽孢杆菌DNA为模板,以Primer 1和Primer 2为引物,通过PCR方法,扩增出NKt基因片段。
Primer 1:5’-CCGCTCGAGTCTAGAAATTGAGCAGCAGC-3’
Primer 2:5’-GCGGAATTCGCTGGTAAGTCCTCCACCG-3
PCR反应的条件为:
Figure BDA0003638035010000051
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
将PCR产物按照PCR产物凝胶回收试剂盒提供的说明书步骤进行操作,所得产物于-20℃保存或直接用于后续实验。将PCR产物经电泳检测,结果如图1。图1是NKt基因片段PCR扩增结果,由图1可见,泳道1、2、3均以NKt DNA片段为模板PCR添加EcoR I和Xho I酶切位点的NKt基因片段,PCR扩增的结果片段大小为1068bp,符合纳豆激酶前导肽-成熟肽NKt基因序列,图片结果与预期的结果相同,说明通过PCR方法获得的NKt基因片段扩增成功。
3、构建含有突变的NKY256P基因片段的重组表达载体PGEX-6P-NKY256P
基于模拟计算方法筛选到的Y256P突变位点设计引物上游引物和下游引物。
以NKt基因片段DNA为模板,以Primer 3和Primer 4,Primer 5和Primer 6为引物,通过重叠延伸PCR反应,获得突变的NKY256P基因片段;将NKY256P基因片段和PGEX-6P-1载体进行双酶切后,进行连接,获得重组表达载体PGEX-6P-NKY256P
Primer 3:CCGCTCGAGTCTAGAAATTGAGCAGCAGC
Primer 4:TAGAAGGAGTTACCCAGTGGGGTTGCAGTGGATTCCAATCT
Primer 5:CCACTGGGTAACTCCTTCTACTACGGTAAGGGTTTGATCAA
Primer 6:GCGGAATTCGCTGGTAAGTCCTCCACCG
重叠延伸PCR反应的条件为:
Figure BDA0003638035010000052
Figure BDA0003638035010000061
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
将PCR产物经电泳检测,结果如图2和图3和图4。图2是NKtY256P基因片段PCR扩增结果,泳道1-3均以NKt DNA片段为模板通过PCR法扩增的NKtY256P上游基因片段,泳道4-6均以NKt DNA片段为模板通过PCR法扩增的NKtY256P下游基因片段。图3为纳豆激酶突变位点Y256P重叠延伸PCR扩增结果,泳道1-3为PCR扩增的含有Y256P突变位点的基因片段,经扩增后,片段大小为1068bp,图片结果与预期的结果相同,说明片段扩增成功。图4为验证重组表达载体PGEX-6P-NKY256P,泳道1-4为完整PGEX-6P-NKY256P载体;泳道5-8为PGEX-6P-NKY256P双酶切结果(含有酶切位点EcoR I和Xho I),证明目的片段成功插入质粒载体中。
4、转化
将重组表达载体PGEX-6P-NKY256P,转化到大肠杆菌BL21感受态细胞中进行表达,获得重组基因工程菌,即为耐热性纳豆激酶重组基因工程菌(LNUB571)。
方法如下:取出置于-80℃的BL21感受态细胞,加入2-3μL重组表达载体PGEX-6P-NKY256P,静置于冰上30min。将离心管放入42℃的水浴中热激90s。迅速将离心管转移置冰上,让其冷却2min。加入900μL预热42℃的LB无抗生素培养基,将其置于37℃的摇床上,150rpm/min震荡培养45-60min,使菌体复苏并表达质粒编码的抗生素抗性标记基因。将100μL已转化的感受态细胞均匀涂布到含Ampicillin的LB平板上。将平板置于37℃直至液体被吸收,倒置平板,37℃培养12-16h,获得重组基因工程菌,即为耐热性纳豆激酶重组基因工程菌,也就是大肠埃希氏菌(Escherichia coli)LNUB571,命名为重组基因工程菌LNUB571。
将获得的重组基因工程菌LNUB571,挑取单菌落在LB含Ampicillin的液体培养基培养,挑起阳性单菌落,提取质粒。经上海生工生物工程有限公司检测,目的片段NKY256P的DNA序列如SEQ ID NO.2所示。
5、表达
筛选耐热性纳豆激酶重组基因工程菌的阳性菌落,接种于含Ampicillin的LB液体培养基中,37℃,180rpm/min,摇床培养14-16h,收集菌液;将收集到的菌液进行离心处理,离心条件为4℃,20min,离心结束后,弃上清液,收集菌体沉淀;PBS缓冲液稀释菌体沉淀,功率25w,开2s,关3s,进行细胞破碎,破碎20min后,冷冻离心收集蛋白上清液,得到纳豆激酶蛋白,命名为纳豆激酶蛋白RNKT2。经上海生工生物工程有限公司检测,纳豆激酶蛋白RNKT2氨基酸序列如SEQ ID NO.4所示。
实施例2耐热性纳豆激酶重组基因工程菌LNUB571的耐热性分析(一)对比例——原始菌株重组基因工程菌
构建方法如下:
1、反复冻融法提取枯草芽孢杆菌DNA
同实施例1。
2、纳豆激酶前导肽-成熟肽基因片段NKt的获得
同实施例1。
3、构建含有原始NKt基因片段的重组表达载体PGEX-6P-NKt
将纳豆激酶前导肽-成熟肽基因片段NKt和PGEX-6P-1载体进行双酶切后,进行连接,获得原始菌株重组表达载体PGEX-6P-NKt。
4、转化
将原始菌株重组表达载体PGEX-6P-NKt,转化到大肠杆菌BL21感受态细胞中进行表达,获得重组基因工程菌,即为原始菌株重组基因工程菌。
将获得的原始菌株重组基因工程菌,挑取单菌落在LB含Ampicillin的液体培养基培养,挑起阳性单菌落,提取质粒。经上海生工生物工程有限公司检测,目的片段NKt的DNA序列如SEQ ID NO.1所示。
5、表达
筛选原始菌株重组基因工程菌的阳性菌落,接种于含Ampicillin的LB液体培养基中,37℃,180rpm/min,摇床培养14-16h,收集菌液;将收集到的菌液进行离心处理,离心条件为4℃,20min,离心结束后,弃上清液,收集菌体沉淀;PBS缓冲液稀释菌体沉淀,功率25w,开2s,关3s,进行细胞破碎,破碎20min后,冷冻离心收集蛋白上清液,得到纳豆激酶蛋白,命名为纳豆激酶蛋白RNKT1。经上海生工生物工程有限公司检测,纳豆激酶蛋白RNKT1氨基酸序列如SEQ ID NO.3所示。
由此结果,本申请的纳豆激酶蛋白RNKT2相对于纳豆激酶蛋白RNKT1在纳豆激酶的氨基酸序列中将256位点的Tyr突变为Pro。
(二)重组基因工程菌纳豆激酶蛋白发酵液的获得
分别将实施例1获得的突变的重组基因工程菌LNUB571和对比例获得的原始菌株重组基因工程菌划线于LB(含抗生素Ampicillin)固体培养基,摇床培养;分别挑取阳性菌落接种于10mL含有Ampicillin(100μg/mL)的LB液体培养基中,37℃180rpm/min振荡培养过夜。以过夜培养菌为种子液,按1:100转接至100mL含有Ampicillin(100μg/mL)的新鲜LB液体培养基中,37℃,210rpm/min振荡培养1.5-2h,使其OD600达到0.4-0.6,再加入IPTG(异丙基-β-D-硫代半乳糖苷)之前吸取1mL菌液作为未诱导蛋白的阴性对照。IPTG终浓度为0.7mmol/L,置于16℃,120rpm/min的摇床中培养20h。
超声破碎诱导后菌体:16℃诱导表达后,4℃8000rpm/min离心15min收集菌体,PBS溶液洗涤菌体3次后,用15mL PBS重悬菌体,加入3mL 10%Triton 100防止在超声过程中蛋白质聚沉。破碎菌悬液至澄清,4℃8000rpm/min离心10min,离心后收集上清,分别获得突变的纳豆激酶蛋白发酵液和原始菌株的纳豆激酶蛋白发酵液。
(三)重组纳豆激酶的活性测定
利用日本纳豆激酶协会活性测量方法改良测定纳豆激酶蛋白的活性。
取1.4mL,0.05mol/L硼酸盐和0.4mL,0.72%纤维蛋白原溶液于试管中,在37℃水浴中孵育5min。加入0.1mL凝血酶溶液并混合,10min后,加入0.1mL样品溶液,混匀5s,37℃孵育。在反应达到20min和40min时,分别混合5s,在反应达到60min时,加入2mL,0.2mol/LTCA溶液停止反应,37℃水浴后放置20min。将上述反应进行离心15 000rpm/min,离心10min,测定275nm处吸光值,每个样品做三组平行。
一个酶活力单位(FU)定义为:在特定条件下(37℃,pH 8.0)每分钟在275nm处的吸光值变化0.01所需要的酶量。
酶活性,FU/g=FU/mL×2mL/g
经检测,原始菌株的纳豆激酶蛋白发酵液与基因突变菌株LNUB571的纳豆激酶蛋白发酵液的酶活性分别为89.26Fu/mL和135.53Fu/mL,可见本申请进行了基因突变,菌株LNUB571的酶活性有显著提高。
(四)重组纳豆激酶的热稳定性测定
分别取原始菌株的纳豆激酶蛋白发酵液与基因突变菌株LNUB571的纳豆激酶蛋白发酵液于65℃处理30min,并于100mmol/L Tris-HCl(pH 8.0)缓冲液中,根据紫外分光光度法测定原始菌株与基因突变菌株LNUB571残余酶活,并进行酶活比较,结果如图5。
由图5可见,在65℃时原始菌株的纳豆激酶蛋白发酵液与基因突变菌株LNUB571的纳豆激酶蛋白发酵液的酶活性分别为14.06Fu/mL和58.10Fu/mL,说明本申请进行了基因突变,菌株LNUB571在65℃下的热稳定性相对于原始菌株有显著提高。
(五)重组纳豆激酶最高耐热温度测定
分别取突变的纳豆激酶蛋白发酵液和原始菌株的纳豆激酶蛋白发酵液于37℃-70℃分别处理30min,并于100mmol/L Tris-HCl(pH8.0)缓冲液中,根据紫外分光光度法测定原始菌株与基因突变菌株LNUB571残余酶活,并进行酶活比较,结果如图6。
由图6可见,原始菌株和基因突变菌株LNUB571在37℃-70℃的耐热性分析,原始菌株最高耐热温度为65℃,基因突变菌株LNUB571最高耐热温度为70℃,比原始菌株的耐热性提高了5℃。
<110> 辽宁大学
<120> 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1068
<212> DNA
<213> NKt
<400> 1
gaattcgctg gtaagtcctc caccgagaag aagtacatcg ttggtttcaa gcagactatg 60
tccgctatgt cctccgctaa gaagaaggac gttatctccg agaaaggtgg taaggtccag 120
aagcagttca agtacgttaa cgctgctgct gctactttgg acgagaaggc tgtcaaagag 180
ttgaagaagg atccatccgt tgcctacgtt gaagaggacc atattgctca cgaatacgct 240
cagtctgtcc catacggtat ttcccagatt aaggctccag ccttgcactc ccaaggttac 300
actggttcta acgttaaggt tgccgttatc gactccggta tcgattcttc tcacccagac 360
ttgaacgtta gaggtggtgc ttctttcgtt ccatccgaga ctaacccata ccaagatggt 420
tcttcccacg gtactcatgt tgctggtact atcgctgctc tgaacaactc cattggtgtt 480
ttgggtgttg ctccttccgc ttccttgtac gctgttaagg ttttggactc tactggttcc 540
ggtcagtact cctggattat caacggtatt gagtgggcca tctccaacaa catggacgtc 600
attaacatgt cccttggtgg tccaactggt tccactgctc ttaagactgt tgttgacaag 660
gctgtctcct ccggtattgt cgttgctgct gcagctggta acgaaggttc ttctggttct 720
acttccaccg ttggttaccc agctaagtac ccatccacta ttgctgttgg tgctgtcaac 780
tcttccaacc agagagcttc tttctcttcc gtcggttccg aattggatgt tatggctcca 840
ggtgtttcca tccagtctac tttgccaggt ggtacttacg gtgcttacaa cggtacttct 900
atggctactc cacacgttgc tggtgctgct gccttgattt tgtctaagca cccaacttgg 960
actaacgccc aggttagaga cagattggaa tccactgcaa cctacctggg taactccttc 1020
tactacggta agggtttgat caacgttcag gctgctgctc aatctaga 1068
<210> 2
<211> 1068
<212> DNA
<213> NKtY256P
<400> 2
gaattcgctg gtaagtcctc caccgagaag aagtacatcg ttggtttcaa gcagactatg 60
tccgctatgt cctccgctaa gaagaaggac gttatctccg agaaaggtgg taaggtccag 120
aagcagttca agtacgttaa cgctgctgct gctactttgg acgagaaggc tgtcaaagag 180
ttgaagaagg atccatccgt tgcctacgtt gaagaggacc atattgctca cgaatacgct 240
cagtctgtcc catacggtat ttcccagatt aaggctccag ccttgcactc ccaaggttac 300
actggttcta acgttaaggt tgccgttatc gactccggta tcgattcttc tcacccagac 360
ttgaacgtta gaggtggtgc ttctttcgtt ccatccgaga ctaacccata ccaagatggt 420
tcttcccacg gtactcatgt tgctggtact atcgctgctc tgaacaactc cattggtgtt 480
ttgggtgttg ctccttccgc ttccttgtac gctgttaagg ttttggactc tactggttcc 540
ggtcagtact cctggattat caacggtatt gagtgggcca tctccaacaa catggacgtc 600
attaacatgt cccttggtgg tccaactggt tccactgctc ttaagactgt tgttgacaag 660
gctgtctcct ccggtattgt cgttgctgct gcagctggta acgaaggttc ttctggttct 720
acttccaccg ttggttaccc agctaagtac ccatccacta ttgctgttgg tgctgtcaac 780
tcttccaacc agagagcttc tttctcttcc gtcggttccg aattggatgt tatggctcca 840
ggtgtttcca tccagtctac tttgccaggt ggtacttacg gtgcttacaa cggtacttct 900
atggctactc cacacgttgc tggtgctgct gccttgattt tgtctaagca cccaacttgg 960
actaacgccc aggttagaga cagattggaa tccactgcaa ccccactggg taactccttc 1020
tactacggta agggtttgat caacgttcag gctgctgctc aatctaga 1068
<210> 3
<211> 275
<212> 氨基酸
<213> RNKT1
<400> 3
Ala Gln Ser Val Pro Tyr Gly Ile Ser Gln Ile Lys Ala Pro Ala
5 10 15
Leu His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val
20 25 30
Ile Asp Ser Gly Ile Asp Ser Ser His Pro Asp Leu Asn Val Arg
35 40 45
Gly Gly Ala Ser Phe Val Pro Ser Glu Thr Asn Pro Tyr Gln Asp
50 55 60
Gly Ser Ser His Gly Thr His Val Ala Gly Thr Ile Ala Ala Leu
65 70 75
Asn Asn Ser Ile Gly Val Leu Gly Val Ala Pro Ser Ala Ser Leu
80 85 90
Tyr Ala Val Lys Val Leu Asp Ser Thr Gly Ser Gly Gly Tyr Ser
95 100 105
Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ser Asn Asn Met Asp
110 115 120
Val Ile Asn Met Ser Leu Gly Gly Pro Thr Gly Ser Thr Ala Leu
125 130 135
Lys Thr Val Val Asp Lys Ala Val Ser Ser Gly Ile Val Val Ala
140 145 150
Ala Ala Ala Gly Asn Glu Gly Ser Ser Gly Ser Thr Ser Thr Val
155 160 165
Gly Tyr Pro Ala Lys Tyr Pro Ser Thr Ile Ala Val Gly Ala Val
170 175 180
Asn Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu
185 190 195
Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro
200 205 210
Gly Gly Thr Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Thr Pro
215 220 225
His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Thr
230 235 240
Trp Thr Asn Ala Gln Val Arg Asp Arg Leu Glu Ser Thr Ala Thr
245 250 255
Tyr Leu Gly Asn Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val
260 265 270
Gln Ala Ala Ala Gln
275
<210> 4
<211> 275
<212> 氨基酸
<213> RNKT2
<400> 4
Ala Gln Ser Val Pro Tyr Gly Ile Ser Gln Ile Lys Ala Pro Ala
5 10 15
Leu His Ser Gln Gly Tyr Thr Gly Ser Asn Val Lys Val Ala Val
20 25 30
Ile Asp Ser Gly Ile Asp Ser Ser His Pro Asp Leu Asn Val Arg
35 40 45
Gly Gly Ala Ser Phe Val Pro Ser Glu Thr Asn Pro Tyr Gln Asp
50 55 60
Gly Ser Ser His Gly Thr His Val Ala Gly Thr Ile Ala Ala Leu
65 70 75
Asn Asn Ser Ile Gly Val Leu Gly Val Ala Pro Ser Ala Ser Leu
80 85 90
Tyr Ala Val Lys Val Leu Asp Ser Thr Gly Ser Gly Gly Tyr Ser
95 100 105
Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ser Asn Asn Met Asp
110 115 120
Val Ile Asn Met Ser Leu Gly Gly Pro Thr Gly Ser Thr Ala Leu
125 130 135
Lys Thr Val Val Asp Lys Ala Val Ser Ser Gly Ile Val Val Ala
140 145 150
Ala Ala Ala Gly Asn Glu Gly Ser Ser Gly Ser Thr Ser Thr Val
155 160 165
Gly Tyr Pro Ala Lys Tyr Pro Ser Thr Ile Ala Val Gly Ala Val
170 175 180
Asn Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu
185 190 195
Leu Asp Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro
200 205 210
Gly Gly Thr Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Thr Pro
215 220 225
His Val Ala Gly Ala Ala Ala Leu Ile Leu Ser Lys His Pro Thr
230 235 240
Trp Thr Asn Ala Gln Val Arg Asp Arg Leu Glu Ser Thr Ala Thr
245 250 255
Pro Leu Gly Asn Ser Phe Tyr Tyr Gly Lys Gly Leu Ile Asn Val
260 265 270
Gln Ala Ala Ala Gln
275

Claims (10)

1.一种耐热性纳豆激酶重组基因工程菌,其特征在于,所述耐热性纳豆激酶重组基因工程菌为大肠埃希氏菌(Escherichia coli)LNUB571,保藏编号为:CGMCC No.24107。
2.一种耐热性纳豆激酶重组基因工程菌的构建方法,其特征在于,构建方法包括如下步骤:
1)以枯草芽孢杆菌DNA为模板,以Primer 1和Primer 2为引物,通过PCR反应,获得两端添加酶切位点EcoR I和Xho I的纳豆激酶前导肽-成熟肽基因片段NKt;
Primer 1:CCGCTCGAGTCTAGAAATTGAGCAGCAGC
Primer 2:GCGGAATTCGCTGGTAAGTCCTCCACCG
2)构建重组表达载体PGEX-6P-NKY256P:以基因片段NKt DNA为模板,以Primer 3和Primer 4,Primer 5和Primer 6为引物,通过重叠延伸PCR反应,获得突变的NKY256P基因片段;将突变的NKY256P基因片段和PGEX-6P-1载体进行双酶切连接,获得重组表达载体PGEX-6P-NKY256P
Primer 3:CCGCTCGAGTCTAGAAATTGAGCAGCAGC
Primer 4:TAGAAGGAGTTACCCAGTGGGGTTGCAGTGGATTCCAATCT
Primer 5:CCACTGGGTAACTCCTTCTACTACGGTAAGGGTTTGATCAA
Primer 6:GCGGAATTCGCTGGTAAGTCCTCCACCG
3)转化:将重组表达载体PGEX-6P-NKY256P转化到大肠杆菌BL21中,获得重组基因工程菌,为耐热性纳豆激酶重组基因工程菌。
3.根据权利要求2所述的构建方法,其特征在于,步骤1)中,PCR反应的条件为:
Figure FDA0003638035000000011
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
4.根据权利要求2所述的构建方法,其特征在于,步骤2)中,重叠延伸PCR反应的条件为:
Figure FDA0003638035000000012
Figure FDA0003638035000000021
PCR反应条件:98℃预变性2min;98℃10s,55℃30s,72℃30s,72℃延伸7min,25cycles;4℃10min。
5.根据权利要求2所述的构建方法,其特征在于,步骤1)中,所述基因片段NKt的DNA序列如SEQ ID NO.1所示。
6.根据权利要求2所述的构建方法,其特征在于,步骤2)中,所述NKY256P基因片段的DNA序列如SEQ ID NO.2所示。
7.权利要求1所述的一种耐热性纳豆激酶重组基因工程菌在表达纳豆激酶中的应用。
8.根据权利要求7所述的应用,其特征在于,表达方法如下:筛选耐热性纳豆激酶重组基因工程菌的阳性菌落,接种于含Ampicillin的LB液体培养基中,37℃,180rpm/min,摇床培养14-16h,收集菌液;将收集到的菌液进行离心处理,离心条件为4℃,20min,离心结束后,弃上清液,收集菌体沉淀;PBS缓冲液稀释菌体沉淀,功率25w,开2s,关3s,进行细胞破碎,破碎20min后,冷冻离心收集蛋白上清液,得到纳豆激酶蛋白,命名为纳豆激酶蛋白RNKT2。
9.根据权利要求8所述的应用,其特征在于,所述纳豆激酶蛋白RNKT2的氨基酸序列如SEQ ID NO.4所示。
10.权利要求1所述的一种耐热性纳豆激酶重组基因工程菌在制备纳豆激酶蛋白中的应用。
CN202210507662.2A 2022-05-11 2022-05-11 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用 Active CN114806990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210507662.2A CN114806990B (zh) 2022-05-11 2022-05-11 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210507662.2A CN114806990B (zh) 2022-05-11 2022-05-11 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN114806990A true CN114806990A (zh) 2022-07-29
CN114806990B CN114806990B (zh) 2023-05-30

Family

ID=82512990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210507662.2A Active CN114806990B (zh) 2022-05-11 2022-05-11 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN114806990B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044398A1 (en) * 2006-07-13 2008-02-21 Vesta Ingredients, Inc. Soluble composition having enzymatic activity and improved stability
CN113005045A (zh) * 2021-03-12 2021-06-22 辽宁大学 一株含突变纳豆激酶重组基因的工程菌及其构建方法和应用
CN113265345A (zh) * 2021-05-21 2021-08-17 辽宁大学 一株纳豆激酶真核高效表达双启动子系统重组基因工程菌及其构建方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044398A1 (en) * 2006-07-13 2008-02-21 Vesta Ingredients, Inc. Soluble composition having enzymatic activity and improved stability
CN113005045A (zh) * 2021-03-12 2021-06-22 辽宁大学 一株含突变纳豆激酶重组基因的工程菌及其构建方法和应用
CN113265345A (zh) * 2021-05-21 2021-08-17 辽宁大学 一株纳豆激酶真核高效表达双启动子系统重组基因工程菌及其构建方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于晓淼: "基于自由能计算设计的高活性高稳定性重组纳豆激酶构建研究", 辽宁大学硕士学位论文 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Also Published As

Publication number Publication date
CN114806990B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2022134236A1 (zh) 一种碱性蛋白酶突变体及其基因、工程菌、制备方法和应用
CN112725319B (zh) polyG底物特异性的褐藻胶裂解酶FaAly7及其应用
CN106967159B (zh) iolT1和iolT2蛋白在木糖转运中的应用
CN112813085A (zh) 焦磷酸酶基因的用途
CN114806990B (zh) 一种耐热性纳豆激酶重组基因工程菌及其构建方法和应用
CN114107266B (zh) 耐热性提高的蛋白酶突变体及其编码基因和应用
CN113430181B (zh) 一种来源亚洲象肠道宏基因组的细菌漆酶及其基因
CN117737037A (zh) 一种N-乙酰氨基葡萄糖苷酶突变体De266LΔ6及其制备与应用
WO2024008204A1 (zh) MmPI在制备胰蛋白酶抑制剂中的应用
CN114958893B (zh) 一种乳猪高温教槽料制备所需的乳糖酶的构建方法
CN108410786B (zh) 高效表达纤溶酶的枯草芽孢杆菌工程菌以及制备方法
CN115960879A (zh) 一种d-阿洛酮糖3-差向异构酶突变体文库的高通量筛选方法及获得的突变体
CN114058561B (zh) 一种n-乙酰氨基葡萄糖生产菌株及其应用
CN114854778B (zh) 一种岩藻多糖酶基因Fcn1及其应用
KR101054886B1 (ko) 잔탄검 생합성 관련 돌연변이 유전자와 이를 포함하는잔탄검 생합성 균주 및 돌연변이 균주를 이용한 잔탄검의제조방법
CN113957030B (zh) 一种具有合成Wzy型胞外多糖特性的鞘氨醇单胞菌株及其构建方法和应用
CN112646831A (zh) 一种穿梭质粒及构建方法及其在集胞藻转化外源基因中的应用
CN114717174B (zh) 一种产高品质还原糖的工程菌株、构建方法及其应用
CN113817656B (zh) 一种枯草芽孢杆菌及其在乳糖酶生产中的应用
CN113564141B (zh) 单细胞基因组扩增酶突变体及其应用
CN115851630B (zh) 一种四环素类抗生素降解酶、编码基因及用途
WO2023102816A1 (zh) 一种基因工程菌及用其制备l-鸟氨酸的方法
CN113801831B (zh) 一株高产中性蛋白酶的枯草芽孢杆菌及其应用
CN107574174B (zh) 一种提高类球红细菌辅酶q10产量的质粒表达载体的构建方法
CN111499688B (zh) 一种信号肽及其在生产α-淀粉酶中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant