CN114805648B - 一种改性聚烯烃催化剂及其制备方法和应用 - Google Patents

一种改性聚烯烃催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114805648B
CN114805648B CN202210463276.8A CN202210463276A CN114805648B CN 114805648 B CN114805648 B CN 114805648B CN 202210463276 A CN202210463276 A CN 202210463276A CN 114805648 B CN114805648 B CN 114805648B
Authority
CN
China
Prior art keywords
catalyst
modified polyolefin
polymerization
modifier
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210463276.8A
Other languages
English (en)
Other versions
CN114805648A (zh
Inventor
历久文
陶干
王颂扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Lianzeng New Material Technology Co ltd
Original Assignee
Ningbo Lianzeng New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Lianzeng New Material Technology Co ltd filed Critical Ningbo Lianzeng New Material Technology Co ltd
Priority to CN202210463276.8A priority Critical patent/CN114805648B/zh
Publication of CN114805648A publication Critical patent/CN114805648A/zh
Application granted granted Critical
Publication of CN114805648B publication Critical patent/CN114805648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/656Pretreating with metals or metal-containing compounds with silicon or compounds thereof
    • C08F4/6565Pretreating with metals or metal-containing compounds with silicon or compounds thereof and magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明涉及一种改性聚烯烃催化剂,其特征在于,包括负载型主催化剂和改性剂,制备过程如下:(1)将所述负载型主催化剂悬浮于惰性溶剂A中,获得悬浮液A;(2)将改性剂加入悬浮液A中,经混合、过滤、干燥得到改性聚烯烃催化剂;(3)所述改性剂包括含有C‑X、Si‑X官能团且能溶于溶剂A的化合物,其中X包括F、Cl、Br、I、O、S中的一种及其组合;(4)所述负载型主催化剂为Ziegler‑Natta催化剂、茂金属催化剂、后过渡金属催化剂、FI催化剂、铬基催化剂中的一种;(5)所述改性催化剂能够进行α‑烯烃聚合。本发明将改性剂引入至已经成型的负载型催化剂中,改变了催化剂原有活性位点的分布和催化特性,能够以更高的聚合活性获得分子量分布更窄的聚烯烃。

Description

一种改性聚烯烃催化剂及其制备方法和应用
技术领域
本发明涉及一种改性聚烯烃催化剂及其制备方法和应用,属于催化剂领域。
背景技术
聚烯烃是国民经济和国防建设必不可少的基础材料和战略物资。工业上,为满足工业装置稳定运行,聚烯烃需采用负载型催化剂进行生产。这种负载型催化剂能够抑制反应釜粘壁、并获得类球型和高堆密度的聚烯烃颗粒,在颗粒输送、运输、储存、加工等环节具有不可替代的优势。通常,负载型催化剂需采用刚性的无机载体、有机载体(如聚合物)、无机/有机复合载体对催化剂的金属活性中心进行分散。一方面,利用载体优异的颗粒形貌,通过聚合过程的复形效应获得类球型的聚烯烃颗粒;另一方面,载体对催化剂金属活性中心的分散,有利于提高活性中心分子的催化效率,能够降低助催化剂的用量。需要指出的是,载体表面负载位是载体负载、分散金属活性中心的桥梁。但是,由于载体表面负载位复杂的化学结构,如SiO2中的单羟基和双羟基负载位、MgCl2表面(104)、(110)和(015)晶面不同Lewis酸性的负载位,使得活性中心与载体结合强度不一样,因此,负载于其上的活性中心聚合特性也不同,表现出多样性活性中心特征,聚合产物的分子量分布宽;另一方面,随机分布的负载位在负载活性中心时,使得活性中心间距很近,极易出现双金属失活现象,致使催化剂聚合活性大幅下降。
中国专利ZL201210005685.X将硅氧烷类给电子体在载体SiO2成型时引入至载体表面,占据催化剂活性中心的部分负载位,进而实现活性中心的有效分隔,能够以极高的活性制备低缠结的超高分子量聚乙烯。然而,硅氧烷类给电子体的自组装行为,容易形成尺寸数十纳米的惰性团簇,无法扩散至小孔道中,因此对活性中心的分隔效果有限。范志强(Journal of Catalysis,2019,369,324)等人采用MgCl2载体制备了极低活性中心浓度的负载型催化剂(~0.1wt%),能够以极高的聚合活性催化乙烯均聚。然而,过低的活性中心负载浓度使得聚合过程中载体不容易破碎,致使产物中存在大量无机灰分。因此,如何开发形态好、活性高、产品分子量分布窄的高效催化剂具有重要的意义。
发明内容
针对上述问题,本发明提供了一种改性聚烯烃催化剂的制备方法及其应用,包括负载型主催化剂和改性剂,制备过程如下:
(1)将所述负载型主催化剂悬浮于惰性溶剂A中,获得悬浮液A;
(2)将改性剂加入悬浮液A中,经混合、过滤、干燥得到改性聚烯烃催化剂;
所述负载型主催化剂为Ziegler-Natta催化剂、茂金属催化剂、后过渡金属催化剂、FI催化剂、铬基催化剂中的一种;
所述改性剂为含有C-X或Si-X官能团,常压下沸点大于80℃,且能溶于溶剂A的化合物,其中X选自F、Cl、Br、I、O、S及其组合;
所述负载型主催化剂与改性剂的质量比为0.1-100,优选为0.1-50。
作为本发明的优选方案,所述溶剂A为甲苯、二甲苯、异丁烷、异戊烷、正戊烷、环己烷、己烷、庚烷、石蜡油中的一种或多种。
作为本发明的优选方案,所述混合温度在-40-200℃,混合时间5min-6h。
作为本发明的优选方案,所述负载型催化剂需使用无机载体、聚合物载体、或无机载体与聚合物载体组成的复合载体,优选SiO2、MgCl2、氧化铝、炭黑、石墨烯、氧化锆、聚苯乙烯、及其相互掺杂形成的复合载体;
本发明还提供了上述改性聚烯烃催化剂用于催化α-烯烃聚合的应用。
作为本发明的优选方案,所述α-烯烃聚合的聚合温度-40-200℃、聚合压力0.1-100bar、聚合时间1min-20h。
作为本发明的优选方案,所述α-烯烃聚合的α-烯烃包括至少一种C2-C8的α-烯烃。
作为本发明的优选方案,所述α-烯烃聚合需要使用助催化剂,助催化剂包括烷基铝化合物、烷基锂化合物、烷基锌化合物、烷基硼化合物中的至少一种,助催化剂与改性聚烯烃催化剂的金属摩尔比为0.1-10000。
作为本发明的优选方案,所述α-烯烃聚合可以加入稀释剂,所加稀释剂用量根据加入改性聚烯烃催化剂的金属原子摩尔量决定,稀释剂体积与改性聚烯烃催化剂金属原子摩尔量之比0.1-100000mL/1μmol,优选0.1-1000mL/1μmol。
作为本发明的优选方案,所述α-烯烃聚合加入的稀释剂为正己烷、戊烷、正庚烷、矿物油、四氢呋喃、水中的至少一种。
本发明基于活性中心与载体表面负载位不同的结合能力,利用改性剂与活性中心的配位,将其从已经成型的负载型催化剂表面脱除。所用改性剂需溶于惰性溶剂,以保证改性剂能够进入负载型催化剂的各级孔道;此外,改性剂与活性中心相互作用后,形成的配合物,仍能溶于溶剂,才能实现活性中心的有效分离。本申请可对已经成型的负载催化剂改性,在保证聚合产物优异的颗粒形貌的同时,能够有效的分离与载体表面结合弱的活性中心,进而增大活性中心间距,有利于抑制活性中心的双金属失活效应,提高聚合活性和产物分子量,并缩减产物分子量分布。
附图说明
图1对比例1与实施例1的分子量分布曲线。
具体实施方式
对比例1
采用MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂),未经改性,直接进行乙烯聚合实验,取Ti摩尔含量为10μmol的催化剂,加入500mL正己烷,升温至70℃,加入三乙基铝1mol,通入乙烯至压力为10bar,聚合1h后,可获得100.5g聚乙烯,通过GPC测量后,产物的重均分子量为1303000g/mol,分子量分布为6.5。
对比例2
采用含Ni和Pd的后过渡金属催化剂,未经改性,直接进行乙烯聚合实验,取Ti摩尔含量为10μmol的催化剂,加入500mL正己烷,升温至70℃,加入1molMAO,通入乙烯至压力为10bar,聚合1h后,可获得263.5g聚乙烯,通过GPC测量后,产物的重均分子量为2503000g/mol,分子量分布为5.6。
实施例1
采用对比例1中MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂)1.0g,加入100mL正己烷,在30℃下加入0.1g六甲基环三硅氧烷,搅拌30min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂A。取Ti摩尔含量为10μmol的烯烃聚合催化剂A,加入500mL正己烷,升温至70℃,加入三乙基铝1mol,通入乙烯至压力为10bar,聚合1h后,可获得310.5g聚乙烯,通过GPC测量后,产物的分子量为2303000g/mol,分子量分布为3.5。
实施例2
采用对比例1中MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂)1.0g,加入100mL正己烷,在30℃下加入0.01g笼型聚倍半硅氧烷,搅拌30min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂B。取Ti摩尔含量为10μmol的烯烃聚合催化剂B,加入500mL正己烷,升温至70℃,加入三乙基铝1mol,通入乙烯至压力为10bar,聚合1h后,可获得152.2g聚乙烯,通过GPC测量后,产物的分子量为1840000g/mol,分子量分布为4.3。
实施例3
采用对比例1中MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂)1.0g,加入100mL正庚烷,在30℃下加入1.0g笼型聚倍半硅氧烷,搅拌90min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂C。取Ti摩尔含量为10μmol的烯烃聚合催化剂C,加入500mL正庚烷,升温至70℃,加入三异丁基铝1mol,通入乙烯至压力为10bar,聚合1h后,可获得127.3g聚乙烯,通过GPC测量后,产物的分子量为2450000g/mol,分子量分布为3.1。
实施例4
采用对比例1中MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂)1.0g,加入50mL正庚烷,在50℃下加入0.1g聚苯乙烯,搅拌60min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂D。取Ti摩尔含量为10μmol的烯烃聚合催化剂D,加入500mL正庚烷,升温至70℃,加入三乙基铝0.01mol,通入乙烯至压力为10bar,聚合1h后,可获得106.5g聚乙烯,通过GPC测量后,产物的分子量为1690000g/mol,分子量分布为3.8。
实施例5
采用对比例1中MgCl2负载的TiCl4催化剂(Ziegler-Natta催化剂)1.0g,加入50mL二甲苯,在30℃下加入0.2g笼型聚倍半硅氧烷,搅拌30min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂E。取Ti摩尔含量为10μmol的烯烃聚合催化剂E,加入500mL正庚烷,升温至70℃,加入三乙基铝0.01mol,通入乙烯至压力为10bar,聚合1h后,可获得196.5g聚乙烯,通过GPC测量后,产物的分子量为2360000g/mol,分子量分布为3.9。
实施例6
采用对比例2中的后过渡金属催化剂1.0g,加入50mL二甲苯,在50℃下加入0.1g聚苯乙烯丙烯酸,搅拌30min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂F。取Ti摩尔含量为10μmol的烯烃聚合催化剂F,加入500mL正庚烷,升温至70℃,加入0.01molMAO,通入乙烯至压力为10bar,聚合1h后,可获得366.5g聚乙烯,通过GPC测量后,产物的分子量为3510000g/mol,分子量分布为4.7。
实施例7
采用对比例2中的后过渡金属催化剂1.0g,加入50mL二甲苯,在50℃下加入0.1g笼型聚倍半硅氧烷,搅拌30min,过滤出上清液,干燥至自由流动,获得改性的烯烃聚合催化剂G。取Ti摩尔含量为10μmol的烯烃聚合催化剂G,加入500mL正庚烷,升温至70℃,加入0.01molMAO,通入乙烯至压力为10bar,聚合1h后,可获得346.5g聚乙烯,通过GPC测量后,产物的分子量为3320000g/mol,分子量分布为4.1。
注1:负载型的磷酚镍催化剂可以在水或THF为溶剂做出聚乙烯,
注2:负载型的磷酚镍催化剂可在没有助催化剂(用量为0),催化乙烯聚合。
表1
表1总结了上述实施例与对比例的GPC表征结果,本发明的改性聚烯烃催化剂在相同聚合条件下能够生产比原始催化剂产品分子量更高且分子量分布更窄的聚合产品。
本效果例考察了本发明改性聚烯烃催化剂中主催化剂和改性剂的质量比对改性聚烯烃催化剂催化活性的影响。考察的具体方法为:按照实施例1所述改性聚烯烃催化剂的制备方法通过改变主催化剂和改性剂的质量比制备了试验组1-8改性聚烯烃催化剂;按照实施例1的应用将试验组1-8改性聚烯烃催化剂用于生产聚乙烯。试验组1-8改性聚烯烃催化剂中主催化剂和改性剂的质量比如表1所示,除主催化剂和改性剂的质量比不同之外,其它均相同。将按照实施例1改性聚烯烃催化剂性能测试方法测试本效果得到的改性聚烯烃催化剂的催化活性,其中乙烯消耗速率取实验时间内的最高值,结果如表2所示。
表2
由表2可知,本发明改性催化剂具有比较好的催化活性,当主催化剂和改性剂的质量比为100:1-20时,改性催化剂的催化活性更好;当主催化剂和改性剂的质量比为100:5-15时,改性催化剂的催化活性最好。
图1给出了对比例1与实施例1所的聚合产品的分子量及分布曲线,可以看到改性聚烯烃催化剂所的聚合产物低分子量组分减少,分子量分布变窄,这是由于改性剂脱除了催化剂表面结合弱的活性中心,同时抑制了双金属失活导致的。
最后所应当说明的是,以上实施例用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者同等替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种改性聚烯烃催化剂,其特征在于,包括负载型主催化剂和改性剂,制备过程如下:
(1)将所述负载型主催化剂悬浮于惰性溶剂A中,获得悬浮液A;
(2)将改性剂加入悬浮液A中,经混合、过滤、干燥得到改性聚烯烃催化剂;基于负载型主催化剂活性中心与载体表面负载位不同的结合能力,利用改性剂与活性中心的配位,将其从已经成型的负载型催化剂表面脱除;
所述负载型主催化剂为Ziegler-Natta催化剂;
所述改性剂为六甲基环三硅氧烷、笼型聚倍半硅氧烷、聚苯乙烯丙烯酸中的一种;
所述负载型主催化剂与改性剂的质量比为0.1-100;
所述溶剂A为甲苯、二甲苯、异丁烷、异戊烷、正戊烷、环己烷、己烷、庚烷、石蜡油中的一种或多种;
所述负载型催化剂需使用无机载体、聚合物载体、或无机载体与聚合物载体组成的复合载体。
2.如权利要求1所述的改性聚烯烃催化剂,其特征在于,所述混合温度在-40-200℃,混合时间5min-6h。
3.权利要求1-2任一项所述的改性聚烯烃催化剂用于催化α-烯烃聚合的应用。
4.根据权利要求3所述的应用,其特征在于,所述α-烯烃聚合的聚合温度-40-200℃、聚合压力0.1-100bar、聚合时间1min-20h。
5.根据权利要求3所述的应用,其特征在于,所述α-烯烃聚合的α-烯烃包括至少一种C2-C8的α-烯烃。
6.根据权利要求3所述的应用,其特征在于,所述α-烯烃聚合需要使用助催化剂,助催化剂包括烷基铝化合物、烷基锂化合物、烷基锌化合物、烷基硼化合物中的至少一种,助催化剂与改性聚烯烃催化剂的金属摩尔比为0.1-10000。
7.根据权利要求3所述的应用,其特征在于,所述α-烯烃聚合可以加入稀释剂,所加稀释剂用量根据加入改性聚烯烃催化剂的金属原子摩尔量决定,稀释剂体积与改性聚烯烃催化剂金属原子摩尔量之比0.1-100000mL/1μmol。
8.根据权利要求7所述的应用,其特征在于,所述α-烯烃聚合加入的稀释剂为正己烷、戊烷、正庚烷、矿物油、四氢呋喃、水中的至少一种。
CN202210463276.8A 2022-04-28 2022-04-28 一种改性聚烯烃催化剂及其制备方法和应用 Active CN114805648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210463276.8A CN114805648B (zh) 2022-04-28 2022-04-28 一种改性聚烯烃催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210463276.8A CN114805648B (zh) 2022-04-28 2022-04-28 一种改性聚烯烃催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114805648A CN114805648A (zh) 2022-07-29
CN114805648B true CN114805648B (zh) 2024-01-12

Family

ID=82509932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210463276.8A Active CN114805648B (zh) 2022-04-28 2022-04-28 一种改性聚烯烃催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114805648B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086408A (en) * 1973-12-20 1978-04-25 Union Carbide Corporation Ethylene polymerization with silane modified catalyst
WO1999050311A1 (en) * 1998-03-27 1999-10-07 Exxon Chemical Patents Inc. Polymeric supported catalysts for olefin polymerization
CN105111336A (zh) * 2015-09-29 2015-12-02 李海燕 一种乙烯聚合催化剂的给电子体、类球形催化剂、制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086408A (en) * 1973-12-20 1978-04-25 Union Carbide Corporation Ethylene polymerization with silane modified catalyst
WO1999050311A1 (en) * 1998-03-27 1999-10-07 Exxon Chemical Patents Inc. Polymeric supported catalysts for olefin polymerization
CN105111336A (zh) * 2015-09-29 2015-12-02 李海燕 一种乙烯聚合催化剂的给电子体、类球形催化剂、制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
POSS改性负载型Ziegler-Natta催化剂及其乙烯/1-己烯共聚反应;王宁等;化工学报;第72卷(第4期);2102-2112 *
低缠结超高分子量聚乙烯的制备及其与聚烯烃共混;陈鹏;硕士论文;1-69 *
流化床反应器中的乙烯-1-辛烯气相共聚合;俞彬彬;中国硕士学位论文全文数据库工程科技Ⅰ辑;B016-658 *
烯烃聚合用聚苯乙烯负载催化剂研究进展;夏慧敏等;现代塑料加工应用;第34卷(第2期);60-63 *

Also Published As

Publication number Publication date
CN114805648A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US4210729A (en) Preactivated catalytic complex spogospheres
R. Kumar et al. Ethylene polymerization using iron (II) bis (imino) pyridyl and nickel (diimine) catalysts: effect of cocatalysts and reaction parameters
CA2546275C (en) Spray-dried, mixed metal ziegler catalyst compositions
CN109438593B (zh) 一种生产超高分子量聚烯烃用催化剂及其制备方法和应用
US5561091A (en) High activity polyethylene catalyst prepared from an alcohol and silicon tetrachloride
Kumkaew et al. Gas‐phase ethylene polymerization using zirconocene supported on mesoporous molecular sieves
SK279445B6 (sk) Katalyzátor typu ziegler-natta nanesený na nosičov
Zimnoch Dos Santos et al. Effects of ethylene polymerization conditions on the activity of SiO2‐supported zirconocene and on polymer properties
Ahsan Bashir et al. Reaction engineering of polyolefins: the role of catalyst supports in ethylene polymerization on metallocene catalysts
CN100422223C (zh) 一种乙烯聚合用球型催化剂及其制备方法
CN114805648B (zh) 一种改性聚烯烃催化剂及其制备方法和应用
IE58840B1 (en) Process for simultaneously dimerizing ethylene and copolymerizing ethylene with the dimerized product
CN108586640A (zh) 用于制备超细超高分子量聚乙烯的催化剂前体及催化剂
US5021379A (en) Olefin polymerization
Severn et al. Immobilization and Activation of a Single‐Site Chromium Catalyst for Ethylene Polymerization using MgCl2/AlRn (OEt) 3− n Supports
CN111116809B (zh) 一种烯烃-烯烃醇共聚物及其制备方法
Teimoury et al. The effect of SiO2 calcination temperature and [Si]/[Mg] molar ratio on the performance of bi-supported Ziegler-Natta catalysts in ethylene polymerizations
US5104950A (en) Olefin polymerization
US9695254B2 (en) Metallocene catalyst supported by hybrid supporting means, process for producing same, polymerization process for producing an ethylene homopolymer or copolymer with broad or bimodal molar mass distribution, use of the supported metallocene catalyst and ethylene polymer with broad or bimodal molar mass distribution
CN105218711A (zh) 一种双活性组分烯烃聚合催化剂及制备方法
Mori et al. Investigation of a fine‐grain MgCl2‐supported Ziegler catalyst by stopped‐flow propene polymerization: Model for the formation of active sites induced by catalyst fragmentation during polymerization
JPH0410486B2 (zh)
WO1996030122A1 (en) Polymer-supported catalyst for olefin polymerization
US6281155B1 (en) Supported olefin polymerization catalysts
Jiang et al. Polymerization of ethylene using a nickel α-diimine complex covalently supported on SiO 2–MgCl 2 bisupport

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant