CN114804883A - 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法 - Google Patents

一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法 Download PDF

Info

Publication number
CN114804883A
CN114804883A CN202110111917.9A CN202110111917A CN114804883A CN 114804883 A CN114804883 A CN 114804883A CN 202110111917 A CN202110111917 A CN 202110111917A CN 114804883 A CN114804883 A CN 114804883A
Authority
CN
China
Prior art keywords
powder
lithium ion
ion battery
mecamirene
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110111917.9A
Other languages
English (en)
Other versions
CN114804883B (zh
Inventor
王晓辉
崔聪
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202110111917.9A priority Critical patent/CN114804883B/zh
Publication of CN114804883A publication Critical patent/CN114804883A/zh
Application granted granted Critical
Publication of CN114804883B publication Critical patent/CN114804883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子电池领域,具体为一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法。以熔盐作为反应介质,在较低温度下合成出小晶粒尺寸的Ti2AlC粉体;采用盐酸、氟化锂作为刻蚀液刻蚀该粉体,制备纳米/亚微米Ti2CTx迈科烯。将其与导电剂、粘结剂与分散剂均匀混合成浆料后,刮涂于集流体并进行真空干燥,制备出锂离子电池负极。电化学性能测试结果表明,该电极材料具有良好的倍率性能与循环寿命。

Description

一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备 方法
技术领域
本发明涉及锂离子电池领域,具体为一种基于Ti2CTx迈科烯(MXene)的高倍率锂离子电池负极材料制备方法。
背景技术
目前,生活生产中最常用的电化学储能器件主要可以分为两大类,一类为锂离子电池,另一类为超级电容器。前者一般通过锂离子向电极材料晶格内部嵌入/脱出实现电能与化学能的相互转化,优点是容量较高,缺点是倍率性能一般较差。后者则一般通过静电吸附(双电层电容器)或表面的氧化还原反应(赝电容)储存能量,优点是倍率性能好,但是容量普遍偏低。近年来,一类新型的电化学储能材料被开发出来,其特点为材料一般为原子级厚度的二维薄片组成,片层内一般含有可变价的金属元素,片层之间的距离较大,方便离子在层间扩散,这类材料兼具较高的容量与良好的倍率性能,被称为插层赝电容[1]。二维材料迈科烯(MXene),作为MAX相陶瓷的衍生物,就是一类重要插层赝电容材料。MAX相陶瓷是一类三元层状碳氮化合物的统称,其化学通式可以表达为Mn+1AXn(n=1、2、3),其中M指早期过渡族金属元素,A主要指第三、四主族元素,X指碳和/或氮元素[2]。目前已制备出来的MAX相已经超过七十种[3],Ti2AlC就是其中典型的一员[4]。由于MX之间结合力较强,MA之间结合力较弱,MAX相在含氟的酸性溶液会被选择性刻蚀掉结合力较弱的A原子层得到MX片层,同时表面形成-O、-F、-OH等官能团,以Tx表示。作为插层赝电容材料,迈科烯适用于无机、有机多种体系[5]。无机电解液体系中,迈科烯在酸性电解液表现出了超高的比电容,其体积比电容超过了目前商业化产品中体积比容量最高的氧化钌[6]。有机电解液中,迈科烯在锂离子电池中同样表现出较好的性能[7],但是其倍率性能仍有提升的空间[8]。另一方面,MAX相合成温度一般高达1500℃左右,高的合成温度增加了MAX相的制备难度,进而影响了迈科烯的研究与产业化进程。
参考文献:
[1]Wang Y,Song Y,Xia Y.Electrochemical capacitors:mechanism,materials,systems,characterization and applications[J].Chemical SocietyReviews,2016,45(21):5925-5950.
[2]Barsoum M W.The MN+1AXN phases:A new class of solids:Thermodynamically stable nanolaminates[J].Progress in solid state chemistry,2000,28(1-4):201-281.
[3]Barsoum M W.MAX phases:properties of machinable ternary carbidesand nitrides[M].John Wiley&Sons,2013.
[4]Wang X H,Zhou Y C.Layered machinable and electrically conductiveTi2AlC and Ti3AlC2 ceramics:a review[J].Journal of Materials Science&Technology,2010,26(5):385-416.
[5]Anasori B,Lukatskaya M R,Gogotsi Y.2D metal carbides and nitrides(MXenes)for energy storage[J].Nature Reviews Materials,2017,2(2):1-17.
[6]Ghidiu M,Lukatskaya M R,Zhao M Q,et al.Conductive two-dimensionaltitanium carbide‘clay’with high volumetric capacitance[J].Nature,2014,516(7529):78-81.
[7]Tang X,Guo X,Wu W,et al.2D Metal Carbides and Nitrides(MXenes)asHigh-Performance Electrode Materials for Lithium-BasedBatteries[J].AdvancedEnergy Materials,2018,8(33):1801897.
[8]Naguib M,Come J,DyatkinB,et al.MXene:a promising transition metalcarbide anode for lithium-ion batteries[J].Electrochemistry Communications,2012,16(1):61-64.
发明内容
本发明的目的是提供一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,在熔盐介质下合成小晶粒尺寸的Ti2AlC MAX相陶瓷粉体,制备出具有高倍率性能纳米/亚微米Ti2CTx迈科烯。
本发明的技术方案:
一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,包括如下步骤:
(1)将反应介质盐与氢化钛、铝粉和纳米碳黑三种反应物进行球磨均匀混合后烘干;
(2)对混合后烘干的粉体进行冷压成型、冷等静压致密化后,在惰性气氛下进行热处理合成小晶粒尺寸的Ti2AlC MAX相陶瓷粉体;
(3)用去离子水将热处理后Ti2AlC MAX相陶瓷粉体中的盐溶解去除,利用抽滤或离心的方法将Ti2AlC粉体分离并进行烘干;
(4)使用盐酸、氟化锂刻蚀液对Ti2AlC粉体进行刻蚀,刻蚀完成后进行分离,得到目标产物:纳米/亚微米Ti2CTx迈科烯。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(1)中,使用的盐为碱金属或碱土金属的氯化物、溴化物、碘化物盐中的一种或两种以上。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(1)中,氢化钛粉的粒度为100nm~50μm,铝粉的粒度为100nm~50μm,纳米碳黑的粒度为10nm~500nm,盐的粒度为1μm~500μm。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(1)中,反应物TiH2:Al:C摩尔比范围为(2:0.8:0.5)~(2:1.5:1.5),盐与反应物的质量之比为(1:10)~(10:1),球磨时间1h~100h,烘干温度为50℃~200℃。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(2)中,冷等静压的压力在50MPa~500MPa范围内,合成温度在700℃~1400℃范围内,保温时间在1min~100h范围内,Ti2AlC MAX相陶瓷粉体的晶粒尺寸为10nm~1μm。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(3)中,Ti2AlC粉体的烘干温度为50℃~200℃。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(4)中,Ti2AlC粉体与氟化锂的质量比为(10:1)~(1:10),Ti2AlC粉体与盐酸的摩尔比为(1:1)~(1:20);其中,盐酸的浓度为0.1mol L-1~12mol L-1,刻蚀温度为25℃~80℃,时间为1h~100h。
所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,步骤(4)中,将刻蚀产物与刻蚀液通过真空抽滤或离心方式分离,并用去离子水清洗数次直到pH在6以上,分离得到的Ti2CTx迈科烯通过真空干燥得到Ti2CTx迈科烯粉体。
本发明的设计思想:
本发明提出以熔盐为反应介质,在较低温度下合成小晶粒尺寸的Ti2AlC MAX相陶瓷粉体,并以此为前躯体,通过盐酸、氟化锂刻蚀液选择性刻蚀掉Ti2AlC MAX相陶瓷粉体中铝原子层,得到具有高倍率性能锂离子电池负极材料——纳米/亚微米级Ti2CTx迈科烯。一方面,减小Ti2CTx的晶粒尺寸提升了其比表面积,表面吸附贡献容量将得到提升。另一方面减小晶粒尺寸缩短了锂离子扩散路径同样对实现高倍率性能有益,所以制备出的纳米/亚微米Ti2CTx迈科烯作为锂离子电池负极材料展现出极佳的倍率性能。
本发明的优点及有益效果是:
1、本发明以熔盐为反应介质,利用金属在熔盐中具有一定溶解度的特点,使反应活性明显提高,降低了Ti2AlC MAX相陶瓷粉体合成温度,此方法将Ti2AlC的合成温度降低到1000℃,实现了高质量、小晶粒尺寸Ti2AlC MAX相陶瓷粉体低温制备。
2、本发明刻蚀熔盐中制备的小晶粒尺寸Ti2AlC MAX相陶瓷粉体,得到纳米/亚微米Ti2CTx迈科烯展现出极佳的倍率性能,在10A g-1的高电流密度下质量比容量仍能达到约155mAh g-1,在高倍率储能器件中具有良好的应用前景。
附图说明
图1为1000℃下保温1h熔盐中合成Ti2AlC MAX相陶瓷粉体XRD图谱。图中,横坐标2θ代表衍射角(degree),纵坐标Intensity代表相对强度(arb.units)。
图2为1000℃下保温1h熔盐中合成Ti2AlC MAX相陶瓷粉体形貌。
图3为刻蚀Ti2AlC MAX相陶瓷粉体后得到纳米/亚微米Ti2CTx迈科烯XRD图谱。图中,横坐标2θ代表衍射角(degree),纵坐标Intensity代表相对强度(arb units)。
图4为刻蚀Ti2AlC MAX相陶瓷粉体后得到纳米/亚微米Ti2CTx迈科烯形貌。
图5为纳米/亚微米Ti2CTx迈科烯的倍率性能。图中,横坐标Cycle number代表循环次数,左侧纵坐标Capacity代表质量比容量(mAhg-1),右侧纵坐标Coulombic efficiency代表库仑效率(%),Discharge capacity代表放电质量比容量,Charge capacity代表充电质量比容量。
图6为纳米/亚微米Ti2CTx迈科烯的循环稳定性。图中,横坐标Cycle number代表循环次数,左侧纵坐标Discharge capacity代表放电质量比容量(mAh g-1),右侧纵坐标Coulombic efficiency代表库仑效率(%)。
具体实施方式
在具体实施过程中,基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法如下:
(1)制备高倍率性能纳米/亚微米Ti2CTx迈科烯,首先需要制备出Ti2AlC MAX相陶瓷粉体,以熔盐为反应介质合成小晶粒尺寸的Ti2AlC MAX相陶瓷粉体。
(2)对合成出来的小晶粒尺寸的Ti2AlC MAX相陶瓷粉体进行刻蚀并表征。
(3)对刻蚀产物,即纳米/亚微米Ti2CTx迈科烯进行电化学性能表征。
本发明以熔盐作为反应介质,在较低温度下合成出小晶粒尺寸的Ti2AlC粉体;采用盐酸、氟化锂作为刻蚀液刻蚀该粉体,制备纳米/亚微米Ti2CTx迈科烯。将其与导电剂、粘结剂与分散剂均匀混合成浆料后,刮涂于集流体并进行真空干燥,制备出锂离子电池负极。电化学性能测试结果表明,该电极材料具有良好的倍率性能与循环寿命。
下面,通过实施例进一步证实本发明的可行性。
实施例1
本实施例中,以氢化钛粉、铝粉、纳米碳黑为反应物,原子比设置为TiH2:Al:C=2:1.05:0.8。选取摩尔比为1:1的氯化钠、氯化钾共晶盐,反应物与盐的质量比为1:4进行混料。以酒精作为介质球磨10h后60℃下烘干。氢化钛粉的平均粒度为2μm,铝粉的平均粒度为1μm,纳米碳黑的平均粒度为60nm,氯化钠、氯化钾的平均粒度为30μm。
烘干后,将混合物冷压成型后进行冷等静压密实,压强为300MPa,再在管式炉中氩气气氛下进行合成。采用去离子水将热处理后Ti2AlC MAX相陶瓷粉体中的盐溶解去除,利用抽滤的方法将Ti2AlC粉体分离并进行烘干,烘干温度为60℃。
如图1所示,当合成温度为1000℃保温1h,产物为较纯的Ti2AlC MAX相;如图2所示,扫描电子显微镜下观察,Ti2AlC MAX相粉体为亚微米级颗粒。
使用盐酸、氟化锂刻蚀液,对如上制备的Ti2AlC粉体进行刻蚀。将0.5g的Ti2AlC粉体加入到0.34g的氟化锂与5mL摩尔浓度6M盐酸组成的刻蚀液中进行刻蚀,刻蚀温度为35℃,时间为36h。将刻蚀产物与刻蚀液通过真空抽滤方式分离,并用去离子水清洗数次直到pH为6,分离得到的Ti2CTx迈科烯通过真空干燥得到Ti2CTx迈科烯粉体。
如图3所示,刻蚀后样品的XRD衍射图谱中可以看出,对应Ti2AlC MAX相粉体的衍射峰大部分消失,而(002)衍射峰向小角度偏移,表明刻蚀已经完成,制备出Ti2CTx迈科烯。如图4所示,扫描电子显微镜下观察,刻蚀后,原先存在于Ti2AlC MAX相粉体中的晶界被溶解,得到纳米/亚微米Ti2CTx迈科烯粉体。
如图5所示,基于纳米/亚微米Ti2CTx迈科烯制备的电极在10A g-1电流密度下,质量比容量仍能达到约155mAhg-1,展现出极佳的倍率性能。
如图6所示,循环稳定性测试表明,Ti2CTx电极展现出极佳的循环稳定性,在5A g-1电流密度下循环一千圈质量比容量仍高于130mAhg-1
实施例2
本实施例中,以氢化钛粉、铝粉、纳米碳黑为反应物,原子比设置为TiH2:Al:C=2:1.05:0.8。选取摩尔比为1:1的氯化钠、氯化钾共晶盐,反应物与盐的质量比为1:4进行混料。以酒精作为介质球磨10h后60℃下烘干。氢化钛粉的平均粒度为2μm,铝粉的平均粒度为1μm,纳米碳黑的平均粒度为60nm,氯化钠、氯化钾的平均粒度为30μm。
烘干后,将混合物冷压成型后进行冷等静压密实,压强为300MPa,再在管式炉中氩气气氛下进行合成。当合成温度为1000℃保温5h,产物为较纯的Ti2AlC MAX相,扫描电子显微镜下观察,Ti2AlC MAX相粉体为亚微米级颗粒。
采用去离子水将热处理后Ti2AlC MAX相陶瓷粉体中的盐溶解去除,利用离心的方法将Ti2AlC粉体分离并进行烘干,烘干温度为60℃。
使用盐酸、氟化锂刻蚀液,对如上制备的Ti2AlC粉体进行刻蚀。将1g的Ti2AlC粉体加入到0.67g的氟化锂与10mL摩尔浓度6M盐酸组成的刻蚀液中进行刻蚀,刻蚀温度为35℃,时间为24h。将刻蚀产物与刻蚀液通过真空抽滤方式分离,并用去离子水清洗数次直到pH为6,分离得到的Ti2CTx迈科烯通过真空干燥得到Ti2CTx迈科烯粉体。
刻蚀后,对应Ti2AlC MAX相粉体的衍射峰大部分消失,而(002)衍射峰向小角度偏移,表明刻蚀已经完成,制备出Ti2CTx迈科烯。刻蚀后,原先存在于Ti2AlC MAX相粉体中的晶界被溶解,得到纳米/亚微米Ti2CTx迈科烯粉体。
实施例3
本实施例中,以氢化钛粉、铝粉、纳米碳黑为反应物,原子比设置为TiH2:Al:C=2:1.05:0.8。选取溴化钾作为反应介质盐,反应物与盐的质量比为1:1进行混料。以酒精作为介质球磨5h后50℃下烘干。氢化钛粉的平均粒度为5μm,铝粉的平均粒度为3μm,纳米碳黑的平均粒度为40nm,溴化钾的平均粒度为200μm。
烘干后,将混合物冷压成型后进行冷等静压密实,压强为200MPa,再在管式炉中氩气气氛下进行合成。当合成温度为1150℃保温1h,产物为较纯的Ti2AlC MAX相,扫描电子显微镜下观察,Ti2AlC MAX相粉体为亚微米级颗粒。
采用去离子水将热处理后Ti2AlC MAX相陶瓷粉体中的盐溶解去除,利用抽滤的方法将Ti2AlC粉体分离并进行烘干,烘干温度为80℃。
使用盐酸、氟化锂刻蚀液,对如上制备的Ti2AlC粉体进行刻蚀。将1g的Ti2AlC粉体加入到1g的氟化锂与10mL摩尔浓度9M盐酸组成的刻蚀液中进行刻蚀,刻蚀温度为30℃,时间为48h。将刻蚀产物与刻蚀液通过真空抽滤方式分离,并用去离子水清洗数次直到pH为7,分离得到的Ti2CTx迈科烯通过真空干燥得到Ti2CTx迈科烯粉体。
刻蚀后,对应Ti2AlC MAX相粉体的衍射峰大部分消失,而(002)衍射峰向小角度偏移,表明刻蚀已经完成,制备出Ti2CTx迈科烯。刻蚀后,原先存在于Ti2AlC MAX相粉体中的晶界被溶解,得到纳米/亚微米Ti2CTx迈科烯粉体。
实例结果表明,本发明提出基于熔盐法合成Ti2AlC,显著降低了Ti2AlC的合成温度。进一步的,通过刻蚀制备纳米/亚微米Ti2CTx迈科烯作为锂离子电池负极材料展现出极佳的倍率性能,在高倍率电化学储能器件领域的应用中,具有重要的意义和优异的应用前景。

Claims (8)

1.一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,包括如下步骤:
(1)将反应介质盐与氢化钛、铝粉和纳米碳黑三种反应物进行球磨均匀混合后烘干;
(2)对混合后烘干的粉体进行冷压成型、冷等静压致密化后,在惰性气氛下进行热处理合成小晶粒尺寸的Ti2AlC MAX相陶瓷粉体;
(3)用去离子水将热处理后Ti2AlC MAX相陶瓷粉体中的盐溶解去除,利用抽滤或离心的方法将Ti2AlC粉体分离并进行烘干;
(4)使用盐酸、氟化锂刻蚀液对Ti2AlC粉体进行刻蚀,刻蚀完成后进行分离,得到目标产物:纳米/亚微米Ti2CTx迈科烯。
2.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(1)中,使用的盐为碱金属或碱土金属的氯化物、溴化物、碘化物盐中的一种或两种以上。
3.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(1)中,氢化钛粉的粒度为100nm~50μm,铝粉的粒度为100nm~50μm,纳米碳黑的粒度为10nm~500nm,盐的粒度为1μm~500μm。
4.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(1)中,反应物TiH2:Al:C摩尔比范围为(2:0.8:0.5)~(2:1.5:1.5),盐与反应物的质量之比为(1:10)~(10:1),球磨时间1h~100h,烘干温度为50℃~200℃。
5.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(2)中,冷等静压的压力在50MPa~500MPa范围内,合成温度在700℃~1400℃范围内,保温时间在1min~100h范围内,Ti2AlC MAX相陶瓷粉体的晶粒尺寸为10nm~1μm。
6.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(3)中,Ti2AlC粉体的烘干温度为50℃~200℃。
7.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(4)中,Ti2AlC粉体与氟化锂的质量比为(10:1)~(1:10),Ti2AlC粉体与盐酸的摩尔比为(1:1)~(1:20);其中,盐酸的浓度为0.1mol L-1~12mol L-1,刻蚀温度为25℃~80℃,时间为1h~100h。
8.按照权利要求1所述的基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法,其特征在于,步骤(4)中,将刻蚀产物与刻蚀液通过真空抽滤或离心方式分离,并用去离子水清洗数次直到pH在6以上,分离得到的Ti2CTx迈科烯通过真空干燥得到Ti2CTx迈科烯粉体。
CN202110111917.9A 2021-01-27 2021-01-27 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法 Active CN114804883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110111917.9A CN114804883B (zh) 2021-01-27 2021-01-27 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110111917.9A CN114804883B (zh) 2021-01-27 2021-01-27 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法

Publications (2)

Publication Number Publication Date
CN114804883A true CN114804883A (zh) 2022-07-29
CN114804883B CN114804883B (zh) 2023-11-10

Family

ID=82524183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110111917.9A Active CN114804883B (zh) 2021-01-27 2021-01-27 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法

Country Status (1)

Country Link
CN (1) CN114804883B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220180A (zh) * 2016-07-08 2016-12-14 中国科学院上海硅酸盐研究所 一种二维晶体MXene纳米材料的制备方法
CN108922793A (zh) * 2018-07-24 2018-11-30 启东创潞新材料有限公司 一种二维层状Ti2CTx柔性纸的制备方法
CN110739429A (zh) * 2019-10-29 2020-01-31 肇庆市华师大光电产业研究院 一种锂硫电池功能性隔层的制备方法
WO2020042948A1 (zh) * 2018-08-31 2020-03-05 中国科学院金属研究所 球磨制备具有片层结构的纳米max相陶瓷粉体或料浆并调控粉体氧含量的方法
US20200255343A1 (en) * 2018-12-28 2020-08-13 Admatechs Co., Ltd. "MXene" PARTICULATE MATERIAL, PRODUCTION PROCESS FOR THE SAME AND SECONDARY BATTERY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106220180A (zh) * 2016-07-08 2016-12-14 中国科学院上海硅酸盐研究所 一种二维晶体MXene纳米材料的制备方法
CN108922793A (zh) * 2018-07-24 2018-11-30 启东创潞新材料有限公司 一种二维层状Ti2CTx柔性纸的制备方法
WO2020042948A1 (zh) * 2018-08-31 2020-03-05 中国科学院金属研究所 球磨制备具有片层结构的纳米max相陶瓷粉体或料浆并调控粉体氧含量的方法
US20200255343A1 (en) * 2018-12-28 2020-08-13 Admatechs Co., Ltd. "MXene" PARTICULATE MATERIAL, PRODUCTION PROCESS FOR THE SAME AND SECONDARY BATTERY
CN110739429A (zh) * 2019-10-29 2020-01-31 肇庆市华师大光电产业研究院 一种锂硫电池功能性隔层的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CONG CUI,: ""High-capacitance Ti3C2Tx MXene obtained by etching submicron Ti3AlC2 grains grown in molten salt", 《CHEMICAL COMMUNICATION》 *
CONG CUI,: ""High-capacitance Ti3C2Tx MXene obtained by etching submicron Ti3AlC2 grains grown in molten salt", 《CHEMICAL COMMUNICATION》, vol. 58, 25 July 2018 (2018-07-25), pages 8132 - 8135 *
T. GALVIN: "Molten salt synthesis of MAX phases in the Ti-Al-C sys", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
T. GALVIN: "Molten salt synthesis of MAX phases in the Ti-Al-C sys", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 38, 25 June 2018 (2018-06-25), pages 4585 - 4589, XP055501103, DOI: 10.1016/j.jeurceramsoc.2018.06.034 *
李银银: "2维层状Ti2CTx电极材料的制备和电化学性能研究", 《江西师范大学学报》 *
李银银: "2维层状Ti2CTx电极材料的制备和电化学性能研究", 《江西师范大学学报》, vol. 44, no. 6, 30 November 2020 (2020-11-30), pages 573 - 579 *
王冰心等: "二维碳化物Ti_2C在超级电容器中的电化学性能研究", 《现代技术陶瓷》 *
王冰心等: "二维碳化物Ti_2C在超级电容器中的电化学性能研究", 《现代技术陶瓷》, no. 01, 15 February 2017 (2017-02-15) *

Also Published As

Publication number Publication date
CN114804883B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Zhou et al. A review on transition metal nitrides as electrode materials for supercapacitors
CN109742383B (zh) 基于酚醛树脂的钠离子电池硬碳负极材料及其制备方法和应用
Bai et al. MOFs-derived porous Mn 2 O 3 as high-performance anode material for Li-ion battery
Fu et al. Production of hollow and porous Fe 2 O 3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications
CN109167066A (zh) 一种少层碳化钛原位生长氮掺杂碳纳米管三维复合材料的制备方法
Ren et al. Self-supported graphene nanosheet-based composites as binder-free electrodes for advanced electrochemical energy conversion and storage
Cai et al. Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances
Lu et al. Synthesis of dinickel phosphide (Ni 2 P) for fast lithium-ion transportation: a new class of nanowires with exceptionally improved electrochemical performance as a negative electrode
CN112225221B (zh) 具有核壳结构的i-MAX相材料及其制备方法
Ryu et al. Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning
Feng et al. Morphology-dependent performance of Zn 2 GeO 4 as a high-performance anode material for rechargeable lithium ion batteries
CN110336003B (zh) 一种多孔硅基复合材料及其制备方法和应用
Epur et al. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity
CN110304658B (zh) 一种用于锂离子电池的Nb18W16O93负极材料及其制备方法
JP2014512639A (ja) 二層のカーボンコーティングを有するカソード材料及びその製造方法
CN110803702A (zh) 用于超级电容器电极材料的MXene复合材料的制备方法及MXene复合材料
CN111747396A (zh) 一种氮磷掺杂二维碳/硅复合物及其制备方法和应用
CN114284477A (zh) 基于两种胶体溶液自组装法制备TiO2/MXene异质结构的方法与用途
KR101451354B1 (ko) 독립형 탄소나노튜브/금속 산화물 입자 복합체 필름 및 그 제조방법
CN114335458B (zh) 一种Ti3C2Tx@g-C3N4复合材料及其制备方法和应用
Ye et al. Engineering a hierarchical hollow hematite nanostructure for lithium storage
CN114804883B (zh) 一种基于Ti2CTx迈科烯的高倍率锂离子电池负极材料制备方法
KR102057128B1 (ko) 팽창흑연에 리튬을 함침시킨 리튬이온커패시터용 팽창흑연음극재
CN113764195B (zh) 一种锂离子电容器及其制备方法
Zhao et al. Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant