CN114790298B - 一种具有互穿结构的多酸基镍金属有机框架比色传感材料 - Google Patents

一种具有互穿结构的多酸基镍金属有机框架比色传感材料 Download PDF

Info

Publication number
CN114790298B
CN114790298B CN202210478646.5A CN202210478646A CN114790298B CN 114790298 B CN114790298 B CN 114790298B CN 202210478646 A CN202210478646 A CN 202210478646A CN 114790298 B CN114790298 B CN 114790298B
Authority
CN
China
Prior art keywords
acid
metal organic
nickel metal
interpenetrating structure
organic framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210478646.5A
Other languages
English (en)
Other versions
CN114790298A (zh
Inventor
庞海军
辛建娇
马慧媛
于晓晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202210478646.5A priority Critical patent/CN114790298B/zh
Publication of CN114790298A publication Critical patent/CN114790298A/zh
Application granted granted Critical
Publication of CN114790298B publication Critical patent/CN114790298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及一种具有二重互穿结构的多酸基镍金属有机框架的比色传感制材料的制备及性能研究。本发明的目的是要解决一些多酸类材料作为催化剂材料在溶液中稳定性差,催化性能不高的问题,提供一种可以提高其催化性能作为比色传感催化剂材料和光催化降解材料的制备方法。本发明的一种二重互穿结构的多酸基金属有机框架材料的化学式为[Ni2(btap)4(H2O)4][SiW12O40],其中btap为3,5‑双(三唑‑1‑基)吡啶。合成方法为将硅钨酸、醋酸镍和btap加入到蒸馏水中搅拌均匀,调节pH值,在温度为160℃下反应4天。本发明可获得一种具有比色传感和可见光催化性能的多酸基二重互穿结构的镍金属有机框架晶体材料。

Description

一种具有互穿结构的多酸基镍金属有机框架比色传感材料
技术领域
本发明涉及一种具有互穿结构的多酸基镍金属有机框架比色传感材料的制备及制备及性能研究。
背景技术
酚类化合物是一种常见的水污染物,其稳定性高,可生化性差,即使在很低的浓度下也具有严重的毒性,亟待检测和去除。在众多的酚类化合物检测方法中,比色传感是一种很有前途的方法。在H2O2和催化剂的辅助下,苯酚与无色的4-氨基安替比林(4-AAP)反应生成有色醌亚胺。因此,酚类的含量可以通过监测醌亚胺通过一个简单的比色分析来确定。光催化降解是利用辐射、光催化剂在反应体系中产生的活性极强的自由基,再通过自由基与有机污染物之间的加合、取代、电子转移等过程将污染物全部降解为无机物的过程。此外,光催化被广泛认为是一种环境友好的途径,可以将酚类污染物降解为无害的CO2和H2O产物。
多金属氧酸盐(Polyoxometalates,POMs)(又称多酸),是具有可逆氧化活性的纳米氧化物团簇,具有结构可修饰、物理化学性质可调变等特点,可作为多种应用的基础材料。这些分子团簇非常稳定,并与各种晶体材料结合表现出强而稳定的相互作用,在比色传感和光催化降解领域有着广泛的应用前景。然而,由于POMs离散的分子团簇结构和高溶解度,POMs通常具有相对较小的表面积(<10m2·g-1)和较差的可循环利用性,使其严重限制了应用。多酸基金属有机框架材料是一类具有丰富的晶体结构并且长程有序的晶态材料,以多酸为预组装前驱体,引入金属有机复合物,构成多酸基金属有机框架材料,具有不溶于水,结构稳定,可循环利用等优点。更重要的是这类材料晶体结构具有可控性,并且结构变化具有多样性,这将为提高催化性能提供重要支持。基于多酸基金属有机框架材料良好的应用前景,我们研究制备出了一种未见文献报道的一种具有互穿结构的多酸基镍金属有机框架比色传感材料。
发明内容
本发明的目的是要解决多酸类聚合物作为催化材料在溶液中稳定性差,溶解度高的问题。为提高其催化性能,本发明提供一种具有互穿结构的多酸基镍金属有机框架比色传感材料的制备方法及性能研究。
为了解决上述技术问题,本发明是通过以下技术方案实现的:
一、制备pH值为2.5~3.0的反应液:将硅钨酸、醋酸镍、3,5-双(三唑-1-基)吡啶加入到蒸馏水中搅拌均匀,然后将该悬浊液的pH值调至2.5~3.0,得到pH值为2.5~3.0反应液;
二、制备一种具有互穿结构的多酸基镍金属有机框架比色传感材料:将步骤一中制备的反应液转移到聚四氟乙烯反应釜中,再在温度为160℃下反应4天,反应液温度降至室温后洗涤,得到粉色块状晶体,即一种具有双重互穿的金属有机框架的硅钨酸-镍聚合物,该聚合物的化学式为[Ni2(btap)4(H2O)4][SiW12O40],其中btap为3,5-双(三唑-1-基)吡啶;晶体外观呈粉色块状;晶系为斜方晶系;空间群为Pbca;晶胞参数为
Figure BDA0003626800190000021
b=20.7638(16),/>
Figure BDA0003626800190000022
α=90°,β=90°,γ=90°,/>
Figure BDA0003626800190000023
三、一种具有互穿结构的多酸基镍金属有机框架比色传感材料作为比色检测催化剂,能够催化4-AAP和苯酚的显色反应,具有优异的催化性能。一种具有互穿结构的多酸基镍金属有机框架比色传感材料作为光催化降解催化剂,能够在可见光下催化降解酚类物质,并具有优异的催化效率。
与现有技术相比,本发明的有益效果是:
一、本发明首次利用3,5-双(三唑-1-基)吡啶有机配体、将其与醋酸镍、硅钨酸通过一步水热合成法成功制备出一种具有双重互穿结构的多酸基镍金属有机框架材料。单晶X-射线衍射结果表明,本发明制备的双重互穿结构的多酸基镍金属有机框架材料,其中金属与有机配体相互连接形成具有孔道的三维互穿结构,多酸作为客体分子插入到框架结构。这种独特的结构稳定,可重复利用,保持催化活性。
二、在H2O2,4-AAP和苯酚水溶液中,采用紫外光谱测试比色传感催化性能。在可见光下催化降解酚类物质,采用高效液相色谱测试光催化降解。表明本发明的一种具有互穿结构的多酸基镍金属有机框架比色传感材料具有优异的比色传感和光催化性能。其催化性能主要得益于其特殊的结构,这种独特结构能够促进电子转移,可以有效抑制光生电子/空穴对的复合,有效提高的比色传感和光催化降解性能。
附图说明
图1为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的基本结构单元图。
图2为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料形成过程示意图
图3为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的红外光谱图。
图4为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的粉末X-射线衍射图。
图5为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料在H2O2,4-AAP和苯酚溶液中紫外光谱图。
图6为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料可见光催化降解图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,以下所列举具体实施方式仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果。只要满足使用需要,都在本发明的保护范围内。
具体实施方式一:本实施方式的一种具有互穿结构的多酸基镍金属有机框架比色传感材料的制备方法是按以下步骤完成的:
一、制备pH值为2.5~3.0的反应液:将0.15g硅钨酸、0.16g醋酸镍和0.04g 3,5-双(三唑-1-基)吡啶加入到蒸馏水中搅拌均匀,然后将该悬浊液的pH值调至2.5~3.0,得到pH值为2.5~3.0反应液;
二、制备一种具有互穿结构的多酸基镍金属有机框架比色传感材料:将步骤一中制备的反应液转移到聚四氟乙烯反应釜中,再在温度为160℃下反应4天,反应液温度降至室温后洗涤,得到绿色块状晶体,即一种具有互穿结构的多酸基镍金属有机框架比色传感材料,该聚合物的化学式为[Ni2(btap)4(H2O)4][SiW12O40],其中btap为3,5-双(三唑-1-基)吡啶;晶体外观分别呈粉色块状;晶系为斜方晶系;空间群为Pbca;晶胞参数为
Figure BDA0003626800190000031
Figure BDA0003626800190000032
α=90°,β=90°,γ=90°,/>
Figure BDA0003626800190000033
三、一种具有互穿结构的多酸基镍金属有机框架比色传感材料的比色传感性能:在离心管中加入4-AAP、苯酚、H2O2和多酸基镍金属有机框架材料。将混合溶液的体积设定为3mL,室温反应30min后,用紫外-可见分光光度计记录反应溶液在505nm处的吸光度。
四、一种具有互穿结构的多酸基镍金属有机框架比色传感材料的光催化降解性能:取多酸基镍金属有机框架材料添加到10mg L-1的4-氯苯酚(4-CP)水溶液(50mL)中。然后将催化剂和4-CP悬浮液在黑暗条件下混合60min,以确保吸附-解吸平衡。然后,用500W的碘钨灯照射悬浮液。每隔一定时间收集一小部分悬浮液,用0.22μm滤膜过滤分析。采用高效液相色谱(HPLC)(配有紫外检测器(UV)和C18柱),记录4-CP的浓度。
具体实施方式二:具体实施方式一步骤一所述的一种具有互穿结构的多酸基镍金属有机框架比色传感材料,所述3,5-双(三唑-1-基)吡啶、醋酸镍、硅钨酸的摩尔比为1:(3.2-3.5):(0.26-0.5)。
具体实施方式三:本实施方式与具体实施方式一的不同点是:步骤一中所述的金属铜盐为氯化镍、硝酸镍或硫酸镍。其他与具体实施方式一至二相同。
具体实施方式四:具体实施方式一步骤一所述的一种具有互穿结构的多酸基镍金属有机框架比色传感材料的制备方法,所述硅钨酸的摩尔数与蒸馏水的体积比为0.62mmol:15mL。
具体实施方式五:本实施方式与具体实施方式一的不同点是:步骤一中将反应液的pH值调至2.5~3.0是使用摩尔浓度均为1mol/L的HCl溶液和NaOH溶液调节的。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一的不同点是:步骤二中所述的反应温度为120~160℃,时间为3~5天。其它步骤与具体实施方式一至五相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种具有互穿结构的多酸基镍金属有机框架比色传感材料的制备方法,按以下步骤实现:
一、制备pH值为2.5的反应液:将0.05mmol的硅钨酸、0.62mmol醋酸镍和0.19mmol3,5-双(三唑-1-基)吡啶,均匀分散到15mL蒸馏水中,然后使用1mol/L的HCl溶液和1mol/L的NaOH溶液将反应液的pH值调至2.5,得到pH值为2.5的反应液。
二、将上述制备好的pH值为2.5的反应液转移到25mL聚四氟乙烯反应釜中,再在温度为160℃下反应4天,反应液降至室温后洗涤,得到绿色块状晶体,即为一种具有互穿结构的多酸基镍金属有机框架比色传感材料。
(一)对实施例一制备的一种具有互穿结构的多酸基镍金属有机框架比色传感材料进行结构测定:
结论①X–射线晶体学参数:见表1。
表1材料晶体学参数
Figure BDA0003626800190000041
Figure BDA0003626800190000051
aR1=∑║Fo│─│Fc║/∑│Fo│.bwR2={∑[w(Fo 2─Fc 2)2]/∑[w(Fo 2)2]}1/2
结论②X-射线晶体结构描述:X-射线单晶衍射分析表明,
一种具有互穿结构的多酸基镍金属有机框架比色传感材料为斜方晶系,Pbca空间群。该聚合物存在一个独立Ni离子,它提供一个六配位模式,由四个btap配体分子中的四个氮原子和两个水分子中的两个氧原子组成。6个镍离子与6个桥接btap分子连接,形成两种扭曲的分子大环。通过将每个Ni离子转换为四个连接的节点,并将每个btap收缩为一个臂/弦,从而形成一个具有4个臂/弦并指向4个方向的节点。随后,两种扭曲的分子大环通过共享相邻的镍离子和btap分子融合在一起,形成一个具有66dia拓扑网络的3D框架。更重要的是,即使有这种相互渗透,整个3D网络仍然拥有许多空隙空间,可以容纳纳米大小的聚氧阴离子[SiW12O40]4-作为客体。因此,生成了一种新型的三维多孔二重互穿的多酸基镍金属有机框架材料。
图1为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的基本结构单元图。
图2为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料形成过程示意图。
(二)对实施例一制备的一种具有互穿结构的多酸基镍金属有机框架比色传感材料[Ni2(btap)4(H2O)4][SiW12O40]进行红外光谱表征,得到该硅钨酸金属有机超分子聚合物的红外光谱图,如图3所示。该红外光谱图表明,材料中既含有硅钨酸特征峰又含有有机配体特征峰。
图3为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的红外光谱图。
(三)对实施例一制备的一种一种具有互穿结构的多酸基镍金属有机框架比色传感材料[Ni2(btap)4(H2O)4][SiW12O40]进行粉末X-射线衍射测定,得到一种硅钨酸金属有机框架材料的粉末X-射线衍射谱图,如图4所示。由粉末X-射线衍射谱图知,实验测得的谱图与晶体模拟得到的谱图的峰位置一致,表明该材料的纯度较高。
图4为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料的粉末X-射线衍射图。
(四)对实施例一制备的一种具有互穿结构的多酸基镍金属有机框架比色传感材料[Ni2(btap)4(H2O)4][SiW12O40]进行比色传感性能测试。在H2O2的参与下,通过催化4-AAP和苯酚的显色反应,研究了多酸基镍金属有机框架材料的比色传感性能。在离心管中加入4-AAP(2mg mL-1)、多酸基镍金属有机框架材料(0.5mg mL-1)、苯酚(6mM)和H2O2(5mM)。将混合溶液的体积设定为3mL,室温反应30min后,用紫外-可见分光光度计记录反应溶液在505nm处的吸光度。
图5为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料在H2O2,4-AAP和苯酚溶液中紫外光谱图。
(五)对实施例一制备的一种具有互穿结构的多酸基镍金属有机框架比色传感材料[Ni2(btap)4(H2O)4][SiW12O40]进行光催化降解性能测试。取多酸基镍金属有机框架材料(30mg)添加到10mg L-1的4-氯苯酚(4-CP)水溶液(50mL)中。然后将催化剂和4-CP悬浮液在黑暗条件下混合60min,以确保吸附-解吸平衡。然后,用500W的碘钨灯照射悬浮液。每隔一定时间收集一小部分悬浮液,用0.22μm滤膜过滤分析。采用高效液相色谱(HPLC)(配有紫外检测器(UV)和C18柱),记录4-CP的浓度。
图6为实施例—一种具有互穿结构的多酸基镍金属有机框架比色传感材料可见光催化降解图。
综上所述:对实施例一的一种具有互穿结构的多酸基镍金属有机框架比色传感材料是采用水热合成方法成功制备,并将其成功制备比色传感和光催化降解材料,该材料具有良好稳定性导和较高的氧化还原活性,是一种性能优异的催化材料,同时为设计多功能多酸基镍金属有机框架材料开辟了一条新途径。

Claims (6)

1.一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于一种具有互穿结构的多酸基镍金属有机框架材料的制备方法是按以下步骤完成的:
一、制备pH值为2.5~3.0的反应液:将0.15g硅钨酸、0.16g醋酸镍和0.04g 3,5-双(三唑-1-基)吡啶加入到蒸馏水中搅拌均匀,然后将该悬浊液的pH值调至2.5~3.0,得到pH值为2.5~3.0反应液;
二、制备一种具有互穿结构的多酸基镍金属有机框架材料:将步骤一中制备的反应液转移到聚四氟乙烯反应釜中,再在温度为160℃下反应4天,反应液温度降至室温后洗涤,得到粉色块状晶体,即一种具有互穿结构的多酸基镍金属有机框架材料;
步骤二所述的该材料化学式为[Ni2(btap)4(H2O)4][SiW12O40],其中btap为3,5-双(三唑-1-基)吡啶;晶体外观呈粉色块状;晶系为斜方晶系;空间群为Pbca;晶胞参数为
Figure FDA0004128406240000012
Figure FDA0004128406240000011
α=90°,β=90°,γ=90°,/>
Figure FDA0004128406240000013
2.根据权利要求1所述的一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于步骤一中所述的金属镍盐为醋酸镍。
3.根据权利要求1所述的一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于步骤一中所述的3,5-双(三唑-1-基)吡啶、醋酸镍、硅钨酸的摩尔比为1:(3.2-3.5):(0.26-0.5)。
4.根据权利要求1所述的一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于步骤一中所述的硅钨酸的摩尔数与蒸馏水的体积比为0.62mmol:15mL。
5.根据权利要求1所述的一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于步骤一中将反应液的pH值调节至2.5~3.0的过程,使用物质的量浓度为1mol/L的HCl溶液和物质的量浓度为1mol/L的NaOH溶液调节。
6.根据权利要求1所述的一种具有互穿结构的多酸基镍金属有机框架材料的制备方法,其特征在于步骤二中所述的反应温度为120~160℃,时间为3~5天。
CN202210478646.5A 2022-05-05 2022-05-05 一种具有互穿结构的多酸基镍金属有机框架比色传感材料 Active CN114790298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210478646.5A CN114790298B (zh) 2022-05-05 2022-05-05 一种具有互穿结构的多酸基镍金属有机框架比色传感材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210478646.5A CN114790298B (zh) 2022-05-05 2022-05-05 一种具有互穿结构的多酸基镍金属有机框架比色传感材料

Publications (2)

Publication Number Publication Date
CN114790298A CN114790298A (zh) 2022-07-26
CN114790298B true CN114790298B (zh) 2023-07-04

Family

ID=82461635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210478646.5A Active CN114790298B (zh) 2022-05-05 2022-05-05 一种具有互穿结构的多酸基镍金属有机框架比色传感材料

Country Status (1)

Country Link
CN (1) CN114790298B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116173989B (zh) * 2023-01-30 2024-06-11 哈尔滨理工大学 一种高1T-MoS2相异金属比色传感器材料的制备及性能研究

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990493B (zh) * 2014-05-16 2016-02-10 南开大学 一种用于降解水中罗丹明b的可见光催化剂及其应用
CN108997594B (zh) * 2018-08-31 2020-11-24 哈尔滨理工大学 一种多酸为模板的多酸基金属有机框架晶体材料
CN110026241B (zh) * 2019-04-25 2022-08-26 哈尔滨理工大学 一种三维多酸基镍金属-有机晶态催化材料及其制备方法
CN110227556B (zh) * 2019-07-08 2021-12-07 哈尔滨理工大学 一种多酸基铁金属有机杂化材料制备及光催化应用

Also Published As

Publication number Publication date
CN114790298A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
Meng et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity
He et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight
CN108997594B (zh) 一种多酸为模板的多酸基金属有机框架晶体材料
CN109092365B (zh) 一种具有三维插层结构的多酸基晶体材料及其制备方法
CN111921550B (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
Wang et al. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency
Wei et al. Enhanced photocatalytic hydrogen evolution using a novel in situ heterojunction yttrium-doped Bi4NbO8Cl@ Nb2O5
CN114790298B (zh) 一种具有互穿结构的多酸基镍金属有机框架比色传感材料
Chen et al. Controlled synthesis and exceptional photoelectrocatalytic properties of Bi2S3/MoS2/Bi2MoO6 ternary hetero-structured porous film
Baral et al. A review of recent progress on nano MnO 2: synthesis, surface modification and applications
Shan et al. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials
CN114805836B (zh) 一种二重互穿结构的多酸基钴有机框架的制备及催化性能
CN115536860B (zh) 一种用于电催化和光催化的生物mof材料及其制备方法和应用
Ding et al. Transformation of phase and heterojunction type by using HAc-adsorbed Bi (NO3) 3 as a Bi source
He et al. UiO-66 with confined dyes for adsorption and visible-light photocatalytic reduction of aqueous Cr (VI)
Xie et al. A two-dimensional Bi-based porphyrin metal–organic framework photocatalyst for white light-driven selective oxidation of sulfides
Xiao et al. In-situ regulation of hollow TiO2 with tunable anatase/rutile heterophase homojunction for promoting excellent photocatalytic degradation of pesticides
Wu et al. B‐doping mediated formation of oxygen vacancies in Bi2Sn2O7 quantum dots with a unique electronic structure for efficient and stable photoelectrocatalytic sulfamethazine degradation
Zhao et al. Facile construction of carbon doped carbon nitride tube with increased π-electron density for highly efficient hydrogen production
Sang et al. Fabrication of the hydrogen-evolving photocatalyst with mesoporous structure
CN116422378B (zh) 一种Cu2O-CuXbpy复合材料CO2光还原催化剂的制备方法和应用
Huang et al. Template-free formation of BiOCl double-shelled hollow microspheres with enhanced carbamazepine removal efficiency
Liu et al. Antibiotics photodegradation over recycling Z-scheme Bi2Ti2O7@ Bi2S3/PU with super-efficiency: DFT calculation, toxicity of oxytetracycline intermediates and photoactivation mechanism
CN110586141A (zh) 一种用于处理油田废液的Ag-Bi固溶体复合光催化剂的制备方法
CN112390960B (zh) 一类可应用于氮气固定及还原的双氮配位聚合物及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant