CN1147837C - 用于在存储介质上生成定时模式的方法和系统 - Google Patents

用于在存储介质上生成定时模式的方法和系统

Info

Publication number
CN1147837C
CN1147837C CNB951977709A CN95197770A CN1147837C CN 1147837 C CN1147837 C CN 1147837C CN B951977709 A CNB951977709 A CN B951977709A CN 95197770 A CN95197770 A CN 95197770A CN 1147837 C CN1147837 C CN 1147837C
Authority
CN
China
Prior art keywords
transformation
transformations
write
batch
writes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB951977709A
Other languages
English (en)
Other versions
CN1178024A (zh
Inventor
蒂莫西・约塞夫・柴纳尔
蒂莫西·约塞夫·柴纳尔
杰伊・索恩
怀恩·杰伊·索恩
・约汉・亚姆丘克
埃德华·约汉·亚姆丘克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to CNB951977709A priority Critical patent/CN1147837C/zh
Publication of CN1178024A publication Critical patent/CN1178024A/zh
Application granted granted Critical
Publication of CN1147837C publication Critical patent/CN1147837C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Moving Of The Head To Find And Align With The Track (AREA)

Abstract

一种用于在位于具有内部记录头(14a)的记录装置(10)中的存储介质(12a)上写入伺服模式的技术。用内部记录头(14a)在存储介质(12a)上生成定时模式并确定一个径向定位值以便将内部记录头(14a)径向地定位。用内部记录头(14a)在由定时模式和径向定位值确定的位置处写入伺服模式。

Description

用于在存储介质上生成定时模式的方法和系统
本发明一般涉及记录装置,具体地涉及在存储介质上写入伺服模式而不用外部传感器的操作。
例如数据处理系统那样的系统的信息通常存放在例如磁盘那样的存储介质上。在制造磁盘时,一个具有多个内部磁头的盘驱动器通常安装在称为伺服写入器的主站内。伺服写入器具有位于盘驱动器之外的传感器,用于为至少一个磁头的径向和周边位置定位,以便将一个磁信息模式写到与写磁头耦合的盘面上。在正常操作中盘驱动器将该模式用作主参考信号以便为数据存储用的道和扇区定位。
由于每个磁驱动器必须串行地安装在伺服写入器中,在站上的伺服写入过程是昂贵的。此外,当传感器必须访问传动器和盘轴电机时,盘的机械边界条件被改变。这可能要求盘能机械夹紧和拆卸。
一个用于写入伺服信息的过程在1983年11月8日授权并转让给Northern Telecom,Inc的名为“用于写入伺服道的嵌入式伺服道跟随系统”的美国专利4,414,589中有描述。在美国专利4,414,589中描述了一个用于将一个移动读/写头相对于磁存储盘定位的伺服道跟随系统。盘上扇区中记录着多个伺服道,用于标识径向位置或信息道。在一个固定时钟道磁头上写单个脉冲以写入一个时钟道,对一个写在移动磁头上的中间时钟道实行锁相环,然后再对一个写在固定时钟道磁头上的最后时钟道实行锁相环。将一个磁头移至极限阻挡处并写入一个参考道,从而决定了径向道密度。接着将磁头移开足够数量以便相对于最大平均道密度将参考道幅值减小预定百分比。此后,写入另一条参考道并再将磁头自第二参考道移开足够数量以便再将参考道幅值减小预定百分比。这样一直继续下去直至盘已写满参考道。如果如此得到的平均道密度不满意,则调整减小量并重复以上过程。
另一项用于写入伺服信息的技术在1985年7月23日授权并转让给Pioneer Research,Inc的名为“磁盘驱动器的伺服写入系统”的美国专利4,531,167中有描述。在美国专利4,531,167中,在向盘上写入伺服道之前,首先必须由单独磁头向盘上写入一个主时钟道,用作整个操作的定时参考信号。将偶数(EVEN)伺服信息写在盘的整个面上,即将伺服脉冲串写在盘上。这通过下法完成:首先将臂移至外碰撞阻挡,然后在盘每转一圈时使臂径向地移动一段小于数据道宽度的距离。此后臂离开外碰撞阻挡而移动,该磁头用于将奇数(ODD)伺服信息写入盘驱动器的众多扇区内。当用于写入奇数(ODD)伺服信息的臂到达盘的内直径时,将臂自外碰撞阻挡进至内碰撞阻挡所走的步数与盘上实际所需道数进行比较。如实际步数与所需实际道数不同,则使用由微处理器确定的具体偏置数以使下一次操作中的步数与盘上所需道数完全相同。
上述过程中的每一步需要一个外部定时传感器以便写入在确定磁头周边位置中使用的定时模式。此外,由于需要外部传感器,必须有一个清洁的室内环境。还有,为确定以后写入伺服模式时所用道距,应写入装盘信息。这是费时而且昂贵的。因此需要一种不要求清洁室内环境而将伺服模式写到盘上的技术。此外,需要一种不要求外部传感器而写入伺服模式的技术。还需要一种方法用于确定记录装置中哪个磁头写入最宽的道。也需要一种方法用于确定记录装置的道距而不必写入整盘信息。此外需要一种技术用于写入定时信息而消除外部时钟源,因而减小由于写入伺服模式的磁头和时钟源之间的相对运动而引起误差的可能性。
WO94/11864描述了一种用于确定将在存储装置的存储介质上写入的一批道的所需道距的技术,该方法具有在多个道上写入一个转变的步骤,其中道的间距由一个初始径向定位值确定。
用于在位于具有内部记录头的记录装置中的存储介质上写入伺服模式的方法可克服现有技术的缺点和提供附加优点。用内部记录磁头在存储介质上生成定时模式,并确定用于径向地将内部记录头定位的径向定位值。伺服模式写在由生成的定时模式和径向定位值决定的位置上。
在一个实施例中,为在具有众多道的存储介质上生成定时模式,在众多道的第一道上写入众多转变,确定众多转变中的每对转变间的时间间隔,确定每个所确定的时间间隔与预定正常间隔之间的偏差量以及将众多转变写在众多道中的第二道上。众多转变中的每个第一部分在第一预定时间延迟处写入及众多转变中的每个第二部分在第二预定时间延迟处写入。
在另一个实施例中,具有N道存储介质的记录装置的道距被确定。将一个转变写在众多N道中的若干道上,获取一个与每个所写转变相关连的回读信号,将这些回读信号进行比较以确定道距。
在又一个实施例中,确定记录装置中众多记录头中哪个头最宽地写入。使用众多记录头中每个头写入第一转变及使用众多记录头中的一个头写入第二转变。写入的第二转变与使用写第二转变时所用同一记录头写入的第一转变隔开预定距离。每个记录头使用第二转变定位及与每个第一转变有关的一个幅值信号被读取并与定位的记录头相比较。根据比较结果确定最宽地写入的记录头。
在另一个实施例中,在位于具有众多内部记录头的记录装置中的众多存储介质中的一个上生成定时模式。众多存储介质中的每一个具有与它相关连的众多内部记录头中的至少一个头。使用众多内部记录头中的第一个写入代表定时模式的第一批众多转变。众多内部记录头的第一个和第二个被定位。第一批众多转变用第一定位的记录头读取及第二批众多转变用第二定位的头写入。第一和第二记录头被重新定位并用重新定位的第二记录头读取第二批众多转变,及用重新定位的第一记录头写入第三批众多转变。
在本发明的另一个方面,提供了一个用于在位于记录装置中的存储介质上写入伺服模式的系统。该系统包括使用内部记录头在存储介质上生成定时模式的装置,用于确定供内部记录头径向定位用的径向定位值的装置,及使用内部记录头在存储介质上写入伺服模式的装置。伺服模式在由定时模式和径向定位值决定的位置上写入。
在本发明的另一方面,提供了一个记录装置。该记录装置包括一个位于记录装置内的存储介质和一个位于记录装置内用于在存储介质上写入定时信息和伺服模式的内部记录头。在一个实施例中,该记录装置是封住的。
本发明的技术可将伺服模式写在存储介质上而不需要外部传感器或清洁室内环境。此外,提供了一种技术,用于确定记录装置的道距而不要求写入整盘信息。此外,写入定时模式而不需要外部时钟源。本发明的技术能使定时信息和伺服模式容易地和较以前更准确地写入。
在说明书结尾处的权利要求书中具体地指出和清楚地提出本发明内容的权利要求。结合附图所作的下面的详细描述将使本发明的前述和其它目的、特征和优点更明显,附图中:
图1a阐述含有本发明写入伺服模式的技术的盘驱动器例子;
图1b阐述根据本发明原理的具有众多记录盘的盘驱动器的侧视图例子;
图2阐述与本发明写入伺服模式的技术相关连的逻辑图例子;
图3阐述根据本发明原理与用于确定写入最宽道的头的技术相关连的逻辑图例子;
图4阐述根据本发明原理将一个盘面划分为N个周边饼式部分的一个实施例;
图5阐述根据本发明原理的信号幅值与记录头的道外位置的曲线例子;
图6阐述根据本发明原理的与用于确定道距的技术有关连的逻辑图的一个实施例;
图7阐述根据本发明原理的将盘面分为N个周边饼式部分并在一个部分中写入四个脉冲串的一个实施例;
图8阐述根据本发明原理的回读信号幅值与具有一个正确道距的记录头的径向位置的曲线例子;
图9阐述根据本发明原理的回读信号幅值与具有一个不正确道距的记录头的径向位置的曲线例子;
图10阐述根据本发明原理的与在位于图1的盘驱动器内的盘上写入定时模式相关连的逻辑图的一个实施例;
图11阐述一个盘驱动器的不可重复的速度抖动谱密度曲线例子;
图12阐述图11的盘驱动器的抖动与时间间隔的曲线例子;
图13阐述根据本发明原理的抖动均方根值与步数的曲线例子;
图14a阐述根据本发明原理的一个径向定时标记轨迹,其中在自奇数转变中生成偶数转变时没有分数加在正常时间间隔中;
图14b阐述根据本发明原理的径向定时标记轨迹,其中在自奇数转变中生成偶数转变时分数1加在正常时间间隔中;
图14c阐述根据本发明原理的径向定时标记轨迹,其中在自奇数转变中生成偶数转变时变分数1/2加在正常时间间隔中;
图15阐述根据本发明原理的用于描述沿径向定时标记方向的位移误差与步数的曲线的例子;
图16阐述根据本发明原理的与在盘面上写入伺服模式有关连的逻辑图例子;
图17阐述根据本发明原理的将图16的伺服模式传播至其它盘面的逻辑图例子;
图18阐述根据本发明原理的使用两个磁头在盘面上写入定时信息的逻辑图的一个实施例。
根据本发明原理提供了用于在存储介质上写入伺服模式的方法和设备。在一个实施例中,一个伺服模式写至位于例如盘驱动器的记录设备中的一个或多个磁盘上。参照图1a和1b,在一个例子中盘驱动器10包括一个或多个磁盘12a-12b(集合地称为磁盘12),一个或多个内部记录头14a-14d(集合地称为记录头14),一个悬挂机构16,一个传动器18,一个传动器固定器20,一个或多个碰撞阻挡22,一个传动器驱动器24,一个读/写控制器26,一个计算机28,一个可编程延迟发生器30和一个时间间隔测量系统32。这些部件中的每一件将在下面详细描述。
每个磁盘具有例如两个能够接收信息的表面,而每个表面具有众多道13。根据本发明原理,使用内部记录头14将例如定时信息和伺服模式那样的信息写在一个或多个磁盘12的表面上。轴电机5(图1b)位于盘12的内直径处并如技术中已知地用于旋转磁盘12。如图1a所阐述的,记录头14固定于悬挂机构16上。
悬挂机构16允许记录头在垂直方向内移动并接到传动器18上。传动器18是例如一个标准动圈式传动器,它包括一个接至音圈电机23的球轴承19。如图1b中所示,电机23包括一个或多个磁铁21。在球轴承19的两侧各有一个碰撞阻挡22,它们用于限制传动器的移动范围。传动器18通过传动器固定器20装于基板25上。在一个例子中传动器固定器20通过一个或多个螺钉将传动器固定于基板上。
传动器驱动器24通过一条线27a连至基板25,它包括用于向音圈电机23提供电流的电子电路,如功率晶体管电路。
通过一条线27b连至基板25的还有读/写控制器26,它用于读和写盘上的磁转变,下面将根据本发明原理加以描述。
计算机28分别通过总线29a和29b与读/写控制器26和传动器驱动器24相连。计算机28包括例如一个具有用于存储信息的存储器的标准个人计算机。
可编程延迟发生器30通过IEEE总线31连至计算机28。可编程延迟发生器30是一个例如Hewlett Packard HP8118A型发生器,用于控制写入给定转变的时刻,下面将详细描述。
时间间隔测量系统32也通过IEEE总线33连至计算机28,用于根据本发明原理测量所需时间间隔。在一个实施例中,时间间隔测量系统32包括一个由Hewlett Packard提供的HP5372A型时间分析器。
熟悉技术的人知道可以对图1a和1b所阐述的盘驱动器作许多改动。例如,一个盘驱动器可以只有一个磁盘或只有一个记录头。
根据本发明原理,盘驱动器10用于在一个或多个磁盘12上写入伺服模式。伺服模式写在一个或多个盘面上的特定位置,因此在写入伺服模式之前要为用于写入伺服模式的记录头确定径向定位信息和周边定位信息(θ)。用于写入伺服模式的技术例子在下面详细描述。
参照图2,在一个实施例中确定盘驱动器10的哪个记录头写入最宽道,即步50“确定最宽头”。在此实施例中,写入最宽道的头是用于写入定时模式和伺服模式所需要的头,下面将详细描述。如只有一个记录头,则该头就是写入最宽道的头。现参照图3详细描述确定最宽头的方法。
参照图3,根据本发明原理,为确定盘驱动器或其它记录装置的哪个记录头写入最宽道,每个位于盘驱动器内的盘面被分成N个周边饼式部分,即步52“将每个盘面分成N个周边饼式部分”。在一个例子中N被设为十六,  因此盘面分为十六个周边饼式部分,如图4所示。如技术中所知,为划分盘面,使用一个标记以标识第一个扇区。此后按预定的彼此间相隔距离写入模式,即可确定任何数量的扇区。
参照图3和4,在将每个面分为N个扇区之后,每隔一个扇区被标为A扇区而其余则标为B扇区,即步54 “每隔一个扇区标为“A”及其余扇区标为“B””。此后,将传动器18靠在碰撞阻挡22上,使用每个记录头14在相应的盘面上写入幅值脉冲串(即一个或多个磁转变)。具体地说,根据本发明原理,在盘面第一道的每个“A”扇区内写入幅值脉冲串,即步56“用所有头在#1道的“A”扇区中写入幅值脉冲串”。
写入信息脉冲串之后,传动器18被移动预定距离,即步58“将传动器移动预定距离”。在一个实施例中,该预定距离根据例如记录头14a那样的记录头的信号幅值与头在道上方位置的关系而确定。图5中阐述了幅值与道上方位置间的近似线性关系例子。如图5中所示,当幅值处于其最大值时,记录头直接位于轨道上(即30微米),而当记录头处于其一半最大幅值(即近似0.5)时,记录头近似地在道外一半位置(即15微米)。在一个例子中,移动传动器直至来自头14a的回读信号等于其最大幅值的一半(即道外一半位置)。当将整流的头信号的采样而伺服于半幅值位置时,用头14a在对应于头14a的盘面第二道上B扇区中写入幅值脉冲串,即步60“用头1在#2道的“B”扇区中写入幅值脉冲串”。
通过径向地离开第二道,“B”脉冲串可用于提供位置信息。例如,该头可被选通以自对应于特定期间“B”脉冲串(幅值脉冲串)的磁转变中读取信号。使用采样保持电路可使对应于回读信号幅值的电压在脉冲串间的间隔内保持不变。这产生一个输入至伺服回路的合适定位信号以将传动器定位。在一个实施例中,当伺服到回读信号的给定幅值时,使用具有低频带的伺服控制回路。接着,头位置是所有扇区脉冲串的平均值,而不是跟随磁伺服信号的可重复的变动。将“B”脉冲串幅值用作伺服系统的位置信号(即伺服工作),盘驱动器的所有记录头下的来自“A”脉冲串的幅值信号被读取和比较,即步62“比较“A”脉冲串信号”。在一个例子中使用一个标准测量工具例如电压表或数字示波器读取和比较来自“A”脉冲串的信号。当除一个头外其它所有头的信号都丢失时,该唯一的头被确定为写/读最宽道的头。
虽然上面描述的例子使用众多“A”和“B”脉冲串,但可以只用一个“A”脉冲串和一个“B”脉冲串。
回来参照图2,在一个实施例中,在确定写入最宽道的头(今后标为头W)以后,根据本发明原理使用它确定盘驱动器的道距,即步64“确定道距”。
参照图6和7,在一个实施例中,为确定盘驱动器的道距,对应于头W的盘面分为N个周边饼式部分,即步70“划分盘面”。如图7中所示,在一个例子中,盘面分为16个部分68及每个部分68具有众多道71。通常一个盘面具有每英寸约4000道的道密度(即2000个数据道,其中一个数据道是一个道的两倍宽以使一个数据道不与另一数据道重叠)。
再参照图6,在划分盘面之后,将传动器18靠在碰撞阻挡上,将称为“A”脉冲串的幅值脉冲串用头W写在每一部分的第一道上,即步72“用头W将“A”脉冲串写在#1道上”(见图7)。(在另一实施例中,有可能使用不是写入最宽道的头的其它头将“A”脉冲串写在第一道上。此外,有可能将脉冲串写在其它道而不是第一道上。)在写入幅值脉冲串之后,传动器18被移动预定距离以使来自写入最宽道的头的幅值为最大值的一半或者为一个最便于猜测道间间距的幅值,即步74“将传动器定位”。
在将传动器定位之后,将传动器保持在该位置及将“B”脉冲串写在每个部分的第二道上,即步76“用头W将“B”脉冲串写在#2道上”。类似地,通过伺服工作于“B”脉冲串上,将“C”脉冲串写在每个部分的第三道上,即步78“用头W将“C”脉冲串写在#3道上”以及伺服工作于“C”脉冲串上,将“D”脉冲串写在每个部分的第四道上,即步80“用头W将“D”脉冲串写在#4道上”。
在使用写入最宽道的头将四个脉冲串(A、B、C和D脉冲串)写在道上之后,可将来自每个脉冲串的回读信号进行比较以确定道距,即步82“比较来自脉冲串A、B、C、D的回读信号”。如道距是在所需水平上,则当头W位于第二道中心上方时,来自“B”脉冲串的回读信号为最大值并且没有来自第四道的幅值信号。也即,如道距等于头宽度,则来自“D”脉冲串的幅值低于设置为近于零的阈值,例如为道上幅值以下一40dB。此外,来自“A”和“C”脉冲串两者的信号等于当写入第二道时所伺服的幅值。图8中表示一个上述例子,标于参考数字83处的“B”脉冲串的幅值最大,“D”脉冲串的幅值近于零及“A”和“C”脉冲串的幅值相等。
如果道距正确,即查询84“道距正确否?”的肯定回答,则过程结束,即步85“结束”,当写入“B”脉冲串时被伺服的“A”脉冲串的幅值称为Q1,如下面将描述的,Q1用于写入伺服模式。然而,如回读信号像图9中所示那样,道距太大,因此如下面描述地确定一个新的“A”脉冲串幅值,即步86“确定“A”脉冲串的新幅值”。
具体地说,参照图9,Q1表示当写入“B”脉冲串时被伺服的“A”脉冲串幅值。在该位置(R1)处,来自“D”脉冲串的信号仍不接近于零。伺服至新位置R2,该处来自“A”脉冲串的信号等于Q2,而来自“D”脉冲串的信号下降至接近零的预定阈值。在此位置上,来自“C”脉冲串的信号等于Q3。因此,可以得出结论:任何时候当道距过大时,则Q2>Q1>Q3。类似地,如道距太小,则Q2<Q1<Q3。
如上所述,如道距不正确,则为“A”脉冲串确定一个新幅值Q1new。在一个实施例中,为确定“A”脉冲串的新幅值,可使用以下式子。如在幅值Q1的区域内回读信号是线性的,则:
Q1new=1/2(Q3+Q1old)
回来参照图6,在确定Q1new以后,流程进至步72“用头W将“A”脉冲串写在#1道上”。(此处Q1或Q1new都是径向定位值。)在写入“A”脉冲串后,将传动器定位以使来自写入最宽道的头的幅值等于Q1new,即步74 “将传动器定位”。在此位置上使用写入最宽道的头将“B”脉冲串写在第二道上。此后流程如先前描述地继续。
在另一实施例中,每隔预定数量的道就将Q1或Q1new的值更新一次,即使所有道的Q1或Q1new值正常不变也进行更新。
如下面进一步描述的,代表道上幅值的比例的Q1或Q1new值用于写入伺服模式。然而,回来参照图2,在写入伺服模式之前,先生成定时标记,它用于周边地标志放置模式的位置,即步90“生成定时标记”。在一个例子中,定时模式包括一套根据本发明原理产生的磁转变的等距径向定时标记。定时模式以及下面描述的伺服模式能用密封的盘驱动器中的内部记录头写入。不需要外部传感器。
参照图10,详细地描述用于在盘12上写入定时模式的技术。在一个实施例中,用于写入定时模式的内部记录头是写入最宽道的头。最初头W靠在与头W相关连的盘(今后称为盘W)的最内道位置的一个限位器(即碰撞阻挡22)上,即步92“将头靠在限位器上”。当头在此位置时,盘一周内每隔相同时间间隔将一序列转变或一序列转变脉冲串(例如磁转变)写在盘面上,即步94“将转变写在盘的#1道上”。在一个例子中,盘的转速是60rpm,选择92.56微秒的时间间隔以便将180个转变脉冲串写在盘W的一个道上。这180个转变脉冲串可看作成对的转变,其中每对分别包括一个奇数转变和一个偶数转变。例如,一对转变脉冲串包括脉冲串1和2。另一对包括脉冲串3和4,等等。
在写入转变之后,具体地讲,在盘W的第二圈时,测量每个奇数和偶数转变脉冲串(1-2,3-4,等等)之间的时间间隔,即步96“测量奇数和偶数转变之间的时间间隔”。在一个实施例中,为测量时间间隔,使用时间间隔测量系统32。在测量每个时间间隔之后,由计算机28确定每个时间间隔与正常间隔例如92.56微秒之偏差。具体地说,计算机28自正常间隔值中减去每个时间间隔以获得偏差值,接着将这些偏差值存于计算机28的存储器内,即步98“存放每个时间间隔与正常间隔之偏差”。
在一个实施例中,为转变180与转变1之间的时间间隔确定一个特殊正常值,即步100“测量最后与第一转变之间的间隔”。由于转变180与转变1之间的间隔与92.56微秒的正常间隔相差甚多(即为数微秒而非数纳秒),因此设立一个特殊正常间隔。其原因是转变180和1之间相隔16.67毫秒写入而不是相隔92.56微秒。在确定特殊正常值之后,将它存入计算机存储器中以用作转为180与转变1之间的间隔,即步102“将间隔作为特殊正常值存储”。
在将转变脉冲串(或在另一实施例中的转变序列)写在一个道上及确定和存放偏差值之后,将头W径向地移动离开第一道一个预定值,即步104“将头移动预定值”。在一个实施例中,该预定值约等于一半道宽。在将头移动约半道之后,将现有奇数转变用作触发点,用头W写入一套新的偶数转变,即步106“用奇数转变将信息写在下一道上”。写入一个给定偶数转变的时刻由可编程延迟发生器30(图1)控制,该时刻等于正常间隔加上此对转变的存放的测量偏差的分数,例如二分之一。在写入偶数转变之后,将偶数转变用作触发点,生成一套新的奇数转变,即步108“用偶数转变将信息写在下一道上”。类似于偶数转变的写入,在由可编程延迟发生器控制的时刻写入一个给定的奇数转变。在此情况下,一对给定转变对的延迟发生器被设置等于该对的正常间隔。在上述以外,自转变180中生成转变1并将它写在第二道上。此情况下,可编程延迟发生器设置为如上计算的特殊正常值加上位于此对转变的存储器中测量偏差值的一半。对第二道此偏差值为零,但对以后各道并非如此。
在写入偶数和奇数转变之后,测量每对奇-偶转变的时间间隔并将每个间隔与正常时间间隔(或特殊正常间隔)的偏差存放于位于计算机28中的存储器内,即步110“测量间隔并存储偏差”。
此后,确定盘上是否有更多道需接收定时信息,即查询112“更多道?”。如果盘上没有更多道需接收定时信息,则完成了将定时模式放置于盘面上的过程,即步114“结束”。然而,如果定时模式需写在盘的附加道上,则流程回至步104“将头移动预定值”并重复该过程。
使用上述过程提供等距的径向定时标记,它们可用作生成伺服模式的触发点。在一个例子中,将伺服模式信息写在径向定时标记之间的区域内。在写入伺服模式之后,可擦除径向定时标记。此外,可不用每个径向定时标记而写入伺服模式。
根据本发明原理,希望在一个径向定时标记之后尽可能早地开始伺服模式以使定时抖动最小化。将头自读取转换操作至写入操作所需时间决定了最小可能时间,它通常小于1微秒。所记录的转变之间的定时抖动可由旋转速度变化,记录头的振动,电子噪音和介质噪音引起。(对好的介质讲介质噪音的均方根值通常小于1纳秒,因此在伺服写入的上下文中可予忽略)。抖动的详细性能决定于盘的具体机械设计,以及盘速度控制的质量。作为典型低端盘驱动器中所预计的抖动的幅值和频谱的代表,测量了Hardcard盘驱动器的技术性能。一个HP 5372A时间分析器用于获取10KHz所记录模式的4096个时间间隔的连续序列。将每个时间间隔取倒数以获取速度与时间的关系记录。此后数据即组合成单独的转数并取平均值以获取抖动的可重复部分。自数据中减去抖动的可重复部分并进行福里叶变换以获取不可重复的速度抖动。Hardcard的不可重复速度抖动谱密度在图11中阐述。如图中所示,大部分抖动发生于较低频率,可能由电机速度变化所造成。在较高频率(1900和2800Hz)处观察到数个尖峰,它们或由悬挂器共振或由球轴承缺陷所造成。
由于大部分速度抖动发生在低于约30Hz的频率处,时间间隔的抖动与短于约30毫秒的时间间隔成线性比例。图12中的线性关系阐述了以纳秒为单位的抖动均方根值与以毫秒为单位的时间间隔的曲线,它由下法得到:将长序列记录中的间隔组求和并计算较长间隔的抖动均方根值。在一个例子中,对于92.56微秒的间隔,抖动算出为4.9纳秒均方根值。此值稍高于线性比例,这是由于电子噪音所致,在此具体盘驱动器内将最大抖动限制在零间隔时约为3纳秒。上述实验中所生成的数据说明,通过在完善的径向定时标记模式外触发,可将伺服模式信息,例如伺服域灰码或相脉冲串,在数纳秒内排列起来。
在任何自传播模式方案中,此同一个最小误差应用于过程的每个周期。一般而言,这种过程构成“随机游动”,其中纯误差作为周期数的方根值而增长。对于包含2000个周期和每周期误差为4.9纳秒的过程而言,模式误差将为219纳秒。由于灰码或相脉冲串中的典型磁模式周期约为200纳秒,此误差是完全不能接受的。根据本发明原理,使用上述过程写入写时模式,沿每个径向定时标记的模式误差约等于每周最小误差的两倍,而与周期数无关。(在径向定时标记的绝对位置处的误差的确与周期数有关,但其增长速度只是周期数的四次方根。这些误差并不影响灰码或相脉冲串的配置)。因此每周4.9纳秒误差只产生约10纳秒的模式误差,这只是磁模式周期的5%,不大的量。此外,现有写入伺服的方法尚有改进模式准确度的潜力,其中可由单独时钟头或旋转编码器提供定时。在这类系统中,时钟源与写磁头之间的相对物理运动会产生定时误差。这种运动可由夹持磁头的结构的振动或轴的不可重复的摆动所引起。对于一个位于以3600RPM旋转的盘上一英寸半径处的磁头而言,3.7微英寸的相对运动会造成10纳秒的定时误差。
如前所描述的,根据本发明原理,在写入定时模式时使用一个预定值的定时延迟。在一个例子中,该预定值等于正常值加上所测量偏差的分数(标为F)。在一个最佳实施例中该分数是二分之一,根据下面三种情况的比较:
F=0;F=0.5;及F=1。
图13中阐述了上述三种情况下围绕一个道的180条径向线位置上的抖动均方根值与步数的曲线。如图13中所示,例如,图中有1000步及每步对应于半道。曲线中的数据是在八次不同MonteCarlo实验结果的平均值。(Monte Carlo技术是用于估价由随机事件控制的过程的计算机仿真,有关技术人员对此都熟悉)。初始道(例如第一号道)生成时的误差选自具有4.9纳秒的标准偏差的高斯分布以对应于在92.56微秒间隔下测量的Hard Card抖动。生成新的偶数转变时增加了误差,该误差具有 4.9 × 1 + F 2 纳秒标准偏差以考虑测量过程的附加影响。自偶数转变中生成奇数转变时使用4.9纳秒误差。自此对数-对数曲线可以看出对于F=0或1及F=0.5完全不同功率规律控制误差的传播。
对于F=0的情况,不同传播途径包括完全独立的随机游动,对于每一向外的步该途径在两条方位角线上盘旋向外(见图14a)。对于这样的过程误差均方根值随着步数的平方根值而增长。对于F=1,误差沿着独立的径向途径传播以及再一次随着步数的平方根值而增长(图14b)。然而,对于F=0.5,误差连续地混合在盘旋和径向途径之间(图14c),其结果是一种不同性质的随机游动,它随着步数的四次方根值增长。在图14a-14c中,最大半径对应于200步及角度偏差放大了200倍以使它们可见。
沿径向定时标记的定时误差直接影响相邻灰码转变或相脉冲串的配置,如果误差足够大,则径向定时标记本身的回读幅值将变坏。定性地看,如图14a-14c中所阐述的,这类误差表现为个别线条的参差不齐。可以看出,当F=0时这类误差比使用误差测量和校正的方案(如F=1和F=0.5)中的任何一个方案的误差大得多。图15中有定量结果,其中沿着径向定时标记的相邻步之间的偏移的均方根值与步数副成曲线。如前一样,这些值是八次不同实验的平均值。对于F=0,盘旋传播途径所造成的步间误差甚至大于一条道周围的绝对位置误差。对F=1和F=0.5两者而言,步间误差不变(与步数无关)并大约等于基本间隔噪音4.9纳秒的两倍。
应注意总定时模式误差与所用基本间隔内的抖动成正比。通过改善电机速度控制和使用较好回读信号调节可以显著地减小误差。径向定时标记模式使用转变脉冲串而不用分离转变,也可能进一步减小电子部件抖动。减小电子线路影响可在径向定时标记间使用更短基本间隔,从而得到进一步改善。
根据本发明原理,生成径向定时标记模式所需全部时间估计为一个模式(包括1000道即2000步)约需2分钟。这是基于以下假设:每一传播步需四圈完成;每一圈用于半道的头移动,写入偶数转变,写入奇数转变,及测量由奇数至偶数的间隔。
熟悉技术的人明显地知道可在不背离本发明实质的情况下对上述过程做出一系列变动。作为一个例子,可不用一半而用其它误差纠正(即所测量偏差的分数)。作为另一可能性,在自偶数转变中生成奇数转变的过程中可使用部分误差校正。在实验中发现这对一条道周围的绝对位置误差没有影响,但能略为减小沿线条的步间偏移误差。
上面描述的是使用盘驱动器的一个内部记录头将时钟道信息写在盘面上的技术。回来参照图2,在生成定时模式之后,写入伺服模式,即步120“在一个面上写入伺服模式”。
参照图16,详细地描述了使用写入最宽道的头和用于提供该头径向定位的道上幅值的分数(即Q1或Q1new)以用于写入伺服模式的一种技术。具体地说,写入最宽道的头(即头W)退回至与头W相关连的盘面(即面W)的最内道处的碰撞阻挡处,即步122“将头移至限位器”。
在此位置上写入一个幅值“A”脉冲串,即步124“写“A”脉冲串”。每隔三个定时标记(例如定时标记1、4、7等)触发一次,写入一个幅值“A”脉冲串,其正常延迟为30微秒和宽度为10微秒。也即在定时标记之后30微秒后写入幅值“A”脉冲串,其持续时间为10微秒。熟悉技术的人知道可以每个定时标记后或在任何需要的周期内写入脉冲串,而每隔三个定时标记只是一个例子。
在每隔三个定时标记写入一次“A”脉冲串之后,头W在由Q1或Q1new代表的径向位置处被伺服在初始“A”脉冲串上,如上所描述的,即步126“伺服头”。当头W处于此径向位置时,在由每隔三个定时标记(2、5、8等)所代表的周边位置上写入一次幅值“B”脉冲串,即步128“写入“B”脉冲串”。每隔三个定时标记之后的1微秒的正常延迟后写入一个宽度为10微秒的“B”脉冲串。
在写入幅值“A”和“B”脉冲串之后,每隔三个定时标记(1、4、7等)触发一次以写入一个扇区首部,即步130“写入扇区道部”。扇区首部包括一个伺服标识域和灰码信息,以1微秒的正常延迟和小于29微秒的总持续时间被写入。
在写入扇区首部之后,如以上所确定的头W,在幅值“B”脉冲串上被伺服至Q1或Q1new的信号电平比例,即步132“伺服头”。当头W在此径向位置时,每隔三个定时标记(1、4、7等)触发一次以写入一个幅值“C”脉冲串,其正常延迟为40微秒和宽度为10微秒,即步134“写入“C”脉冲串”。
此后,头W在“C”脉冲串上被伺服至Q1或Q1new的信号电平比例,即步136“伺服头”,以及每隔三个定时标记(2、5、8等)触发一次以写入一个幅值“D”脉冲串,其正常延迟为10微秒和宽度为10微秒,即步138“写入“D”脉冲串”。
在写入“C”和“D”脉冲串后,写入一个扇区首部,即步140“写入扇区首部”。类似于步130中扇区首部的写入,每隔三个定时标记(1、4、7等)写入一次包括伺服标识域和灰码信息在内的扇区首部,其正常延迟为1微秒和总持续期小于29微秒。
在写入扇区首部后,头W在幅值“D”脉冲串上被伺服至Q1或Q1new的信号电平比例即步142“伺服头”。在此位置上写入的“A”脉冲串具有30微秒的正常延迟和10微秒的宽度,即步144“写入“A”脉冲串”。如前一样,写入“A”脉冲串是每隔三个定时标记(1、4、7等)触发一次的。
在写入“A”脉冲串后,如希望在整个盘面的更多部分上生成伺服模式,即查询146“写入更多信息?”的肯定回答,于是流程回至步126并重复该过程。如果不是这样,则根据本发明原理,在一个盘面上写入伺服模式的过程已完成,即步148“结束”。
在此处,可在任何其它可用盘面上生成伺服模式,即步160“在其它面上生成伺服模式”(图2)。如下面要描述的,这是通过使用来自以前写入的伺服模式的信息而完成的。
参照图17,描述了在其它盘面上生成伺服模式的一种技术。初始时写入最宽道的头在面W的“B”脉冲串上被伺服至Q1或Q1new的信号电平,即步162“在“B”脉冲串上伺服一个头”。接着头W每隔三个定时标记(即定时标记1、4、7等)在面W上读取一次,即步164“读定时标记”并在第二面上触发第二头的写操作,它们可为盘驱动器中任何头或相应的面。第二头以40微秒的正常延迟写入“C”脉冲串,即步166“用第二头写入“C”脉冲串”。
随后,头W在面W的“D”脉冲串上伺服至Q1或Q1new的信号电平比例,即步168“在“D”脉冲串上伺服一个头”。当头W在此径向位置上时,头W每隔面W上三个定时标记(如1、4、7等)读取一次,即步170“读定时标记”,以及触发第二头以完成写操作。第二头在第二面上以30微秒的正常延迟写入一个幅值“A”脉冲串,即步172“用第二头写入“A”脉冲串”。
在写入“A”和“C”脉冲串后,如面W上尚有更多伺服模式,即查询174“更多信息?”的肯定回答,则流程回至步162,该过程即重复。以上操作假定伺服模式包括“A”和“C”脉冲串而没有“B”和“D”脉冲串,后者只是暂时用作伺服点。“B”和“D”脉冲串代表数据道所在位置,因此“B”和“D”脉冲串将被重写。
当伺服模式生成于一个附加面上时,扇区首部信息放于第二面上。第二头在第二面上的“C”脉冲串上伺服至Q1或Q1new的信号电平比例,即步176“在“C”脉冲串上伺服第二头”。当在此位置上伺服时,每隔面W上的三个定时标记(如1、4、7等)触发一次头W,由第二头以1微秒的正常延迟和小于29微秒的总持续时间写入一个扇区首部,即步178“写入扇区首部”。
此后,第二头在第二面上的“A”脉冲串上被伺服至Q1或Q1new的信号电平比例,即步180“在“A”脉冲串上伺服第二头”。再一次每隔面W上的三个定时标记(如1、4、7等)触发一次头W及写入一个扇区首部,即步182“写入扇区首部”。如前一样,该扇区首部包括一个伺服标识域和灰码信息并以1微秒的正常延迟和小于29微秒的总持续时间被写入。
如果尚有更多信息需写入,即查询184“更多扇区信息?”的肯定回答,则流程进至步176并重复该过程。如不是这样,即所有扇区信息都已写入及在另一盘面上生成一个伺服模式的过程已完成,即步186“结束”。很明显上述过程可用于在所需要的任何多的盘面上生成伺服模式。回来参照图2,在将伺服模式传播至其它面后,该过程结束,即步190“结束”。
上面描述的过程在一个盘面的60个扇区上写入幅值脉冲串伺服模式。如需要相编码模式,幅值脉冲串可用于提供径向信息,而头使用来自定时标记的可用定时信息写入相编码模式。熟悉技术的人知道本发明的技术可使用多于两个脉冲串写入伺服模式,而两个脉冲串只是一个例子。
上面描述的是用于在一个盘面上写入一个伺服模式的实施例。下面参照图2和图18所描述的是用于写入伺服模式的另一实施例。参照图2,在此第二实施例中,用下面详细描述的方法确定最宽头以及道距。然而,定时模式的生成与以上过程不同,这将在下面参照图18详细描述。
根据本发明原理,在此实施例中,选用来写入伺服模式的头并不是写最宽道的头中的一个。如此处所用的,选用的头称为头1,但应注意它可为头驱动器内除写最宽道的头以外的任何头。在另一实施例中,它却可为写最宽道的头。参照图18,选用的头1用于在对应于头1的盘面的第一道上写入代表定时模式的磁转变。此处该面称为面1,即步200“用一个头写入时钟道”。在一个例子中,时钟道以大约2.5MHz频率写到盘面上,并且一个时钟道写在盘面上所有径向位置处。
在用头1写入第一时钟道后,将传动器18移动一个预定距离,即步202“将传动器移动预定距离”。在一个例子中,移动传动器直至回读信号幅值大约为道上信号的一半。通过将整流的头信号采样将传动器伺服定位于此半幅值位置。当传动器如此定位时,头1读取先前写在第一盘面上的模式以及称为头2的第2头将一个模式写在第二盘面(面2)上,该模式与由第一头读取的模式实行相锁,从而在不同盘面上形成一个新时钟道,即步204“自头1读模式并用头2写模式”。类似于头1,头2不一定必须为盘驱动器的第2头,而可为盘驱动器中的任何头。
在将定时信息写在第二盘面上之后,将第二头定位,即步206“将头2定位”。具体地说,第二头从写模式转换为读模式并读取先前写入的转变。该信号转换为一个幅值信号及传动器定位于Q1或Q1new的幅值信号电平。在此位置上,第二头读取第二面上时钟信息及由头1在第一盘面上邻近于第一时钟道处写入一个第二时钟道,即步208“自头2读模式并用头1写模式”。
此后,如希望放置更多时钟信息在盘面上,即查询210“更多信息?”的肯定回答,流程回至步202。在一个实施例中,希望将定时信息放置于整个盘面上(即在所有径向位置上)。重复以上过程直至整个盘面都写上时钟道,在传动器的任何径向位置上都可知道头的周边位置。只要回读信号被锁相和相干地相加,在此过程中的径向定位准确度并不很重要。
上面描述的技术是使用两个内部记录头写入一个专用的时钟面。在所提供的例子中,两个记录头写到不同盘面上,但这不是主要的。两个头可以写到同一面上。一个头读模式及另一个头写模式,一步步地横过盘面直至产生一个专用时钟面。
回来参照图2,在生成定时信息后,如以上所描述的,使用写入最宽道的头在一个盘面上写入伺服模式。此后,将该伺服模式传播至除包含时钟信息的面以外的所有盘面上。
在另一实施例中,根据本发明原理,也可以用时钟信息在面上写入伺服模式。为完成此操作,时钟信息写入在第二面(即不是初始时钟面的其它面)上径向扇区信息之间。如第二面上的径向扇区相对于第一时钟面周边地偏移,则在所有θ位置上都可用该时钟信息。在第二面上的时钟信息用于在初始时钟面上写入伺服模式。
上面描述的是用于写入伺服模式而不用外部传感器的技术。虽然此处详细地阐释和描述了一些最佳实施例,但熟悉技术的人明显地知道可在不背离本发明实质的情况下做出不同变动、补充、替换和类似修改,而这些都被认为是包含在所附权利要求书中所定义的本发明范围内。

Claims (18)

1.一种用于在具有多个道的存储介质上生成一个定时模式的方法,所述方法包括以下步骤:
在所述存储介质上的第一径向位置处写入第一批多个转变;
确定所述第一批多个转变的所选对之间的时间间隔;
确定每个所确定的时间间隔与一个预定正常间隔之间的一个偏差量,以使所述第一批多个转变中的每一所选对具有一个相应的所确定的偏差量;以及
在所述存储介质上的第二径向位置处写入第二批多个转变,所述第二批多个转变中每个转变在所述第一批多个转变中的前一个转变之后相应时间延迟后写入,所述相应时间延迟由所述正常时间间隔和所述相应的确定的偏差量的函数所确定,从而在写入所述第二批多个转变时减小与所述第一批多个转变的写入操作相关联的随机误差传播,并通过它减小在将所述第二批多个转变与相应的所述第一批多个转变进行对准中的随机误差。
2.权利要求1的方法,进一步包括以下所述步骤的重复:确定一个时间间隔的步骤,确定一个偏差量的步骤及在所述多个道的每条道上写入第二批多个转变的步骤。
3.权利要求1的方法,其中所述第二批多个转变包括于相应的第一时间延迟后写入的转变的第一部分和于相应的第二时间延迟后写入的转变的第二部分。
4.权利要求3的方法,其中所述第一时间延迟的每个延迟根据所述预定正常间隔和与所述第一批多个转变的一对转变有关的偏差量的函数而确定,及其中所述第二批多个转变的所述第一部分的每个对应于所述第一批多个转变的所述对之一。
5.权利要求3的方法,其中所述第一批多个转变中的一对转变包括一个奇数转变和一个偶数转变。
6.权利要求5的方法,其中所述第二批多个转变的所述第二部分代表多个奇数转变及其中所述第二时间延迟中的每个延迟包括一个预定正常间隔。
7.权利要求6的方法,其中将在所述第一径向位置上写入的所述偶数转变用作触发点以写入所述多个奇数转变。
8.权利要求3的方法,其中所述第二批多个转变中的所述第一部分代表多个偶数转变及其中所述第一时间延迟中每个延迟包括所述预定正常间隔加上与所述第一批多个转变中的一对转变有关的偏差量的分数,及其中所述第二批多个转变中所述第一部分的每个对应于所述第一批多个转变中的所述对之一。
9.权利要求8的方法,其中将在所述第一径向位置上写入的所述奇数转变用作触发点以写入所述多个偶数转变。
10.一种用于在具有多个道的存储介质上生成定时模式的系统,所述系统包括:
用于在所述存储介质上的第一径向位置处写入第一批多个转变的装置;
用于确定所述第一批多个转变的所选对之间的时间间隔的装置;
用于确定每个所确定的时间间隔与一个预定正常间隔之间的偏差量以使所述第一批多个转变的每对所选对具有一个相应的确定的偏差量的装置;以及
用于在所述存储介质上的第二径向位置处写入第二批多个转变的装置,所述第二批多个转变中每个转变在所述第一批多个转变的前一个转变的相应时间延迟后写入,所述相应时间延迟由所述正常时间间隔和所述相应的所确定的偏差量的函数所确定,从而在写入所述第二批多个转变时减小与所述第一批多个转变的写入操作相关联的随机误差传播,并通过它减小在将所述第二批多个转变与相应的所述第一批多个转变进行对准中的随机误差。
11.权利要求10的系统,进一步包括用于重复下列装置的操作的装置:用于确定一个时间间隔,确定一个偏差量和为所述多个道的每条道写入第二批多个转变的装置。
12.权利要求10的系统,其中所述第二批多个转变包括于相应的第一时间延迟后写入的转变的第一部分和于相应的第二时间延迟后写入的转变的第二部分。
13.权利要求12的系统,其中所述第一时间延迟的每个延迟根据所述预定正常间隔和与所述第一批多个转变的一对转变有关的偏差量的函数而确定,以及其中所述第二批多个转变的所述第一部分的每一个对应于所述第一批多个转变的所述对之一。
14.权利要求12的系统,其中所述第一批多个转变的一对转变包括一个奇数转变和一个偶数转变。
15.权利要求14的系统,其中所述第二批多个转变的所述第二部分代表多个奇数转变及其中所述第二时间延迟的每个延迟包括一个预定正常间隔。
16.权利要求15的系统,其中将在所述第一径向位置处写入的所述偶数转变用作触发点写入所述多个奇数转变。
17.权利要求12的系统,其中所述第二批多个转变的所述第一部分代表多个偶数转变及其中所述第一时间延迟的每个延迟包括所述预定正常间隔加上与所述第一批多个转变的一对转变有关的一个偏差量的分数,及其中所述第二批多个转变的所述第一部分的每一个对应于所述第一批多个转变的所述对之一。
18.权利要求17的系统,其中将在所述第一径向位置处写入的所述奇数转变用作触发点写入所述多个偶数转变。
CNB951977709A 1995-03-13 1995-03-13 用于在存储介质上生成定时模式的方法和系统 Expired - Fee Related CN1147837C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB951977709A CN1147837C (zh) 1995-03-13 1995-03-13 用于在存储介质上生成定时模式的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB951977709A CN1147837C (zh) 1995-03-13 1995-03-13 用于在存储介质上生成定时模式的方法和系统

Publications (2)

Publication Number Publication Date
CN1178024A CN1178024A (zh) 1998-04-01
CN1147837C true CN1147837C (zh) 2004-04-28

Family

ID=5083340

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB951977709A Expired - Fee Related CN1147837C (zh) 1995-03-13 1995-03-13 用于在存储介质上生成定时模式的方法和系统

Country Status (1)

Country Link
CN (1) CN1147837C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170583B2 (ja) * 2019-05-17 2022-11-14 株式会社東芝 磁気記録装置及びその磁気ヘッド制御方法

Also Published As

Publication number Publication date
CN1178024A (zh) 1998-04-01

Similar Documents

Publication Publication Date Title
CN1207703C (zh) 用于确定系统误差值的方法和装置
CN1168090C (zh) 伺服控制系统、伺服模式设备及生成方法、存储系统
US8184393B1 (en) Self-servo-write using ramp-tracks
US7852598B1 (en) Self-servo-write using sloped tracks written using a calibrated current profile
US7002761B1 (en) Demodulation compensation for spiral servo tracks in hard disk drives
CN1103194A (zh) 直接存取存储设备中旋转执行器狐线补偿校正的方法和装置
CN1305026C (zh) 改善的自我伺服写入多时隙计时图案
US7133239B1 (en) Methods and apparatuses for writing spiral servo patterns onto a disk surface
CN1295681C (zh) 在盘驱动器中写伺服数据的方法和盘驱动器
CN1224962C (zh) 在磁盘驱动器上完成自伺服写的方法和装置
EP0743636A3 (en) Disk calibration method in CD-ROM drive system
CN1741137A (zh) 磁盘驱动器
CN1147837C (zh) 用于在存储介质上生成定时模式的方法和系统
CN1959810A (zh) 在磁盘驱动器中使用螺旋伺服信息进行伺服控制的方法和装置
CN1585025A (zh) 读写头控制方法和记录装置
CN1296898C (zh) 为在盘驱动器中写入伺服信息确定轨道间距的方法和设备
CN101047011A (zh) 定位控制装置的稳定判断方法、定位控制装置以及盘装置
US8300505B2 (en) Writing repeating patterns of features to a substrate
CN1300767C (zh) 利用伺服数据引导读/写数据磁道的方法及装置
JPH10504128A (ja) 記憶媒体にサーボ・パターンを書き込む方法およびシステム
CN1791938A (zh) 信息载体及设备
PL179076B1 (en) Method of and system for recording a servostandard in a recording device storage medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040428