CN114774448A - 一种功能性单链自组装rna纳米颗粒的制备方法 - Google Patents

一种功能性单链自组装rna纳米颗粒的制备方法 Download PDF

Info

Publication number
CN114774448A
CN114774448A CN202210386526.2A CN202210386526A CN114774448A CN 114774448 A CN114774448 A CN 114774448A CN 202210386526 A CN202210386526 A CN 202210386526A CN 114774448 A CN114774448 A CN 114774448A
Authority
CN
China
Prior art keywords
rna
assembled
self
nanoparticles
stranded self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210386526.2A
Other languages
English (en)
Inventor
金伟波
季伟东
吴方丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210386526.2A priority Critical patent/CN114774448A/zh
Publication of CN114774448A publication Critical patent/CN114774448A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种功能性单链自组装RNA纳米颗粒的制备方法,该方法利用生物合成的方法获得RNA纳米颗粒,其策略是利用RNAnano程序设计的单链自组装RNA纳米序列,然后将其编码的DNA序列构建成表达载体,导入到缺失RNaseⅢ的宿主中,经过宿主表达得到自组装RNA纳米颗粒。与外源蛋白质的原核表达相类似,单链自组装RNA纳米分子将在宿主体内通过转录合成、自组装折叠形成RNA纳米颗粒而不受RNA酶的降解,实现大量积累,实现功能性单链自组装RNA纳米颗粒的可持续、大规模的制备。

Description

一种功能性单链自组装RNA纳米颗粒的制备方法
技术领域
本发明涉及一种功能性单链自组装RNA纳米颗粒的制备方法。
背景技术
最近研究发现通过直接向植物或微生物喷施的dsRNA或siRNA可以进入植物或微生物体内,进而通过诱导RNAi机制来控制病虫草害。然而,由于裸露的RNA存在稳定性差,植物吸收效率低等问题。
因此这种通过喷洒诱导基因沉默(Spray-induced gene silence, SIGS)的效应在应用中需要递送载体,以提高dsRNA/siRNA的吸收效率。
近年来,RNA纳米技术领域迅速崛起。RNA作为一种独特的生物相容性材料被广泛用于通过自底向上的自组装构建纳米颗粒。通常情况下,RNA纳米颗粒可以方便地与siRNA或dsRNA结合,作为纳米载体递送dsRNA/siRNA进入生物体内发挥相应的生物学功能,已经在生物技术和生物医学应用中显示出巨大潜力。然而,目前,RNA纳米颗粒的制备停留在体外转录合成或化学合成手段,高昂的RNA生产成本与超大的田间用药量之间的矛盾是当前RNAi生物农药应用面临的最大问题。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的不足,利用生物合成方法获得RNA纳米颗粒,其策略是利用RNAnano程序设计的单链自组装RNA纳米序列,然后将其编码DNA序列构建成表达载体,导入到缺失RNaseⅢ的宿主中,经过宿主表达得到自组装RNA纳米颗粒。
进一步地,所述宿主包括但不限于大肠杆菌HT115(DE3)。例如,将一条单链自组装RNA纳米分子的编码DNA序列构建到原核表达载体pET28a的T7启动子下游,导入到大肠杆菌HT115(DE3)中,经IPTG诱导后,与外源蛋白质的原核表达相类似,单链自组装RNA纳米分子将在大肠杆菌体内通过转录合成、自组装折叠形成RNA纳米颗粒而不受RNA酶的降解,实现大量积累。
本发明的有益效果在于:单链自组装RNA纳米颗粒可利用大肠杆菌通过发酵进行大规模的制备,相比于传统的体外转录合成或化学合成的方式,成本更低,效率更高。
附图说明
图1为单链自组装RNA纳米颗粒在不同大肠杆菌中的合成分析,泳道M:DL2000;泳道1和3:RNA纳米载体;泳道2和4: pET28a空载体。
具体实施方式:
本实施例的目标在于快速大量合成如下序列的RNA纳米分子:
GGGCACGAGACCCGCGCCGAGCUUUUUUGGCACAAGCUGGAGUACAACUACAACGAGACCCGCGCCGAGCUUUUUUGCCUGGGGCACAAGCUGGAGUACAACGAGACCCGCGCCGAGCUUUUUUGCGGCCCCGUGCUGCUGCCCGACAACGAGACCCGCGCCGAGCUUUUUUGCCACAAGUUCAGCGUGUCCGGCGAAAGCGGUACGCCGGACACGCUGAACUUGUGGCGCUCGGCGCGGGUCUCGUUGUCGGGCAGCAGCACGGGGCCGCGCUCGGCGCGGGUCUCGUUGUACUCCAGCUUGUGCCCCAGGCGCUCGGCGCGGGUCUCGUUGUAGUUGUACUCCAGCUUGUGCCGCUCGGCGCGGGUCUCGUGCCCGAGCUCGUCCAUGCCGUGACGCUCGGCGCGGGAAACCGCUACCCGCGCCGAGCUUUUGCUUUUUUGUCACGGCAUGGACGAGCUC
按照如下步骤执行:
1.根据目标RNA纳米分子,可推导其编码的DNA序列如下:
GGGCACGAGACCCGCGCCGAGCTTTTTTGGCACAAGCTGGAGTACAACTACAACGAGACCCGCGCCGAGCTTTTTTGCCTGGGGCACAAGCTGGAGTACAACGAGACCCGCGCCGAGCTTTTTTGCGGCCCCGTGCTGCTGCCCGACAACGAGACCCGCGCCGAGCTTTTTTGCCACAAGTTCAGCGTGTCCGGCGAAAGCGGTACGCCGGACACGCTGAACTTGTGGCGCTCGGCGCGGGTCTCGTTGTCGGGCAGCAGCACGGGGCCGCGCTCGGCGCGGGTCTCGTTGTACTCCAGCTTGTGCCCCAGGCGCTCGGCGCGGGTCTCGTTGTAGTTGTACTCCAGCTTGTGCCGCTCGGCGCGGGTCTCGTGCCCGAGCTCGTCCATGCCGTGACGCTCGGCGCGGGAAACCGCTACCCGCGCCGAGCTTTTGCTTTTTTGTCACGGCATGGACGAGCTC
2.采用化学合成的方法得到步骤1所述的编码DNA序列。
3.构建表达RNA分子的原核表达载体:将步骤2合成的编码DNA序列的两侧分别引入Xba I和Xho I两个酶切位点。目标片段经化学合成后,插入到质粒载体pET28a的Xba I和Xho I两个酶切位点之间,得到重组质粒,然后通过测序证明,重组质粒的序列与目标序列完全一致。
4.目标RNA分子诱导表达及分离纯化:将上述重组质粒转化进入大肠杆菌HT115,挑取阳性重组克隆利用LB液体培养基、在37℃扩大培养至OD值达到0.4,加入IPTG诱导4 h。离心收集菌体,加入1/10体积的提取液重悬,加入等体积的水饱和酚以裂解细菌和变性蛋白质,离心10 min后,取上清至新管,加入等体积氯仿混匀后,再离心10 min,取上清得到所述的RNA纳米颗粒。
验证试验:
为了验证上述技术方案,我们将上述步骤2合成的编码DNA序列按照技术方案所述克隆进入原核表达载体pET28a的T7启动子下游,得到能够表达这3种RNA纳米的重组载体;然后将这些载体分别转化大肠杆菌BL(DE3)和缺失RNaseⅢ的大肠杆菌HT115(DE3)两种菌株,经IPTG诱导后,菌液用水饱和酚进行裂解,离心去上清电泳,结果如图1所示。
与pET28a空载体相比,编码单链自组装RNA纳米分子的表达载体在HT115(DE3)菌株体内诱导表达后出现了一条明显的特异条带,特异条带的亮度比大肠杆菌自身RNA的条带更亮,表明目的RNA在HT115中得到了表达并大量积累。
相反,利用BL(DE3)表达的RNA纳米颗粒,和pET28a一样,没有出现特异条带,表明该菌株不适合用于RNA纳米的生产。
以上实施例表明,本专利成功解决了RNA纳米载体生产成本较高的技术瓶颈,实现RNA纳米在大肠杆菌HT115(DE3)体内可持续、大规模的制备。
上述实例只是为说明本发明的技术特点,并不能以此限制本发明的保护范围。凡根据本发明的实质所做的RNA纳米在缺失RNaseⅢ的宿主体内的大规模生产,都应该涵盖在本发明的保护范围之内。
序列表
<110> 浙江理工大学
<120> 一种功能性单链自组装RNA纳米颗粒的制备方法
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 462
<212> RNA
<213> 未知(Unknown)
<400> 1
gggcacgaga cccgcgccga gcuuuuuugg cacaagcugg aguacaacua caacgagacc 60
cgcgccgagc uuuuuugccu ggggcacaag cuggaguaca acgagacccg cgccgagcuu 120
uuuugcggcc ccgugcugcu gcccgacaac gagacccgcg ccgagcuuuu uugccacaag 180
uucagcgugu ccggcgaaag cgguacgccg gacacgcuga acuuguggcg cucggcgcgg 240
gucucguugu cgggcagcag cacggggccg cgcucggcgc gggucucguu guacuccagc 300
uugugcccca ggcgcucggc gcgggucucg uuguaguugu acuccagcuu gugccgcucg 360
gcgcgggucu cgugcccgag cucguccaug ccgugacgcu cggcgcggga aaccgcuacc 420
cgcgccgagc uuuugcuuuu uugucacggc auggacgagc uc 462
<210> 2
<211> 462
<212> DNA
<213> 未知(Unknown)
<400> 2
gggcacgaga cccgcgccga gcttttttgg cacaagctgg agtacaacta caacgagacc 60
cgcgccgagc ttttttgcct ggggcacaag ctggagtaca acgagacccg cgccgagctt 120
ttttgcggcc ccgtgctgct gcccgacaac gagacccgcg ccgagctttt ttgccacaag 180
ttcagcgtgt ccggcgaaag cggtacgccg gacacgctga acttgtggcg ctcggcgcgg 240
gtctcgttgt cgggcagcag cacggggccg cgctcggcgc gggtctcgtt gtactccagc 300
ttgtgcccca ggcgctcggc gcgggtctcg ttgtagttgt actccagctt gtgccgctcg 360
gcgcgggtct cgtgcccgag ctcgtccatg ccgtgacgct cggcgcggga aaccgctacc 420
cgcgccgagc ttttgctttt ttgtcacggc atggacgagc tc 462

Claims (3)

1.一种功能性单链自组装RNA纳米颗粒的制备方法,其特征在于,该方法为,将编码DNA序列构建成表达载体,导入到缺失RNaseⅢ的宿主中,经过宿主表达得到自组装RNA纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于,所述宿主包括但不限于大肠杆菌HT115(DE3)。
3.根据权利要求1所述的制备方法,其特征在于,所述RNA纳米颗粒由一条长链RNA自组装折叠形成。
CN202210386526.2A 2022-04-11 2022-04-11 一种功能性单链自组装rna纳米颗粒的制备方法 Pending CN114774448A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210386526.2A CN114774448A (zh) 2022-04-11 2022-04-11 一种功能性单链自组装rna纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210386526.2A CN114774448A (zh) 2022-04-11 2022-04-11 一种功能性单链自组装rna纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN114774448A true CN114774448A (zh) 2022-07-22

Family

ID=82429978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210386526.2A Pending CN114774448A (zh) 2022-04-11 2022-04-11 一种功能性单链自组装rna纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN114774448A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876677A (zh) * 2012-09-28 2013-01-16 浙江大学舟山海洋研究中心 一种双链rna的制备方法
CN113151335A (zh) * 2021-05-27 2021-07-23 上海市农业科学院 一种微生物源双链rna的快速制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876677A (zh) * 2012-09-28 2013-01-16 浙江大学舟山海洋研究中心 一种双链rna的制备方法
CN113151335A (zh) * 2021-05-27 2021-07-23 上海市农业科学院 一种微生物源双链rna的快速制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖守军: "正在崛起的RNA纳米技术", 《生命的化学》, vol. 31, no. 2, pages 173 *

Similar Documents

Publication Publication Date Title
AU2012264606B2 (en) Transcription terminator sequences
Demirer et al. Delivering genes to plants
EP2401365A1 (en) Reengineering mrna primary structure for enhanced protein production
CN109136248B (zh) 多靶点编辑载体及其构建方法和应用
CN112004932B (zh) 一种CRISPR/Cas效应蛋白及系统
CN110404081B (zh) 一种DNA四面体和microRNA的纳米复合物
CN107177592A (zh) 抑制性tRNA通读提前终止密码子疾病中的截短蛋白
EP4281554A1 (en) Novel engineered and chimeric nucleases
CN114774448A (zh) 一种功能性单链自组装rna纳米颗粒的制备方法
CN105316314A (zh) 一种高纯度的微环dna及其制备方法和应用
CN110759986A (zh) 一种可逆自组装蛋白的高效制备方法
EP4223881A1 (en) Nucleic acid delivery method and system
CN103031328B (zh) 利用一种融合标签提高外源蛋白质的表达量
WO2023031856A1 (en) Compositions and methods for rna affinity purification
CN115850507A (zh) 一种正交、双组份蛋白质自组装偶联体系及其构建方法
US20220411792A1 (en) Nucleic acid compositions
CN117547618A (zh) 内腔装载小核酸药物的铁蛋白纳米笼载体及应用
CN110551702B (zh) 重组塔宾曲霉单宁酶及其表达和应用
CN110628802B (zh) 一种高产埃博霉素d的纤维堆囊菌及其构建方法和应用
EP3294276A1 (en) In vivo production of long double stranded rna utilizing vlps
CN114574494B (zh) 一种功能性rna纳米颗粒及其制备方法与应用
CN114349859B (zh) 抗EGFRvⅢ的纳米抗体EGFRvⅢ/Nb1-11及其制备方法与应用
JP2015180203A (ja) タンパク質生産の増強のためのmRNAの一次構造の再操作
WO2024046452A1 (en) Inclusion body mediated method for double-stranded rna producing
CN111363013B (zh) 多组分纳米颗粒簇的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination