CN114752908A - 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法 - Google Patents

一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法 Download PDF

Info

Publication number
CN114752908A
CN114752908A CN202210512470.0A CN202210512470A CN114752908A CN 114752908 A CN114752908 A CN 114752908A CN 202210512470 A CN202210512470 A CN 202210512470A CN 114752908 A CN114752908 A CN 114752908A
Authority
CN
China
Prior art keywords
metal
target
composite film
nonmetal
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210512470.0A
Other languages
English (en)
Inventor
王志博
张恩永
张冉
宋忠孝
骆瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210512470.0A priority Critical patent/CN114752908A/zh
Publication of CN114752908A publication Critical patent/CN114752908A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,该方法是通过射频磁控溅射共沉积技术制备金属/非金属复合结构薄膜,通过严格控制工艺过程中的非金属靶/金属靶功率比条件来实现对金属阵列尺寸、体积比的大范围调控;本工艺过程环境友好,简单易行,不需要借助模板,对基底无特殊要求,室温下即可得到的不同形态、尺寸和结晶态的金属/非金属垂直阵列结构,在医疗器械表面等领域都具有良好的应用潜力和前景,为垂直阵列结构的复合薄膜的高端医疗领域应用提供了新的技术思路。

Description

一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法
技术领域
本发明涉及一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜及其制备方法,属于金属/非金属复合薄膜制备技术领域;所制备材料用于留置型医疗器械,植入型医疗器械,手术刀以及手术剪等表面抗菌领域。
背景技术
适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜在留置型医疗器械,植入型医疗器械,手术刀以及手术剪等表面抗菌领域都有着广泛的用途,但其高效制备一直是个难题。电子束光刻、模板辅助电沉积、激光直写、聚焦离子束微加工等技术均用来尝试制备具有垂直阵列结构薄膜,但电子束光刻、激光直写以及聚焦离子束微加工这三种方法耗时耗力,不能大面积制备,并且其异常高昂的成本也难以接受。从成本角度来看,模板辅助电沉积,尤其是多孔氧化铝模板辅助的电沉积是最为可行的,然而多孔氧化铝模板本身的孔径尺寸限制了复合薄膜的特征尺寸,通常该方法适用于制备几百纳米到几微米的阵列结构,并且制备过程繁琐,同样无法实现大面积制备。尽管目前已有人开始探索使用气相沉积的方法进行制备,但是由于陶瓷-金属阵列结构的复杂性,很难控制纳米线阵列的尺寸和结晶性,而一般制备的陶瓷-金属阵列结构中的陶瓷阵列均是非晶态的,这也极大地限制了陶瓷-金属复合薄膜的广泛应用。因此,行业内亟需快速便捷的得到陶瓷-金属阵列薄膜,并使其阵列尺寸和结晶状态均可调控的方法。
公开号为CN105242334A的中国专利文献公开了一种宽谱超快非线性光学响应的多层金属陶瓷薄膜及其制备方法,所述的金属陶瓷薄膜是采用物理气相沉积法制备的,虽具有阵列结构,但其所制备的阵列尺寸仅在1.5nm左右,并且所得到的陶瓷阵列均为非晶结构,无法得到结晶态陶瓷。同时,陶瓷与金属靶溅射功率比过高,为6~20,高比例的陶瓷原子会干扰到金属阵列的原子排列,导致金属阵列中缺陷多,进而影响复合薄膜的质量。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,该方法是通过严格控制工艺参数,通过射频磁控共溅射技术制备金属/非金属复合结构薄膜;相比于需要借助模板来制备的传统工艺,如电化学沉积或化学液相沉积方法,本工艺采取环境友好的物理气相沉积技术,不需要借助模板,对基底无特殊要求。并且在常温下,通过严格控制沉积条件就可以得到尺寸可控、结晶性可控、具有垂直阵列结构的金属/非金属复合薄膜。
为达到上述目的,本发明采用以下技术方案予以实现:
适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,包括以下步骤:
1)对基底进行超声清洗和干燥处理,然后将其装夹在试样托盘上,并送入溅射腔体;
2)将金属靶材和非金属靶材安装在具有非平衡磁场的靶位上,并将溅射腔体抽至
3)以高纯氩气为工作气体,在预定温度下通过控制非金属靶和金属靶功率比范围为1.5:1~5:1,溅射金属靶和非金属靶,使材料原子沉积在以一定速度自转的试样盘上;
4)试样盘在溅射腔体中随炉冷却至室温后取出,获得具有垂直阵列结构的金属/非金属复合薄膜。
优选的,所述基底为P型单晶硅、蓝宝石、导电玻璃、PET、有机玻璃或石英片中的任意一种。
优选的,所述金属靶材料包括铜、银、金、铂、钌、铱、铑或铝;所述非金属靶材料包括氧化物、氮化物或碳化物;所述氧化物为氧化铝、氧化锌、氧化硅、氧化钛或氧化钨,所述氮化物为氮化硅、氮化铝、氮化钛或氮化锆,所述碳化物为碳化硅、碳化钛、碳化钨或碳化铬。
优选的,步骤2)中,本底真空度为1×10-5~3×10-4Pa。
优选的,步骤3)中,高纯氩气纯度为99.999%,工作气压为0.1~0.3Pa;溅射的预定温度为30~100℃。
优选的,步骤3)中,所述溅射过程,金属靶和非金属靶均使用射频电源溅射,其中金属靶的溅射功率范围为25~40W,非金属靶的溅射功率范围为50~130W。
优选的,步骤3)中,所述溅射过程,所加负偏压为-80~-100V,溅射时间为80~130min。
优选的,步骤3)中,试样盘的自转速度为10度/秒。
优选的,步骤4)中,样品的冷却在0.1~0.3Pa的氩气气氛下进行。
优选的,所得到的复合薄膜中,金属阵列为纳米晶结构,非金属阵列为纳米晶结构或非晶结构;金属阵列和非金属阵列交错排布,阵列尺寸在2~11nm,金属阵列体积比20%~70%。
本发明适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜及其制备方法,利用磁控共溅射技术,直接在基底上实现金属、非金属材料材料原子的有序沉积,从而得到具有垂直阵列结构的金属/非金属三维结构。
与现有技术相比,本发明具有以下优势:
1、本发明通过采用较低的非金属与金属靶功率比即可实现阵列薄膜的制备,可以减少金属阵列中的缺陷,提高复合薄膜质量。本发明得到的具有垂直阵列结构的复合薄膜中金属阵列的尺寸以及体积比的调控范围更宽,金属阵列尺寸可以从2nm调控至11nm,金属阵列体积比可以从20%调控至70%;且陶瓷阵列既可以是纳米晶结构又可以是非晶结构;
2、本发明对基底材料无特殊要求,常用的基底材料均可作为衬底,且不需要模板,可大面积制备;
3、本发明所采用的环境友好的物理气相沉积技术,可以原位的制备具有垂直阵列结构的金属/非金属复合薄膜,设备操作方便、效率高、可靠性高、成本低廉,且通过工艺的严格调控即可实现对阵列细节的调控,在留置型医疗器械,植入型医疗器械,手术刀以及手术剪等表面抗菌领域具有良好的应用前景。
附图说明
图1(a)-(c)为Al2O3/Cu复合薄膜的透射电镜照片及其电子衍射图样;
图2(a)-(c)为Al2O3/Ag复合薄膜的透射电镜照片及其电子衍射图样;
图3(a)-(c)为SiN/Cu复合薄膜1的透射电镜照片及其电子衍射图样;
图4(a)-(c)为SiN/Cu复合薄膜2的透射电镜照片及其电子衍射图样;
图5(a)-(c)为SiC/Cu复合薄膜1的透射电镜照片及其电子衍射图样;
图6(a)-(c)为SiC/Cu复合薄膜2的透射电镜照片及其电子衍射图样;
图7(a)-(c)为ZnO/Cu复合薄膜的透射电镜照片及其电子衍射图样。
具体实施方式
以下结合附图和实施例对本发明技术内容做进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
本发明一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,包括以下步骤:
1)对材料为P型单晶硅、蓝宝石、导电玻璃、PET、有机玻璃或石英片的基底进行超声清洗和干燥处理,然后将其装夹在试样托盘上,并送入溅射腔体;
2)将包括材料为铜、银、金、铂、钌、铱、铑或铝金属靶材和材料包括氧化铝、氧化锌、氧化钛或氧化钨的氧化物,包括氮化硅、氮化铝、氮化钛、氮化锆,或包括碳化硅、碳化钛、碳化钨或碳化铬的碳化物非金属靶材安装在具有非平衡磁场的靶位上,并将溅射腔体抽至预定的本底真空度至1×10-5~3×10-4Pa;
3)以纯度为99.999%高纯氩气作为工作气体,工作气压为0.1~0.3Pa;在预定温度为25~100℃温度下,按照非金属靶和金属靶功率比范围为1.5:1~5:1溅射金属靶和非金属靶,金属靶和非金属靶均使用射频电源溅射,其中金属靶的溅射功率范围为25~40W,非金属靶的溅射功率范围为50~130W,加负偏压为-80~-100V,溅射时间为90-120min;使材料原子沉积在以10度/秒速度自转的试样盘上;
4)试样盘在0.1~0.3Pa的氩气气氛下在溅射腔体中随炉冷却至室温后取出,获得具有垂直阵列结构的金属/非金属复合薄膜。
下面给出具体实施例来进一步说明本发明方法。
实施例1
Al2O3/Cu垂直阵列复合薄膜的制备:选用P型单晶硅(电阻率约为9-15Ω·cm,其上有一层厚度为2±0.5nm的氧化层)为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和氧化铝靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至2×10-4Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.15Pa,采用射频电源对铜靶和氧化铝靶进行共溅射,氧化铝和铜的功率分别为120W和40W,陶瓷、金属靶功率比为3:1,衬底温度为25℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-80V的负偏压,溅射时间为90min。样品在0.1Pa的氩气气氛下冷却。
所得复合薄膜的金属阵列体积比为50%,膜厚为110nm;由图1(a)可见Al2O3和Cu交错排布形成的阵列垂直度高;由图1(b)可见阵列尺寸为3nm左右;由图1(c)可见Al2O3阵列为非晶结构,Cu阵列为纳米晶构。
实施例2
Al2O3/Ag垂直阵列复合薄膜的制备:选用导电玻璃为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将银靶(纯度99.999%)和氧化铝靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至1×10-4Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.10Pa,采用射频电源对银靶和氧化铝靶进行共溅射,氧化铝和银的功率分别为120W和30W,陶瓷、金属靶功率比为4:1,衬底温度为100℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-100V的负偏压,溅射时间为60min。样品在0.3Pa的氩气气氛下冷却。
所得复合薄膜的金属阵列体积比为45%,膜厚为60nm;由图2(a)可见Al2O3和Ag交错排布形成的阵列垂直度高;由图2(b)可见阵列尺寸为4nm左右;由图2(c)可见Al2O3阵列为非晶结构,Ag阵列为纳米晶结构。
实施例3
SiN/Cu垂直阵列复合薄膜的制备:选用石英片为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和氮化硅靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至1×10-5Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.10Pa,采用射频电源对铜靶和氮化硅靶进行共溅射,氮化硅和铜的功率分别为100W和20W,陶瓷、金属靶功率比为5:1,衬底温度为60℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-80V的负偏压,溅射时间为90min。样品在0.2Pa的氩气气氛下冷却。
所得复合薄膜的金属阵列体积比为70%,膜厚为52nm;由图3(a)可见SiN和Cu交错排布形成的阵列垂直度高;由图3(b)可见阵列尺寸为3~5nm左右;由图3(c)可见SiN阵列为非晶结构,Cu阵列为纳米晶结构。
实施例4
SiN/Cu垂直阵列复合薄膜的制备:选用PET为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和氮化硅靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至8×10-5Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.15Pa,采用射频电源对铜靶和氮化硅靶进行共溅射,氮化硅和铜的功率分别为130W和40W,陶瓷、金属靶功率比为3.25:1,衬底温度为40℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-80V的负偏压,溅射时间为90min。样品在0.2Pa的氩气气氛下冷却。
所得复合薄膜的金属阵列体积比为45%,膜厚为168nm;由图4(a)可见SiN和Cu交错排布形成的阵列垂直度高;由图4(b)可见阵列尺寸为3nm左右;由图4(c)可见SiN阵列为非晶结构,Cu阵列为纳米晶结构。
实施例5
SiC/Cu垂直阵列复合薄膜的制备:选用蓝宝石为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和碳化硅靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至3×10-4Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.3Pa,采用射频电源对铜靶和氮化硅靶进行共溅射,碳化硅和铜的功率分别为85W和20W,陶瓷、金属靶功率比为4.25:1,衬底温度为60℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-90V的负偏压,溅射时间为120min。
所得复合薄膜的金属阵列体积比为25%,膜厚为74nm;由图5(a)可见SiC和Cu交错排布形成的阵列垂直度高;由图5(b)可见阵列尺寸为4nm左右;由图5(c)可见SiC阵列为非晶结构,Cu阵列为纳米晶结构。
实施例6
SiC/Cu垂直阵列复合薄膜的制备:选用P型硅为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和碳化硅靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至2×10-5Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.2Pa,采用射频电源对铜靶和氮化硅靶进行共溅射,碳化硅和铜的功率分别为120W和40W,陶瓷、金属靶功率比为3:1,衬底温度为25℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-100V的负偏压,溅射时间为80min。
所得复合薄膜的金属阵列体积比为58%,膜厚为148nm;由图6(a)可见SiC和Cu交错排布形成的阵列垂直度高;由图6(b)可见阵列尺寸为7~11nm左右;由图6(c)可见SiC阵列为非晶结构,Cu阵列为纳米晶结构。
实施例7
ZnO/Cu垂直阵列复合薄膜的制备:选用有机玻璃为衬底,依次在丙酮、无水乙醇、去离子水中超声15min,在氮气气氛下进行烘干处理,烘干后将衬底装夹在试样托盘上后,送入溅射腔体。然后将铜靶(纯度99.999%)和氧化锌靶(纯度99.99%)分别安装在非平衡磁控靶位上,将溅射腔体的本底真空度抽至1×10-5Pa之后开始镀膜操作。通入Ar(纯度99.999%)气并保持工作气压在0.3Pa,采用射频电源对铜靶和氧化锌靶进行共溅射,氧化锌和铜的功率分别为45W和40W,陶瓷、金属靶功率比为1.25:1,衬底温度为100℃,打开试样盘的自转开关,使衬底其以10度/秒的速度旋转,溅射过程中施加-100V的负偏压,溅射时间为90min。
所得复合薄膜的金属阵列体积比为20%,膜厚为135nm;由图7(a)可见ZnO和Cu交错排布形成的阵列垂直度高;由图7(b)可见阵列尺寸为2nm左右;由图7(c)可见ZnO阵列为纳米晶结构,Cu阵列也为纳米晶结构。
本发明采用的金属靶材料不限于上述铜、银材料,还可以采用金、铂、钌、铱、铑或铝金属靶材;本发明采用的非金属靶材料不限于上述材料,还可以采用氧化硅、氧化钛、氧化钨、氮化铝,氮化钛、氮化锆、碳化钛、碳化钨或碳化铬非金属靶材。
下述表1给出了本发明方法制备的具有垂直阵列结构的金属/非金属复合薄膜与其他公开文献中案例的对比。
表1
Figure 756390DEST_PATH_IMAGE002
从上述对比可以看出,经本发明方法得到的具有垂直阵列结构的金属/非金属复
合薄膜的金属阵列尺寸可以从2nm调整至11nm,金属阵列体积比可以从20%调整至70%,扩展了调控的上限,同时得到的非金属阵列既可以是非晶、又可以是纳米晶,拓展了金属/非金属垂直阵列结构的存在形态。仅用较低的陶瓷金属靶功率比即可实现阵列薄膜的制备,可以减少金属阵列中的缺陷,提高复合薄膜质量。本制备工艺得到的具有抗菌性能的垂直阵列结构的金属/非金属复合薄膜在留置型医疗器械,植入型医疗器械,手术刀以及手术剪等表面抗菌领域具有良好的应用前景。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可以利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

1.一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,包括以下步骤:
1)对基底进行超声清洗和干燥处理,然后将其装夹在试样托盘上,并送入溅射腔体;
2)将金属靶材和非金属靶材安装在具有非平衡磁场的靶位上,并将溅射腔体抽至预定的本底真空度;
3)以高纯氩气为工作气体,在预定温度下通过控制非金属靶和金属靶功率比范围为
1.5:1~5:1,溅射金属靶和非金属靶,使材料原子沉积在以一定速度自转的试样盘上;
4)试样盘在溅射腔体中随炉冷却至室温后取出,获得具有垂直阵列结构的金属/非金属复合薄膜;
步骤2)中,本底真空度为1×10-5~3×10-4Pa;步骤3)中,工作气压为0.1~0.3Pa;溅射的预定温度为30~100℃;步骤3)中,所述溅射过程,所加负偏压为-80~-100V,溅射时间为80~130min。
2.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,所述基底为P型单晶硅、蓝宝石、导电玻璃、PET、有机玻璃或石英片中的任意一种。
3.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,所述金属靶材料包括铜、银、金、铂、钌、铱、铑或铝;所述非金属靶材料包括氧化物、氮化物或碳化物;所述氧化物为氧化铝、氧化锌、氧化硅、氧化钛或氧化钨,所述氮化物为氮化硅、氮化铝、氮化钛或氮化锆,所述碳化物为碳化硅、碳化钛、碳化钨或碳化铬。
4.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,步骤3)中,高纯氩气纯度为99.999%。
5.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,步骤3)中,所述溅射过程,金属靶和非金属靶均使用射频电源溅射,其中金属靶的溅射功率范围为20~40W,非金属靶的溅射功率范围为50~130W。
6.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,步骤3)中,试样盘的自转速度为10度/秒。
7.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,步骤4)中,样品的冷却在0.1~0.3Pa的氩气气氛下进行。
8.根据权利要求1所述的一种适用于医疗器械的具有垂直阵列结构的金属/非金属复合薄膜的制备方法,其特征在于,所得到的复合薄膜中,金属阵列为纳米晶结构,非金属阵列为纳米晶结构或非晶结构;金属阵列和非金属阵列交错排布,阵列尺寸在2~11nm,金属阵列体积比20%~70%。
CN202210512470.0A 2022-05-12 2022-05-12 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法 Pending CN114752908A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210512470.0A CN114752908A (zh) 2022-05-12 2022-05-12 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210512470.0A CN114752908A (zh) 2022-05-12 2022-05-12 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN114752908A true CN114752908A (zh) 2022-07-15

Family

ID=82335247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210512470.0A Pending CN114752908A (zh) 2022-05-12 2022-05-12 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN114752908A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233159A (zh) * 2022-08-05 2022-10-25 中国科学院光电技术研究所 一种低粗糙度和介电常数可控的银膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233159A (zh) * 2022-08-05 2022-10-25 中国科学院光电技术研究所 一种低粗糙度和介电常数可控的银膜及其制备方法
CN115233159B (zh) * 2022-08-05 2023-11-17 中国科学院光电技术研究所 一种低粗糙度和介电常数可控的银膜及其制备方法

Similar Documents

Publication Publication Date Title
CN107740058B (zh) 具有垂直阵列结构的金属/非金属复合薄膜的制备方法
CN108707871B (zh) 一种具有超疏水特性的金属/非金属复合薄膜的制备方法
TWI248469B (en) Manufacturing method of zinc oxide nanowires
CN114752908A (zh) 一种具有垂直阵列结构的金属/非金属复合薄膜的制备方法
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
CN105887038A (zh) 一种掺硼金刚石刻蚀的方法
Muslim et al. Influence of sputtering power on properties of titanium thin films deposited by RF magnetron sputtering
CN109972082A (zh) 采用闭合场-磁控溅射沉积技术制备碳基多层薄膜的方法
Liu et al. Microstructural evolution and formation of highly c-axis-oriented aluminum nitride films by reactively magnetron sputtering deposition
CN105316634A (zh) 一种Cr-B-C-N纳米复合薄膜的制备方法
JP3603112B2 (ja) アルミナ結晶質薄膜の低温製法
Hofer-Roblyek et al. Linking erosion and sputter performance of a rotatable Mo target to microstructure and properties of the deposited thin films
Ghasemi et al. Structural and morphological properties of TiN deposited by magnetron sputtering
JP3971336B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法
CN106119796A (zh) 一种非晶金刚石涂层的制备方法
CN108149198B (zh) 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN102051497A (zh) 金银镶嵌靶材及其薄膜的制备方法
KR101695590B1 (ko) 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법
CN114672779A (zh) 一种TiB2/Ti复合涂层的制备方法
CN112038481B (zh) 重稀土掺杂ZnO柱状晶择优取向压电薄膜材料及其制备方法
CN104831248B (zh) 无模板制备大比表面积铜颗粒膜复合材料的方法
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
CN112011773B (zh) 一种硅酸钇涂层及其制备方法与应用
Ortner et al. Influence of bias voltage on the structure of lead zirconate titanate piezoelectric films prepared by gas flow sputtering
WO2023249493A1 (en) Process for producing single crystal-like silver films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220715

WD01 Invention patent application deemed withdrawn after publication