CN114752830A - 一种Al-Zn型电机转子合金及其制备方法与应用 - Google Patents

一种Al-Zn型电机转子合金及其制备方法与应用 Download PDF

Info

Publication number
CN114752830A
CN114752830A CN202210290184.4A CN202210290184A CN114752830A CN 114752830 A CN114752830 A CN 114752830A CN 202210290184 A CN202210290184 A CN 202210290184A CN 114752830 A CN114752830 A CN 114752830A
Authority
CN
China
Prior art keywords
alloy
motor rotor
rotor alloy
rotor
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210290184.4A
Other languages
English (en)
Other versions
CN114752830B (zh
Inventor
郑广会
赵培振
陆松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Boyuan Precision Machinery Co ltd
Original Assignee
Shandong Boyuan Precision Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Boyuan Precision Machinery Co ltd filed Critical Shandong Boyuan Precision Machinery Co ltd
Priority to CN202210290184.4A priority Critical patent/CN114752830B/zh
Publication of CN114752830A publication Critical patent/CN114752830A/zh
Application granted granted Critical
Publication of CN114752830B publication Critical patent/CN114752830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本申请公开了一种Al‑Zn型电机转子合金及其制备方法与应用,属于电机转子合金技术领域。该电机转子合金包括1.0‑2.5wt%的Zn,其余为Al,将铝液升温至700‑750℃,加入1.0‑2.5wt%的纯锌得到溶体,在710‑740℃下对溶体进行精炼;将精炼后的溶体静置,在715‑730℃下进行离心浇铸,即得到所述Al‑Zn型电机转子合金。Zn元素能够固溶于Al基材中,能够提高合金强度和导电率,通过离心铸造工艺降低转子合金中的气泡含量,制备得到的转子合金孔隙率低。

Description

一种Al-Zn型电机转子合金及其制备方法与应用
技术领域
本申请涉及一种Al-Zn型电机转子合金及其制备方法与应用,属于电机转子合金技术领域。
背景技术
随着经济和社会的发展,汽车已逐渐进入寻常百姓家,成为人们出行生活的必备工具。新能源汽车能够有效解决地球能源的消耗和环境恶劣等问题,因此新能源汽车逐渐成为研究重点,新能源汽车中所使用的电机转子往往是铝材质,铝质电机转子通常是将铝升温至熔点得到均匀的金属铝液,再使用压力铸铝或离心铸铝的方式将金属铝液注入铝模中,冷却凝固即可。
目前的铸铝转子中,通过向铝液中加入多种其他金属元素,以提高电机转子合金电学性能和力学性能,但是现有的多种金属元素加入至铝液中,不仅会造成成本增加,难以大规模化生产,还会导致其他金属元素在铝液中形成不同的合金组织,不同合金组织之间彼此存在间隙,会造成转子合金微相结构分离,使得转子合金中存在较多的气泡,最终导致电学性能和力学性能下降。
发明内容
为了解决上述问题,提供了一种Al-Zn型电机转子合金及其制备方法,该转子合金采用高纯铝和Zn元素制备得到,Zn元素能够固溶于Al基材中,通过固溶强化,能够提高合金强度,通过离心铸造工艺降低转子合金中的气泡含量,制备得到的转子合金孔隙率低。
根据本申请的一个方面,提供了一种Al-Zn型电机转子合金,其特征在于,包括1.0-2.5wt%的Zn,其余为Al。
可选地,所述Al-Zn型电机转子合金包括1.5-2.0wt%的Zn,其余为Al。
优选的,所述Al-Zn型电机转子合金包括2.0wt%的Zn,其余为Al。
可选地,所述Al-Zn型电机转子合金的孔隙率为2%-6%,优选为2%;
根据本申请的另一个方面,提供了一种上述任一项所述的Al-Zn型电机转子合金的制备方法,包括下述步骤:
(1)将铝液升温至700-750℃,加入1.0-2.5wt%的纯锌得到溶体,在710-740℃下对溶体进行精炼;
(2)将精炼后的溶体静置,在715-730℃下进行离心浇铸,即得到所述Al-Zn型电机转子合金。
可选地,步骤(1)中,所述精炼为向所述溶体中旋转喷吹氮气,加入0.5-1.0wt%的六氯乙烷精炼剂,所述氮气的吹气压力为0.5-2Mpa,精炼时间为15-30min,精炼后扒渣再静置。
可选地,所述六氯乙烷精炼剂的加入量为0.8wt%;所述氮气的一段吹气压力为1.5-2.0Mpa,精炼时间为10-20min;所述氮气的二段吹气压力为0.5-1.0Mpa,精炼时间为5-15min。
可选地,所述静置时间为30min以上。
可选地,步骤(2)中,所述离心浇铸步骤为:将模具预热至710-740℃,离心转速为200-300r/min,浇铸温度为715-730℃,待合金凝固后,铸造设备停止旋转,自然冷却至室温后得到所述Al-Zn型电机转子合金。
可选地,所述自然冷却的冷却速度为1-2℃/min,冷却时间为6-12h。
可选地,所述离心浇铸自然冷却后得到铸件,所述铸件经过热处理后得到所述Al-Zn型电机转子合金;
所述热处理步骤为:将所述铸件一次升温至450-550℃,处理6-10h后进行水冷淬火,之后再将所述铸件二次升温至150-200℃,保温18-24h后空气冷却,即得所述Al-Zn型电机转子合金。
可选地,所述自然冷却的冷却速度为1-2℃/min,冷却时间为6-12h。
优选的,所述自然冷却的冷却速度为2℃/min,冷却时间为6-7h。
可选地,所述一次升温的升温速率为100-120℃/h;优选为100℃/h。
所述二次升温的升温速率为30-40℃/h,优选为30℃/h。
所述淬火转移时间<20s。
可选地,所述一次升温的升温速率与所述二次升温的升温速率的差值为60-80℃/h。
可选地,所述水冷淬火的冷却速度为25-35℃/s,冷却时间为12-22s;
所述空气冷却的冷却速度为1-2℃/min,冷却时间为1.2-3.5h。
优选的,所述热处理步骤为:将所述铸件以100℃/h的升温速率一次升温至500℃,处理9h后进行水冷淬火,水冷淬火的降温速率为30℃/s,冷却时间为15s;之后再将所述铸件以30℃/h的升温速率二次升温至180℃,保温20h后空气冷却,空气冷却的降温速率为1℃/min,冷却时间为3h,即得所述Al-Zn型电机转子合金。
铸造状态下,Al-Zn合金组织尺寸一般较大,多为微米级,强化效果较弱;通过高温保温过程使合金元素固溶进基体,再通过快速冷却形成过饱和固溶体,第二次升温到150-200℃的保温过程中,过饱和固溶体中析出纳米级第二相,能够明显提高合金强度,并且细化Al-Zn合金组织,使得转子合金相的尺寸变小,强化效果得到提高,同时合金元素的析出,减小了铝晶格的畸变,有利于提高合金的导电率。
上述离心浇铸后,所述Al-Zn型电机转子合金的屈服强度大于45MPa;抗拉强度大于80MPa,导电率大于31MS/m,200℃服役1000h变形量为0.2%的蠕变极限为8MPa,200℃服役1000h变形量为0.2%的疲劳极限为13MPa,200℃保温100h的强度损失率<10%。
热处理之后,Al-Zn型电机转子合金的屈服强度大于65MPa;抗拉强度大于110MPa,导电率大于33MS/m,200℃服役1000h变形量为0.2%的蠕变极限为10MPa,200℃服役1000h变形量为0.2%的疲劳极限为15MPa,200℃保温100h的强度损失率<8%。
根据本申请的另一个方面,提供了一种上述任一项所述的Al-Zn型电机转子合金或上述任一项所述的制备方法制备得到的所述Al-Zn型电机转子合金的应用,其适用于新能源电机转子。
本申请的有益效果包括但不限于:
1.根据本申请的Al-Zn型电机转子合金,只添加一种Zn元素,可降低转子合金的成本,用于大规模化生产电机转子,并且Zn元素能够最大限度的固溶于铝基材中,强化转子合金的力学性能。
2.根据本申请的Al-Zn型电机转子合金,Zn元素与Al元素生成单一且均匀的合金组织,能够提高转子合金在微观上的均匀性,Zn元素经过热处理之后,固溶量减小,转子合金的导电率得以提升,可用于高导电需求的场所。
3.根据本申请的Al-Zn型电机转子合金的制备方法,该制备工艺步骤简单,原料易得,便于工业上大批量生产加工,同时所用金属元素单一,能够降低转子合金中的杂质含量,降低合金中第二相的尺寸,从而提高转子合金的力学性能。
4.根据本申请的Al-Zn型电机转子合金的制备方法,采用离心铸造工序,能够改变转子合金的微观尺寸,降低转子合金的孔隙率,提高转子合金的耐热性,制备得到的转子合金可在高温场所下使用,极限使用温度为200℃。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
实施例1
本实施例涉及一种Al-Zn型电机转子合金的制备方法,包括下述步骤:
(1)将铝液升温至700-750℃,加入0.6-1.2wt%的纯铜得到溶体,在710-740℃下对溶体进行精炼;
(2)将精炼后的溶体静置30min以上,将模具预热至710-740℃,离心转速为200-300r/min,在715-730℃下进行离心浇铸,待合金凝固后,铸造设备停止旋转,以1-2℃/min的冷却速率冷却6-12h后得到Al-Zn型电机转子合金。
按照上述制备方法制备得到转子合金1#-9#和对比转子合金D1#-D4#,具体制备方法的不同之处见下表1。
表1
Figure BDA0003561515920000051
Figure BDA0003561515920000061
实施例2
本实施例在实施例1制备方法的基础上,增加了对铸件的热处理步骤,转子合金1#经过上述离心浇铸后得到铸件,将铸件以100-120℃/h的升温速率一次升温至450-550℃,处理6-10h后进行水冷淬火,水冷淬火的降温速率为25-35℃/s,冷却时间为12-22s;之后再将所述铸件以30-40℃/h的升温速率二次升温至150-200℃,保温18-24h后空气冷却,空气冷却的降温速率为1-2℃/min,冷却时间为1.2-3.5h,即得Al-Zn型电机转子合金。
按照上述热处理步骤,对转子合金1#再进行处理得到转子合金10#-14#,具体制备方法的不同之处见下表2。
表2
Figure BDA0003561515920000071
实验例
将上述转子合金1#-14#和对比转子合金D1#-D4#分别对各自端面取样,进行性能测试,电导率试样尺寸符合GB/T12966 2008要求并进行电导率测试,力学性能测试试样尺寸标准符合ASTM E8并进行拉伸性能分析,具体测试结果见下表2:
表2
Figure BDA0003561515920000072
Figure BDA0003561515920000081
根据表1及表2的制备条件及测试数据可知,在铝液中加入1.0-2.5wt%的Zn元素,能够降低转子合金中的杂质含量,明显提高转子合金的强度和导电率,离心铸造工艺能够细化合金组织,降低转子合金的孔隙率,并且提高转子合金的耐热性,为转子合金在高温场所下的长期使用提供了可能。
转子合金1#与转子合金2#-3#、对比转子合金D1#相比,Zn元素的含量发生改变,其力学性能、电导率、孔隙率和耐热性发生改变,原因在于,Zn元素过高,会造成Zn元素的固溶量增多,降低电导率,并且转子合金中气体残留增多,孔隙率上升,Zn元素过低,则不足以形成均匀且细致的合金相,力学性能无法得到加强,转子合金1#与对比转子合金D2#相比,还含有其他金属元素,加入的其他元素能够破坏转子合金的微相结构,使得不同合金组织之间存在间隙,从而导致转子合金的孔隙率升高,力学性能、电导率和耐热性变差。
转子合金1#与转子合金4#相比,铝液的温度发生改变,转子合金4#相比于转子合金1#的各方面性能变差,铝液温度过低,将会影响铝液的精炼过程,导致铝液中杂质增多,从而电学性能和力学性能下降。
转子合金1#与转子合金5#和对比转子合金D3#相比,精炼条件发生改变,转子合金5#和对比转子合金D3#相比于转子合金1#的各方面性能变差,精炼的一段吹气压力高,能够对铝液进行充分精炼,二段吹气压力偏低,在保证继续精炼的同时,能够降低铝液中的气体,降低转子合金的孔隙率,若二段吹气压力比一段吹气压力高,则铝液中会溶入较多的气体,进而降低转子合金的致密性,使得电学性能和力学性能下降。
转子合金1#与转子合金6#-9#和对比转子合金D4#相比,离心浇铸条件发生改变,转子合金6#-8#和对比转子合金D4#相比于转子合金1#的各方面性能变差,模具的温度比铝液温度高,则浇铸过程中铝液再次升温,容易出现受热不均的现象,影响转子合金的均匀性,离心转速变低,则会降低铝液中气体排出速率,并且延缓转子合金的结晶,使得转子合金内部出现晶格畸变,离心转速过快,则转子合金结晶速度过快,则转子合金的内部的晶型不完善,晶格缺陷增多,浇铸温度偏低,则铝液在浇铸时流动性变差,转子合金中气体残留增多,浇铸温度偏高则铝液与模具的温差变大,铝液在浇铸过程中容易冷凝过快,同样会造成晶格缺陷增多,离心铸造的冷却速度增大,则会使得转子合金中热应力释放不完全,转子合金内部存在一定的应力,从而力学性能变差,同时铝液中的气体排出率变低,使得转子合金的孔隙率升高。
转子合金1#与转子合金10#-14#相比,改变的是热处理工艺,其中转子合金13#未经过热处理工艺进行处理,转子合金10#-14#与转子合金1#相比各方面性能增强,热处理能够使得转子合金的晶相更加完整,合金组织更为致密。一次升温的条件能够影响合金元素在基体中的固溶量,从而间接影响水冷淬火后的过饱和固溶体的含量,水冷淬火的冷却速度直接影响过饱和固溶体的含量,若过饱和固溶体的含量降低,则在二次升温中会降低纳米级合金相的数量,从而降低Zn元素对转子合金的强化效果,降低转子合金的性能;二次升温的条件能够影响合金组织的尺寸,改变铝晶格的畸变的数量,最终影响转子合金的导电率和耐热性。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种Al-Zn型电机转子合金,其特征在于,包括1.0-2.5wt%的Zn,其余为Al。
2.根据权利要求1所述的Al-Zn型电机转子合金,其特征在于,包括1.5-2.0wt%的Zn,其余为Al。
3.根据权利要求1所述的Al-Zn型电机转子合金,其特征在于,所述Al-Zn型电机转子合金的孔隙率为2%-6%;
屈服强度大于15MPa;
抗拉强度大于90MPa。
4.一种权利要求1-3任一项所述的Al-Zn型电机转子合金的制备方法,其特征在于,包括下述步骤:
(1)将铝液升温至700-750℃,加入1.0-2.5wt%的纯锌得到溶体,在710-740℃下对溶体进行精炼;
(2)将精炼后的溶体静置,在715-730℃下进行离心浇铸,即得到所述Al-Zn型电机转子合金。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述精炼为向所述溶体中旋转喷吹氮气,加入0.5-1.0wt%的六氯乙烷精炼剂,所述氮气的吹气压力为0.5-2Mpa,精炼时间为15-30min,精炼后扒渣再静置。
6.根据权利要求5所述的制备方法,其特征在于,所述氮气吹气的一段吹气压力为1.5-2Mpa,精炼时间为10-20min;所述氮气的二段吹气压力为0.5-1.0Mpa,精炼时间为5-15min。
7.根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述六氯乙烷精炼剂的加入量为0.8wt%。
8.根据权利要求7所述的制备方法,其特征在于,所述静置时间为30min以上;和/或
步骤(2)中,所述离心浇铸步骤为:将模具预热至710-740℃,离心转速为200-300r/min,浇铸温度为715-730℃,待合金凝固后,铸造设备停止旋转,自然冷却至室温后得到所述Al-Zn型电机转子合金。
9.根据权利要求1所述的制备方法,其特征在于,所述自然冷却的冷却速度为1-2℃/min,冷却时间为6-12h。
10.一种如权利要求1-3任一项所述的Al-Zn型电机转子合金或权利要求4-9任一项所述的制备方法制备得到的所述Al-Zn型电机转子合金的应用,其特征在于,其适用于新能源电机转子。
CN202210290184.4A 2022-03-23 2022-03-23 一种Al-Zn型电机转子合金及其制备方法与应用 Active CN114752830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210290184.4A CN114752830B (zh) 2022-03-23 2022-03-23 一种Al-Zn型电机转子合金及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210290184.4A CN114752830B (zh) 2022-03-23 2022-03-23 一种Al-Zn型电机转子合金及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114752830A true CN114752830A (zh) 2022-07-15
CN114752830B CN114752830B (zh) 2023-01-31

Family

ID=82327318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210290184.4A Active CN114752830B (zh) 2022-03-23 2022-03-23 一种Al-Zn型电机转子合金及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114752830B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747890A (en) * 1986-07-24 1988-05-31 Societe Metallurgieque De Gerzat Al-base alloy hollow bodies under pressure
CN102459674A (zh) * 2009-05-08 2012-05-16 诺夫利斯公司 铝平版印刷片
CN108265212A (zh) * 2018-04-13 2018-07-10 西安石油大学 一种用超声波震荡铸造制备高强可溶解铝合金材料的方法
CN113369453A (zh) * 2021-05-31 2021-09-10 东北大学 一种基于真空离心铸造的铝合金板带材制备方法及真空离心铸造装置
CN113462938A (zh) * 2021-07-16 2021-10-01 合肥工业大学 一种高强度梯度微合金化铝合金材料的制备方法
CN114042883A (zh) * 2021-11-02 2022-02-15 山东博源精密机械有限公司 一种新能源汽车电机转子铝合金的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747890A (en) * 1986-07-24 1988-05-31 Societe Metallurgieque De Gerzat Al-base alloy hollow bodies under pressure
CN102459674A (zh) * 2009-05-08 2012-05-16 诺夫利斯公司 铝平版印刷片
CN108265212A (zh) * 2018-04-13 2018-07-10 西安石油大学 一种用超声波震荡铸造制备高强可溶解铝合金材料的方法
CN113369453A (zh) * 2021-05-31 2021-09-10 东北大学 一种基于真空离心铸造的铝合金板带材制备方法及真空离心铸造装置
CN113462938A (zh) * 2021-07-16 2021-10-01 合肥工业大学 一种高强度梯度微合金化铝合金材料的制备方法
CN114042883A (zh) * 2021-11-02 2022-02-15 山东博源精密机械有限公司 一种新能源汽车电机转子铝合金的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵朝会等编著: "《电机制造工艺学》", 31 May 2018, 上海科学技术文献出版社 *

Also Published As

Publication number Publication date
CN114752830B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN114086033B (zh) 一种超耐热铝合金导线及其制备方法
CN114042883B (zh) 一种新能源汽车电机转子铝合金的制备方法
CN1503850A (zh) 大直径镍基合金铸块的制造方法
CN106521378B (zh) 一种铝硅镁合金压铸件节能高效热处理方法
CN114672702A (zh) 一种特耐热铝合金单丝
CN109234552B (zh) 一种压力下凝固制备高Cu含量Al-Cu合金的方法
CN112030045B (zh) 一种亚共晶铝硅合金及其制备方法
CN104911413A (zh) 铝硅系合金及其生产方法
CN110819863B (zh) 一种低稀土高导热镁合金及其制备方法
CN115558825A (zh) 一种高导热、高强韧压铸铝合金及其制备方法
CN114318032B (zh) 一种高强高导铜合金Cu-Cr-Zr-Nb的制备方法
CN109825747A (zh) 一种低成本高挤压性易切削含铋铝合金及其制备方法
CN113736970A (zh) 一种高抗软化铜铬锆合金棒制备方法
CN111378882B (zh) 一种高导热性能压铸镁合金材料及其制备方法
CN111690846A (zh) 一种超硬6026铝合金型材生产工艺
CN114752830A (zh) 一种Al-Zn型电机转子合金及其制备方法与应用
CN114959368B (zh) 一种Al-Fe型电机转子合金及其制备方法与应用
CN114807700B (zh) 一种Al-Cu型电机转子合金及其制备方法与应用
CN115233024A (zh) 一种耐热铝合金导线及其制备方法
CN113774240A (zh) 一种使过共晶铝硅合金共晶凝固离异化的方法
CN114774742B (zh) 一种Al-Mg型电机转子合金及其制备方法与应用
CN113789453A (zh) 通过Mn微合金化提高耐热铝合金高温强度的方法
CN114941089B (zh) 一种高强高导电率的Al-Zr-Si型铝合金
CN114959387B (zh) 一种高强度耐热铸造铝合金及其制备方法
CN110643843A (zh) 一种软铝线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant