CN114749706A - 一种基于数控铣床的加工精度控制方法及其应用 - Google Patents

一种基于数控铣床的加工精度控制方法及其应用 Download PDF

Info

Publication number
CN114749706A
CN114749706A CN202210349393.1A CN202210349393A CN114749706A CN 114749706 A CN114749706 A CN 114749706A CN 202210349393 A CN202210349393 A CN 202210349393A CN 114749706 A CN114749706 A CN 114749706A
Authority
CN
China
Prior art keywords
error
machining precision
milling machine
control method
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210349393.1A
Other languages
English (en)
Inventor
施龙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Zhixing Model Technology Co ltd
Original Assignee
Suzhou Zhixing Model Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Zhixing Model Technology Co ltd filed Critical Suzhou Zhixing Model Technology Co ltd
Priority to CN202210349393.1A priority Critical patent/CN114749706A/zh
Publication of CN114749706A publication Critical patent/CN114749706A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2291Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the workpiece relative to the holder thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

本发明涉及数控铣床设备技术领域,具体为一种基于数控铣床的加工精度控制方法及其应用。本发明所述的双切片重定位控制方法具体为:在工件使用侧切切片铣削之前进行加工精度误差预标定;当侧切切片对加工件铣削过程中,进行加工件加工精度误差实时调整;之后在加工件使用横切切片铣削之前再次进行加工精度误差预标定;最后在横切切片对加工件铣削过程中,进行加工件加工精度误差实时调整,通过将静态误差补偿与动态误差补偿相结合用以纠正加工件的加工精度。本发明用以保证加工件的切削精度较少的受到加工过程,刀具加工误差以及加工工艺等外在因素的影响,在提升加工效率的同时更好的保证加工件的加工精度。

Description

一种基于数控铣床的加工精度控制方法及其应用
技术领域
本发明涉及数控铣床设备技术领域,IPC分类号为:B23C9/00,具体为一种基于数控铣床的加工精度控制方法及其应用。
背景技术
现阶段,一些小型产品在加工过程中为了便于后期的组装与应用,对加工精度的要求非常高。但是现有的数控铣床的在加工过程中,由于机床自身的结构以及外界环境的影响,通常会存在加工不准确,加工误差较大的问题,无法更好的满足实际产品的需要,因此,如何更好的提高数控铣床的加工精度,逐渐成为技术人员深入研究的方向。
专利CN201410466080提供了一种数控铣床摆角精度检测方法,通过使用标准芯棒与千分表相结合的方式,进行数控铣床摆角精度的测量,从而测量数控铣床实际摆角与测量摆角之间的误差,虽然此测量方式简化了专用检测工具带来的价格昂贵的问题,但是仍然需要在使用之前进行摆角的手动测量,无法在数控机床加工过程中实现实时的误差测量与纠偏。
专利CN201210025143提供了一种五轴联动数控铣床伺服动态参数快速调整方法,此专利所述的调整方法为将工件实际成形面的轨迹与工件理想型面的轨迹数据进行对比,用以判断工件的加工进度是否需要调整,如二者偏差过大则进行动态因素量值的调节,但是此专利所述的动态量值依然是在加工完成后进行的数据对比与调节,并未涉及工件加工的实时调节,同时由于工件加工过程中产生的累积误差依然会对工件加工准确度造成一定影响,由此最终得到的铣削结果仍存在误差较大的问题。
因此,针对现有的数控铣床加工中存在的问题,急需推出一种基于数控铣床的加工精度控制方法及其应用。
发明内容
针对上述存在的问题,本发明提供了一种基于数控铣床的加工精度控制方法及其应用,具体建立了基于数控铣床中双切片重定位控制方法,如图1所示,所述的双切片重定位控制方法具体为:
S1、在工件使用侧切切片铣削之前进行加工精度误差预标定;
S2、当侧切切片对加工件铣削过程中,进行加工件加工精度误差实时调整;
S3、之后在加工件使用横切切片3铣削之前再次进行加工精度误差预标定;
S4、最后在横切切片3对加工件铣削过程中,进行加工件加工精度误差实时调整,通过将静态误差补偿与动态误差补偿相结合用以纠正加工件的加工精度。
具体的,所述的加工精度误差预标定通过在数控铣床中添加位置传感器,用以实时测量加工件在静态放置与动态切削过程中的位置数据以及切削数据的测定。
优选的,如图2所示,所述的数控铣床包括横切切片3,纵切切片4,横向止推杆1与纵向止推杆2,具体的,所述的数控铣床还包括显示屏5。
优选的,所述的横向止推杆1安装于纵切切片4上方,所述的横切切片3安装于纵切切片4前端,所述的纵向止推杆2安装于纵切切片4后端。
具体的,所述的横向止推杆1与纵向止推杆2内部安装有驱动电机,用以对加工件的位置进行调整。
优选的,所述的静态误差包括,加工件承载误差,加工件安装误差,铣床装夹误差,作为静态误差发生点。
优选的,所述的动态误差包括,加工件相对运动位姿误差,加工件相对运行铣削误差,加工件相对运动形变误差,铣削力误差以及传感器精度误差,作为动态误差发生点。
优选的,所述的静态误差补偿与动态误差补偿中,建立了误差指令逻辑处理规则。
具体的,所述的误差指令逻辑处理规则,通过设定静态误差补偿与动态误差补偿指令执行的先后顺序,根据先后顺序分别进行静态误差补偿与动态误差补偿的逐一修正,用以避免数控铣床各工序之间产生的误差相互影响,造成误差修正的失效。
优选的,所述的双切片重定位控制方法的S1中,通过控制驱动电机的控制电压与控制电流调节横向止推杆1与纵向止推杆2。
具体的,加工精度误差预标定后,通过控制驱动电机的控制电压与控制电流调节,自动对加工工件进行位置微调,检测到加工工件位置正确后再进行横向切削。
优选的,所述的静态误差补偿与动态误差补偿相结合共同建立了综合误差补偿模型,通过综合误差补偿模型进行数控铣床的加工过程中的误差补偿计算。
具体的,首先采集静态误差发生点与动态误差发生点当前时刻误差值,并将当前时刻误差值传送至误差补偿模型,在误差补偿模型中对下一时刻的静态误差发生点与动态误差发生点进行运动误差补偿。
优选的,所述的加工精度误差,为统一数据采集后进行数据处理。
具体的,针对统一数据进行基于误差产生原因的特征分类,对特征分类后的误差值进行分别运动误差补偿处理。
优选的,所述的加工精度控制方法应用于数控铣床对产品的铣削加工中。
具体的,所述的加工精度误差,采用基于插补补偿的方式对运动误差进行修正。
与现有技术相比,本发明的有益效果在于:
本发明在原有的数控铣床的结构基础上,对数控铣床加工异型塑料件过程中的塑料件加工误差的识别与加工精度优化,采用双切片重定位控制方法,当侧切切片对加工件切削完成后,将进行加工件位置的重新调节与标定,从而对调节完成的加工件进行横向切片,用以保证加工件的切削精度较少的受到加工过程,刀具加工误差以及加工工艺等外在因素的影响,在提升加工效率的同时更好的保证加工件的加工精度。
附图说明
图1为一种基于数控铣床的加工精度控制方法流程图;
图2为数控铣床机构图;
图中1、横向止推杆;2、纵向止推杆;3、横切切片;4、纵切切片;5、显示屏。
具体实施方式
实施例
在一种实施方式中,本发明所述的一种基于数控铣床的加工精度控制方法及其应用中,所述的误差补偿模型中,建立了基于贝叶斯后验概率模型的数据优化方法,根据前一时刻采集的数据进行后一时刻数据的预测,并将预测的数值与设定的目标值进行对比,从而计算出后一时刻即将出现的误差值,并通过插补算法对误差值进行数据拟合处理,从而对后一时刻即将出现的误差值进行纠偏。
所述的数控铣床的工作原理为:将待加工件放置于数控铣床的操作台上,启动数控铣床后,通过位置传感器对加工件进行加工精度误差预标定,用以对加工件进行静态误差的预判以及静态误差的补偿,当判定工件的放置位置存在误差时,进行自动误差预警并在显示屏5中提示调整距离,当工件调整完成后,启动数控铣床铣削流程,通过纵向止推杆2推动工件使用纵切切片4进行纵向铣削,在铣削的过程中进行加工精度误差实时调整,首先识别当前时刻误差值,并将当前时刻误差值传送至误差补偿模型,并通过插补算法对铣削运动进行调整后,将调整后的铣削数值转换为控制驱动电机的控制电压与控制电流,驱动电机控制纵向切片对加工件进行重新调节,从而矫正加工件的位置,实现纵向位置矫正,在纵向切削完成后,启动横向切削工序,并重复加工精度误差预标定与加工精度误差实时调整,最终实现加工件在加工过程中的动态精度调节,更好的保证加工件的铣削精度,与本发明所述的数控铣床的铣削结构相结合,用以在提高加工件加工效率的同时,提高加工件的加工质量。

Claims (10)

1.一种基于数控铣床的加工精度控制方法,其特征在于,具体建立了基于数控铣床中双切片重定位控制方法,所述的双切片重定位控制方法具体为:
S1、在工件使用侧切切片铣削之前进行加工精度误差预标定;
S2、当侧切切片对加工件铣削过程中,进行加工件加工精度误差实时调整;
S3、之后在加工件使用横切切片(3)铣削之前再次进行加工精度误差预标定;
S4、最后在横切切片(3)对加工件铣削过程中,进行加工件加工精度误差实时调整,通过将静态误差补偿与动态误差补偿相结合用以纠正加工件的加工精度。
2.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的数控铣床包括横切切片(3),纵切切片(4),横向止推杆(1)与纵向止推杆(2)。
3.根据权利要求2所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的横向止推杆(1)安装于纵切切片(4)上方,所述的横切切片(3)安装于纵切切片(4)前端,所述的纵向止推杆(2)安装于纵切切片(4)后端。
4.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的静态误差补偿包括,加工件承载误差,加工件安装误差,铣床装夹误差,作为静态误差发生点。
5.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的动态误差补偿包括,加工件相对运动位姿误差,加工件相对运行铣削误差,加工件相对运动形变误差,铣削力误差以及传感器精度误差,作为动态误差发生点。
6.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的静态误差补偿与动态误差补偿中,建立了误差指令逻辑处理规则。
7.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的双切片重定位控制方法的S1中,通过控制驱动电机的控制电压与控制电流调节横向止推杆(1)与纵向止推杆(2)。
8.根据权利要求6所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的静态误差补偿与动态误差补偿相结合共同建立了综合误差补偿模型,通过综合误差补偿模型进行数控铣床的加工过程中的误差补偿计算。
9.根据权利要求1所述的一种基于数控铣床的加工精度控制方法,其特征在于,所述的加工精度误差,为统一数据采集后进行数据处理。
10.根据权利要求1-9任一项所述的一种基于数控铣床的加工精度控制方法的应用,其特征在于,所述的加工精度控制方法应用于数控铣床对产品的铣削加工中。
CN202210349393.1A 2022-04-01 2022-04-01 一种基于数控铣床的加工精度控制方法及其应用 Pending CN114749706A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210349393.1A CN114749706A (zh) 2022-04-01 2022-04-01 一种基于数控铣床的加工精度控制方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210349393.1A CN114749706A (zh) 2022-04-01 2022-04-01 一种基于数控铣床的加工精度控制方法及其应用

Publications (1)

Publication Number Publication Date
CN114749706A true CN114749706A (zh) 2022-07-15

Family

ID=82329794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210349393.1A Pending CN114749706A (zh) 2022-04-01 2022-04-01 一种基于数控铣床的加工精度控制方法及其应用

Country Status (1)

Country Link
CN (1) CN114749706A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284070A (zh) * 2022-07-18 2022-11-04 武汉理工大学 数控机床负载定位误差补偿方法、装置、电子设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462255A (zh) * 2009-01-12 2009-06-24 廊坊智通机器人系统有限公司 一种磨削过程位置和姿态误差自动调整方法及系统
CN101862848A (zh) * 2010-06-23 2010-10-20 莫志成 滋润式无压梁直角双面铣边机
CN203711952U (zh) * 2014-02-21 2014-07-16 曹庆民 钥匙机
CN104476321A (zh) * 2014-11-12 2015-04-01 南京航空航天大学 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装置
CN108817488A (zh) * 2018-06-14 2018-11-16 西北工业大学 整体叶盘复合数控铣削双立柱机床精度校准方法
CN214979258U (zh) * 2021-06-04 2021-12-03 诸城市兴邦数控设备有限公司 一种多工位专用机床
CN215358891U (zh) * 2021-07-20 2021-12-31 郭奕辉 数控开料机用龙门架

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462255A (zh) * 2009-01-12 2009-06-24 廊坊智通机器人系统有限公司 一种磨削过程位置和姿态误差自动调整方法及系统
CN101862848A (zh) * 2010-06-23 2010-10-20 莫志成 滋润式无压梁直角双面铣边机
CN203711952U (zh) * 2014-02-21 2014-07-16 曹庆民 钥匙机
CN104476321A (zh) * 2014-11-12 2015-04-01 南京航空航天大学 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装置
CN108817488A (zh) * 2018-06-14 2018-11-16 西北工业大学 整体叶盘复合数控铣削双立柱机床精度校准方法
CN214979258U (zh) * 2021-06-04 2021-12-03 诸城市兴邦数控设备有限公司 一种多工位专用机床
CN215358891U (zh) * 2021-07-20 2021-12-31 郭奕辉 数控开料机用龙门架

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284070A (zh) * 2022-07-18 2022-11-04 武汉理工大学 数控机床负载定位误差补偿方法、装置、电子设备及介质
CN115284070B (zh) * 2022-07-18 2024-04-16 武汉理工大学 数控机床负载定位误差补偿方法、装置、电子设备及介质

Similar Documents

Publication Publication Date Title
EP1650620B1 (en) Method and apparatus for correcting thermal displacement of machine tool
US11745298B2 (en) Method for correcting tool parameters of a machine tool for machining of workpieces
EP1989019B1 (en) Method and apparatus for a displacement correction for a machine tool
US20140074299A1 (en) Themal dispalcement compensating device of machine tool
CN105904012B (zh) 一种带有形变实时补偿的薄壁件铣削系统
US10274927B2 (en) Method of machining workpiece using machine tool, and machine tool
CN102880114B (zh) 飞机结构件数控加工在线自适应刀轨补偿方法
CN108405941A (zh) 航空发动机叶片叶身型面高效精密铣削加工方法
TW201925937A (zh) 加工機熱補償控制系統及其方法
CN114749706A (zh) 一种基于数控铣床的加工精度控制方法及其应用
JP7373970B2 (ja) 工作機械の誤差補正方法及び工作機械
CN114460901B (zh) 一种数控机床数据采集系统
CN103123477A (zh) 一种基于电机和机床位置双反馈的轴运动控制方法
JP6892070B2 (ja) 工作機械の制御装置の制御パラメータ調節方法、ワークの加工方法および工作機械
CN106681274A (zh) 一种介观尺度弹性薄壁件变形在线预测及补偿方法
CN117806231B (zh) 一种基于物联网的机床运行加工控制系统及方法
JP6168396B2 (ja) 工作機械
EP3807731B1 (en) Workpiece surface quality issues detection
CN112008495A (zh) 一种基于振动监测的刀具破损识别方法
Denkena et al. Tool deflection compensation by drive signal-based force reconstruction and process control
Heo et al. Compensation of tool deflection in micromilling using workpiece holder control device
KR102512875B1 (ko) 공구 경로 보정 모델 생성 방법 및 이를 이용한 공구 경로 보정 방법
CN112355712B (zh) 一种触发式在机测量的精度校准方法及系统
TWI675718B (zh) 工具機的加工件負載特性判斷及加速度調整方法
CN112589354A (zh) 一种自动控制焊接变形的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination