CN114747714A - 一种新型植物源缓释抗菌磁性气凝胶的制备方法 - Google Patents

一种新型植物源缓释抗菌磁性气凝胶的制备方法 Download PDF

Info

Publication number
CN114747714A
CN114747714A CN202110027810.6A CN202110027810A CN114747714A CN 114747714 A CN114747714 A CN 114747714A CN 202110027810 A CN202110027810 A CN 202110027810A CN 114747714 A CN114747714 A CN 114747714A
Authority
CN
China
Prior art keywords
essential oil
magnetic
hydrogel
preparation
microfibrillated cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110027810.6A
Other languages
English (en)
Inventor
张正健
王晓娟
刘光发
陈凤宝
高萌
陈蕴智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202110027810.6A priority Critical patent/CN114747714A/zh
Publication of CN114747714A publication Critical patent/CN114747714A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3445Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0058Biocides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Paper (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明提供了一种新型植物源缓释抗菌磁性气凝胶的制备方法,包括以下步骤:利用2,2,6,6‑四甲基哌啶氧化物(TEMPO)介导氧化的方法预处理针叶木漂白硫酸盐浆,通过高压均质制备微纤化纤维素(MFC);再以化学沉积法使MFC内部纤维表面负载Fe3O4磁性纳米粒子,制备Fe3O4‑MFC磁性水凝胶;加入绿色广谱抗菌植物精油(EO),采用高速剪切法使精油乳化;在装有混合水凝胶的模具上下放置钕铁硼磁铁作为外加磁场并整体置于冷冻干燥机中冷冻一定时间制得EO‑Fe3O4‑MFC复合气凝胶。本发明提供的复合气凝胶制备方法通过外加磁场驱动使纤维定向排列,可形成密度超低的三维多孔轻质气凝胶,具有优异的精油吸附和缓释性能,抗菌效果优异,该方法新颖且简单易行,可应用于食品保鲜领域。

Description

一种新型植物源缓释抗菌磁性气凝胶的制备方法
技术领域
本发明属于包装材料领域,涉及一种可磁控的具有缓释抗菌性能复合气凝胶的制备方法,具体涉及一种新型植物源缓释抗菌磁性气凝胶的制备方法。
背景技术
近年来,许多研究表明从植物中提取的天然植物精油(EO)与包装体系中现有的合成抗菌剂相比,具有绿色环保、安全性高、广谱抑菌等优点。天然植物精油优异的抑菌效果已有不少研究,但是一直缺乏有效的缓释抑菌材料制备技术及其产品。目前,当植物精油被用于抗菌包装中,如果不对其释放进行控制,会出现精油挥发速率过快的现象,造成包装内精油浓度过高,从而破坏产品品质,影响被包装产品的货架寿命。因此,针对精油的挥发及抑菌特性,研制一种结构可控的缓释材料,可使精油能够缓慢释放,并且长期稳定在一定浓度水平,从而抑制或延缓包装产品中细菌、真菌等微生物的生长速率,成为抗菌包装材料研究领域的一个重要方向。
对纤维素通过物理或化学等方法进行水解和机械处理制得的微纤化纤维素(MFC)是一种具有更轻量、高强度、高比表面积和表面化学性质可调的新型材料,以其为原料制备的纤维素气凝胶材料不仅具有无机气凝胶的高孔隙率、高比表面积、低密度、优异的隔音隔热性能、吸附性能好等显著特点,同时具备绿色可再生材料来源广泛、可生物降解和优异的生物相容性等优点。利用化学沉积等方法在纤维表面附着磁性纳米粒子,制备磁性气凝胶兼具磁性纳米粒子和气凝胶的特性,同时具有磁响应、高吸附性等更多的组合功能,将其与植物精油联合制备磁性缓释抗菌材料具有很好的创新性和应用前景。
发明内容
本发明的目的在于克服现有技术的不足,提供一种新型植物源缓释抗菌磁性气凝胶的制备方法,该方法具有可磁控、简单、经济、能有效延长食品的货架期等优点。
本发明解决技术问题所采用的技术方案是:
本发明所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,以针叶木漂白硫酸盐浆为原料,利用外加磁场使微纤化纤维素内部纤维负载的Fe3O4磁性纳米粒子产生磁响应驱动纤维运动,加入乳化后的植物精油,采用冷冻干燥法制备一种可在密闭容器内形成释放-吸附 -释放循环的具有缓释抗菌功能的植物精油-Fe3O4-微纤化纤维素复合气凝胶。
所述制备方法包括如下步骤:
步骤一、,以2,2,6,6-四甲基哌啶氧化物(TEMPO)为催化剂,使用TEMPO/NaBr/NaClO 氧化体系对针叶木漂白硫酸盐浆进行预处理,通过加入0.2~0.5mol/L的NaOH溶液调节混合液的pH为10~11,待混合体系的pH值不再发生变化时加入30~50ml无水乙醇终止反应;
步骤二、将步骤一制得的混合体系进行抽滤,采用去离子水洗涤至中性,配制成质量百分数为0.5~2wt%的浆料,超声处理(600~800W,30~60min)后在50~100MPa的压力下均质4-8次制得微纤化纤维素水凝胶;
步骤三、将步骤二制得的微纤化纤维素按比例加入到FeCl3溶液和FeCl2溶液组成的混合液中,在5℃~10℃条件下反应48-96h;
步骤四,用去离子水洗去步骤三中反应完成后的水凝胶表面溶液,将水凝胶放入0.1~0.3 mol/L的NaOH溶液中,反应150-200min,用去离子水洗去水凝胶表面的NaOH溶液,然后在高速剪切机下剪切10-60min,制得Fe3O4-微纤化纤维素磁性水凝胶;
步骤五,将具有广谱抗菌性的天然植物精油放入Fe3O4-MFC磁性水凝胶中,使用高速剪切机搅拌剪切混合体系5~30min,制得植物精油-Fe3O4-微纤化纤维素复合水凝胶;
步骤六,将植物精油-Fe3O4-微纤化纤维素复合水凝胶在超声波清洗器中超声分散(600~800W,30~60min)后,置于直径为0.5-3cm的圆形塑料模具中,模具上下放置钕铁硼磁铁作为外加磁场以驱动样品内部纤维表面的Fe3O4磁性纳米粒子携带纤维运动;将放置好的植物精油-Fe3O4-微纤化纤维素复合水凝胶样品和磁铁整体在冷冻干燥机中-50~-30℃冷冻5-7h使样品完全冷冻结冰,再真空冷冻干燥24-36h,使样品中的水分完全升华,得到植物精油-Fe3O4-微纤化纤维素复合气凝胶。
优选地,步骤一中进行预处理前的针叶木漂白硫酸盐浆的质量百分率为1%。
优选地,步骤三中混合液中Fe3+与Fe2+的摩尔浓度比例2~3∶1。
优选地,步骤四中Fe3O4-微纤化纤维素磁性水凝胶中Fe3O4磁性纳米粒子的质量百分数为15-60wt%。
进一步地,步骤四中Fe3O4-微纤化纤维素磁性水凝胶的制备机理如下化学方程式所示:
Fe2++2Fe3++8OH-→Fe3O4(↓)+4H2O
优选地,步骤五中,所述植物精油为百里香精油,肉桂精油,牛至精油,香旱芹精油中的一种,按照植物精油与绝干纸浆质量比为1∶0.5~8的比例称取植物精油添加到Fe3O4-微纤化纤维素磁性水凝胶中。
优选地,步骤六中模具上下的磁铁分别到样品上下表面的距离为外加磁场的距离,距离范围为0-40mm。
本发明的有益效果是:
(1)微纤化纤维素(MFC)内部纤维表面Fe3O4磁性纳米粒子可以携带纤维被外加磁场驱动,使纤维定向排列,形成密度超低的三维多孔轻质气凝胶,具有优异的植物精油吸附和缓释性能,且抗菌效果优异,其制备方法新颖且简单易行,可应用于食品保鲜领域。
(2)采用高速剪切法乳化植物精油,弥补了乳化剂法制备植物精油纳米乳液过程中因水的添加破坏水凝胶结构的不足。
(3)该植物精油-Fe3O4-微纤化纤维素复合气凝胶可在密闭容器内形成植物精油的释放- 吸附-释放循环,大幅延长植物精油作用时间,进而高效延长食品货架期。
附图说明
图1为复合气凝胶制备原理图。
图2为本发明实施例1中复合气凝胶的缓释数据图和抗菌效果图。
图3为本发明实施例1中48天后复合气凝胶的缓释数据图和抗菌效果图。
图4为本发明实施例2中复合气凝胶的缓释数据图和抗菌效果图。
图5为本发明复合气凝胶抗菌的抑菌圈数据,其中表1为本发明实施例1中复合气凝胶抗菌效果图的抑菌圈数据;表2为本发明实施例2中复合气凝胶抗菌效果图的抑菌圈数据。
具体实施方式
以下结合具体实施例和附图对本发明做进一步说明,本发明的保护内容范围并不局限于以下具体实施例。
实施例1
制备不同Fe3O4磁性纳米粒子质量百分率、百里香EO与绝干纸浆质量比为1∶1的EO-Fe3O4-MFC缓释抗菌气凝胶
(1)以针叶木漂白硫酸盐浆为原料,使用TEMPO介导氧化法制备MFC
1)称取一定量的针叶木漂白硫酸盐浆,在水中浸泡12h,然后配制成纸浆浓度为1%的浆料,放入三口烧瓶中搅拌4h后,分别称取相当于绝干纸浆样品质量1%的TEMPO和10%的NaBr,将其溶解于去离子水中,40℃水浴加热处理直至其完全溶解。
2)将有效氯≥8%的NaClO按照8mmol/g(每克纸浆样品对应8mmol纯NaClO)的用量,用去离子水稀释至10%,滴加0.1mol/L的HCl溶液调节其pH值至10.5左右,再将TEMPO和NaBr混合溶液倒入三口烧瓶中进行搅拌,使用0.5mol/L的NaOH溶液调节混合溶液pH 值至10.5。
3)使用蠕动泵向反应体系内逐滴加入NaClO溶液进行氧化反应,实时监测其pH值,并通过滴加0.5mol/L的NaOH溶液使反应体系的pH值始终保持在10-11;当NaClO溶液滴加完毕且反应体系的pH值不再发生变化时,加入适量无水乙醇终止反应。
4)过滤掉反应溶液留下浆料,用去离子水洗涤浆料直至中性,将浆料配制成为质量百分率为1%的纤维悬浮液;将悬浮液在功率为800W的条件下超声处理60min后,倒入高压均质机的进料桶,在50-100MPa的压力条件下均质4次制得MFC。
(2)制备Fe3O4-MFC水凝胶
1)将FeCl3·6H2O和FeCl2·4H2O分别配制成为0.2mol/L的FeCl3和0.1mol/L的FeCl2溶液。
2)通过计算与MFC的比例,分别量取5组不同体积的0.2mol/L的FeCl3和0.1mol/L的FeCl2溶液于烧杯中,将制得的MFC(水凝胶)放入上述溶液中,在6℃条件下反应96h。
3)用去离子水洗去表面溶液后,将水凝胶放入0.1mol/L的NaOH溶液中,反应150min,然后用去离子水洗去水凝胶表面的NaOH溶液,将胶体在高速剪切机下以1000r/min的速度剪切30min,制得Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30wt%、45wt%和60wt%的Fe3O4-MFC磁性水凝胶。
(3)制备EO-Fe3O4-MFC气凝胶
1)按照EO与绝干纸浆质量比为1∶1的比例称取EO放入对应质量的Fe3O4-MFC磁性水凝胶中,使用高速剪切机(1000r/min)搅拌剪切混合体系20min,利用其高机械剪切力使精油乳化且使混合体系分散更均匀;
2)将制备好的EO-Fe3O4-MFC磁性水凝胶放入超声波清洗器中进行超声分散(800W,60min);再将水凝胶置于48孔细菌培养板的模具(单个孔槽是直径为10mm,高为20mm 的圆柱)中;
3)模具上下放置钕铁硼磁铁,磁铁与样品距离为0mm,在3×3孔板单元(沿纵、横向均排列3个孔槽)的边位置放入4个样品(见图1),整体处于磁铁正中心的位置,将放置好的样品和磁铁整体在冷冻干燥机中冷冻5h使其完全冷冻结冰,再真空冷冻干燥24h,使样品中的水分完全升华,即得EO-Fe3O4-MFC复合气凝胶。
如图2所示,图2(a)为Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30wt%、45wt%和60wt%的EO-Fe3O4-MFC复合气凝胶的缓释数据图,可以证明EO的释放 -吸附-释放循环;图2(b)为Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30 wt%、45wt%和60wt%的EO-Fe3O4-MFC复合气凝胶的抗菌效果图,展示了优异的抗菌效果。
如图3所示为Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30wt%、45wt%和60wt%的Fe3O4-MFC磁性气凝胶放置48天后的抗菌效果图,展示了多天后EO-Fe3O4-MFC 复合气凝胶依然优异的抗菌效果,具体抑菌圈数据如果图5中的表1所示。
实施例2
制备不同外加磁场距离、EO与绝干纸浆质量比为1∶1的EO-Fe3O4-MFC缓释抗菌气凝胶
(1)以针叶木漂白硫酸盐浆为原料,使用TEMPO介导氧化法制备MFC
1)称取一定量的针叶木漂白硫酸盐浆,在水中浸泡12h,然后配制成纸浆浓度为1%的浆料,放入三口烧瓶中搅拌4h后,分别称取相当于纸浆样品绝干质量1%的TEMPO和10%的NaBr,将其溶解于去离子水中,40℃水浴加热处理直至其完全溶解。
2)将有效氯≥8%的NaClO按照8mmol/g(每克纸浆样品对应8mmol纯NaClO)的用量,用去离子水稀释至10%,滴加0.1mol/L的HCl溶液调节其pH值至10.5左右,再将TEMPO和NaBr混合溶液倒入三口烧瓶中进行搅拌,使用0.5mol/L的NaOH溶液调节混合溶液pH 值至10.5。
3)使用蠕动泵向反应体系内逐滴加入NaClO溶液进行氧化反应,实时监测其pH值,并通过滴加0.5mol/L的NaOH溶液使反应体系的pH值始终保持在10-11;当NaClO溶液滴加完毕且反应体系的pH值不再发生变化时,加入适量无水乙醇终止反应。
4)过滤掉反应溶液留下浆料,用去离子水洗涤浆料直至中性,将浆料配制成为质量百分率1%的纤维悬浮液;将悬浮液在功率为800W的条件下超声处理60min后,倒入高压均质机的进料桶,在50-100MPa的压力条件下均质4次制得MFC。
(2)制备Fe3O4-MFC水凝胶
1)将FeCl3·6H2O和FeCl2·4H2O分别配制成为0.2mol/L的FeCl3和0.1mol/L的FeCl2溶液。
2)通过计算与MFC的比例,量取相同体积的0.2mol/L的FeCl3和0.1mol/L的FeCl2溶液于烧杯中,将制得的MFC(水凝胶)放入上述溶液中,在6℃条件下反应96h。
3)用去离子水洗去表面溶液后,将水凝胶放入0.1mol/L的NaOH溶液中,反应150min,然后用去离子水洗去水凝胶表面的NaOH溶液,将胶体在高速剪切机下以1000r/min的速度剪切30min,制得Fe3O4磁性纳米粒子的质量百分含量为30wt%的Fe3O4-MFC磁性水凝胶。
(3)制备EO-Fe3O4-MFC气凝胶
1)按照EO与绝干纸浆质量比为1∶1的比例称取EO放入对应质量的Fe3O4-MFC磁性水凝胶中,使用高速剪切机(1000r/min)搅拌剪切混合体系20min,利用其高机械剪切力使精油乳化且使混合体系分散更均匀;
2)将制备好的EO-Fe3O4-MFC磁性水凝胶放入超声波清洗器中进行超声分散(800W,60min);再将水凝胶置于48孔细菌培养板的模具(单个孔槽是直径为10mm,高为20mm 的圆柱)中;
3)模具上下放置钕铁硼磁铁,磁铁与样品距离为分别为0mm、10mm、20mm和30mm,在3×3孔板单元(沿纵、横向均排列3个孔槽)的边位置放入4个样品(见图1),整体处于磁铁正中心的位置,将放置好的样品和磁铁整体在冷冻干燥机中冷冻5h使其完全冷冻结冰,再真空冷冻干燥24h,使样品中的水分完全升华,即得EO-Fe3O4-MFC复合气凝胶。
如图4所示,图4(a)为Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30wt%、45wt%和60wt%的EO-Fe3O4-MFC复合气凝胶的缓释数据图,可以证明EO的释放 -吸附-释放循环;图4(b)为Fe3O4磁性纳米粒子的质量百分含量分别为0wt%、15wt%、30 wt%、45wt%和60wt%的EO-Fe3O4-MFC复合气凝胶的抗菌效果图,同样展示了优异的抗菌效果,具体抑菌圈数据如果图5中的表2所示。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (7)

1.一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:所述制备方法包括以下步骤:
步骤一,以2,2,6,6-四甲基哌啶氧化物(TEMPO)为催化剂,使用TEMPO/NaBr/NaClO氧化体系对针叶木漂白硫酸盐浆进行预处理,通过加入0.2~0.5mol/L的NaOH溶液调节混合液的pH为10~11,待混合体系的pH值不再发生变化时加入30~50ml无水乙醇终止反应;
步骤二,将步骤一制得的混合体系进行抽滤,采用去离子水洗涤至中性,配制成质量百分数为0.5~2wt%的浆料,超声处理后在50~100MPa的压力下均质4-8次制得微纤化纤维素水凝胶;
步骤三,将步骤二制得的微纤化纤维素水凝胶按比例加入到FeCl3溶液和FeCl2溶液组成的混合液中,在5℃~10℃条件下反应48-96h;
步骤四,用去离子水洗去步骤三中反应完成后的水凝胶表面溶液,将水凝胶放入0.1~0.3mol/L的NaOH溶液中,反应150-200min,用去离子水洗去水凝胶表面的NaOH溶液,然后在高速剪切机下剪切10-60min,制得Fe3O4-微纤化纤维素磁性水凝胶;
步骤五,将具有广谱抗菌性的天然植物精油放入Fe3O4-微纤化纤维素磁性水凝胶中,使用高速剪切机搅拌剪切混合体系5~30min,制得植物精油-Fe3O4-微纤化纤维素复合水凝胶;
步骤六,将植物精油-Fe3O4-微纤化纤维素复合水凝胶在超声波清洗器中超声分散后,置于直径为0.5-3cm的圆形塑料模具中,模具上下放置钕铁硼磁铁作为外加磁场以驱动样品内部纤维表面的Fe3O4磁性纳米粒子携带纤维运动;将放置好的植物精油-Fe3O4-微纤化纤维素复合水凝胶样品和磁铁整体在冷冻干燥机中-50~-30℃冷冻5-7h使样品完全冷冻结冰,再真空冷冻干燥24-36h,使样品中的水分完全升华,得到植物精油-Fe3O4-微纤化纤维素复合气凝胶。
2.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:
所述步骤一中,进行预处理前的针叶木漂白硫酸盐浆的质量百分数为1~3%。
3.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:所述步骤三中,混合液中Fe3+与Fe2+的摩尔浓度比例2~3∶1。
4.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:
所述步骤四中,所述Fe3O4-微纤化纤维素磁性水凝胶中Fe3O4磁性纳米粒子的质量百分数为15-60wt%。
5.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:所述步骤四中Fe3O4-微纤化纤维素磁性水凝胶的制备机理如下化学方程式所示:
Fe2++2Fe3++8OH-→Fe3O4(↓)+4H2O
6.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:
所述步骤五中,所述植物精油为百里香精油,肉桂精油,牛至精油,香旱芹精油中的一种,按照植物精油与绝干纸浆质量比为1∶0.5~8的比例称取植物精油添加到Fe3O4-微纤化纤维素磁性水凝胶中。
7.根据权利要求1所述的一种新型植物源缓释抗菌磁性气凝胶的制备方法,其特征在于:所述步骤六中,模具上下的磁铁分别到样品上下表面的外加磁场距离范围为0-40mm。
CN202110027810.6A 2021-01-11 2021-01-11 一种新型植物源缓释抗菌磁性气凝胶的制备方法 Pending CN114747714A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110027810.6A CN114747714A (zh) 2021-01-11 2021-01-11 一种新型植物源缓释抗菌磁性气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110027810.6A CN114747714A (zh) 2021-01-11 2021-01-11 一种新型植物源缓释抗菌磁性气凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN114747714A true CN114747714A (zh) 2022-07-15

Family

ID=82325593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110027810.6A Pending CN114747714A (zh) 2021-01-11 2021-01-11 一种新型植物源缓释抗菌磁性气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114747714A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134955A (zh) * 2022-07-18 2022-09-30 清华大学 自控温热场发生装置及其制造方法
CN115404128A (zh) * 2022-11-02 2022-11-29 广东顺德芳香世家天然产品制造有限公司 一种多功能精油组合物及其制备方法和应用
CN116019141A (zh) * 2023-03-30 2023-04-28 聊城巾帼包装有限公司 纳米纤维素气凝胶抗菌精油缓释体系及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730523A (zh) * 2005-08-26 2006-02-08 浙江大学 制备有序排列四氧化三铁/壳聚糖纳米复合材料的方法
CN104221101A (zh) * 2012-02-10 2014-12-17 赛陆泰科公司 用磁性纳米粒子修饰的纤维素纳米纤丝
CN105801901A (zh) * 2016-05-30 2016-07-27 南京工业大学 一种均一磁性纤维素气凝胶材料的制备方法
CN106496642A (zh) * 2016-11-10 2017-03-15 南京林业大学 乙酰化纳米纤维素基磁性吸油气凝胶的制备方法
CN109295713A (zh) * 2018-09-21 2019-02-01 晋江瑞碧科技有限公司 基于纤维素纳米纤维的磁性复合水凝胶的制备方法及用途
CN109898358A (zh) * 2019-03-07 2019-06-18 天津科技大学 一种植物源缓释抗菌气凝胶的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730523A (zh) * 2005-08-26 2006-02-08 浙江大学 制备有序排列四氧化三铁/壳聚糖纳米复合材料的方法
CN104221101A (zh) * 2012-02-10 2014-12-17 赛陆泰科公司 用磁性纳米粒子修饰的纤维素纳米纤丝
CN105801901A (zh) * 2016-05-30 2016-07-27 南京工业大学 一种均一磁性纤维素气凝胶材料的制备方法
CN106496642A (zh) * 2016-11-10 2017-03-15 南京林业大学 乙酰化纳米纤维素基磁性吸油气凝胶的制备方法
CN109295713A (zh) * 2018-09-21 2019-02-01 晋江瑞碧科技有限公司 基于纤维素纳米纤维的磁性复合水凝胶的制备方法及用途
CN109898358A (zh) * 2019-03-07 2019-06-18 天津科技大学 一种植物源缓释抗菌气凝胶的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134955A (zh) * 2022-07-18 2022-09-30 清华大学 自控温热场发生装置及其制造方法
CN115134955B (zh) * 2022-07-18 2023-03-10 清华大学 自控温热场发生装置及其制造方法
WO2024016377A1 (zh) * 2022-07-18 2024-01-25 清华大学 自控温热场发生装置及其制造方法
CN115404128A (zh) * 2022-11-02 2022-11-29 广东顺德芳香世家天然产品制造有限公司 一种多功能精油组合物及其制备方法和应用
CN116019141A (zh) * 2023-03-30 2023-04-28 聊城巾帼包装有限公司 纳米纤维素气凝胶抗菌精油缓释体系及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN114747714A (zh) 一种新型植物源缓释抗菌磁性气凝胶的制备方法
Andriani et al. The optimization of bacterial cellulose production and its applications: a review
CN109898358B (zh) 一种植物源缓释抗菌气凝胶的制备方法
Meftahi et al. The effects of cotton gauze coating with microbial cellulose
Klemm et al. Nanocelluloses: a new family of nature‐based materials
Wei et al. Nanocellulose based hydrogel or aerogel scaffolds for tissue engineering
EP3024887B1 (en) Method for preparation of polymer compositions and coatings
CN101343850A (zh) 纤维调湿板
CN102206351B (zh) 一种丝胶基半互穿温敏纳米复合水凝胶及其制备方法
CN103496020A (zh) 一种抗菌木材及其制备方法
CN111622015B (zh) 一种基于细菌纤维素的纸张脱酸增强修复液的制备方法与应用
CN110511399B (zh) 一种控释型纳米纤维素抗菌微凝胶的制备方法
Ma et al. Homogeneous and porous modified bacterial cellulose achieved by in situ modification with low amounts of carboxymethyl cellulose
CN105031711A (zh) 一种胶原/壳聚糖复合海绵生物敷料及其制备方法
CN106049026A (zh) 一种负载姜黄素的胶原‑pcl‑pvp复合微纳纤维膜及其制备方法
CN102784414A (zh) 一种可用于组织工程的可注射性双交联水凝胶的制备方法
CN107699874B (zh) 一种纳米银-纤维素复合材料及其制备方法和应用
CN109232931A (zh) 一种纳米纤维素抗菌缓释膜的制备方法
Khodamoradi et al. Bacterial cellulose/montmorillonite bionanocomposites prepared by immersion and in-situ methods: structural, mechanical, thermal, swelling and dehydration properties
Dai et al. Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films
CN106693041A (zh) 一种不对称润湿性壳聚糖/淀粉复合海绵及其制备方法
CN106822980B (zh) 一种塑化纳米细菌纤维素功能敷料及其制备方法
Noipitak et al. Chitosan/alginate composite porous hydrogels reinforced with PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers: their physico-mechanical properties and ability to incorporate AgNP
Khosravi-Darani et al. Bacterial nanocellulose: biosynthesis and medical application.
Hou et al. Bacterial cellulose applied in wound dressing materials: Production and functional modification–A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination