CN114747167A - 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置 - Google Patents

在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置 Download PDF

Info

Publication number
CN114747167A
CN114747167A CN202080083452.4A CN202080083452A CN114747167A CN 114747167 A CN114747167 A CN 114747167A CN 202080083452 A CN202080083452 A CN 202080083452A CN 114747167 A CN114747167 A CN 114747167A
Authority
CN
China
Prior art keywords
sci
information
format
pscch
harq feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080083452.4A
Other languages
English (en)
Other versions
CN114747167B (zh
Inventor
李承旻
徐翰瞥
黄大成
高祐奭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN114747167A publication Critical patent/CN114747167A/zh
Application granted granted Critical
Publication of CN114747167B publication Critical patent/CN114747167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供用于第一装置执行无线通信的方法和用于支持该方法的装置。该方法包括以下步骤:通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSFCH资源上向第二装置发送关于PSSCH的混合自动重传请求(HARQ)反馈信息,其中,第二SCI的格式可以是不包括关于第二装置的位置信息的第一格式或包括关于第二装置的位置信息的第二格式,并且基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者仅包括NACK。

Description

在NR V2X中基于SCI格式发送和接收HARQ反馈信息的方法和 装置
技术领域
本公开涉及无线通信系统。
背景技术
侧链路(SL)通信是在用户设备(UE)之间建立直接链路并且UE直接彼此交换语音和数据而没有演进节点B(eNB)干预的通信方案。正考虑将SL通信作为因数据流量快速增长而造成的eNB开销的解决方案。
V2X(车辆到一切)是指车辆用于与其它车辆、步行者以及装配有基础设施的对象等交换信息的通信技术。V2X可以被分为诸如V2V(车辆到车辆)、V2I(车辆到基础设施)、V2N(车辆到网络)以及V2P(车辆到步行者)这样的四种类型。V2X通信可以通过PC5接口和/或Uu接口提供。
此外,由于越来越多的通信设备需要较大的通信容量,所以需要相对于传统无线电接入技术(RAT)增强的移动宽带通信。因此,考虑到对可靠性和等待时间敏感的UE或服务的通信系统设计也已经在讨论,并且考虑到增强移动宽带通信、大规模MTC以及超可靠低延时通信(URLLC)的下一代无线电接入技术可以被称为新型RAT(无线电接入技术)或NR(新型无线电)。
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。图1的实施方式可以与本公开的各种实施方式组合。
关于V2X通信,在讨论在NR之前使用的RAT时,侧重于基于诸如BSM(基本安全消息)、CAM(合作意识消息)和DENM(分散环境通知消息)这样的V2X消息提供安全服务的方案。V2X消息可以包括位置信息、动态信息、属性信息等。例如,UE可以向另一UE发送周期性消息类型CAM和/或事件触发消息类型DENM。
例如,CAM可以包括诸如方向和速度这样的车辆的动态状态信息、诸如大小这样的车辆的静态数据以及诸如外部照明状态、路线细节等这样的基本车辆信息。例如,UE可以广播CAM,并且CAM的等待时间可以少于100ms。例如,UE可以生成DENM,并且在诸如车辆故障、事故等这样的意外情形下将其发送到另一UE。例如,在UE的发送范围内的所有车辆都能接收CAM和/或DENM。在这种情况下,DENM的优先级可以高于CAM。
此后,关于V2X通信,在NR中提出了各种V2X场景。例如,这各种V2X场景可以包括车辆排队、高级驾驶、扩展传感器、远程驾驶等。
例如,基于车辆排队,车辆可以通过动态地形成组而一起移动。例如,为了基于车辆编队执行排队操作,属于该组的车辆可以从领头车辆接收周期性数据。例如,属于该组的车辆可以通过使用周期性数据来减小或增大车辆之间的间隔。
例如,基于高级驾驶,车辆可以是半自动或全自动的。例如,每个车辆都可以基于从附近车辆和/或附近逻辑实体的本地传感器获得的数据来调节轨迹或操纵。另外,例如,每个车辆可以与附近车辆共享驾驶意图。
例如,基于扩展传感器,可以在车辆、逻辑实体、行人的UE和/或V2X应用服务器之间交换通过本地传感器获得的原始数据、处理后的数据或实时视频数据。因此,例如,与使用自传感器进行检测的环境相比,车辆能识别出进一步改善的环境。
例如,基于远程驾驶,对于危险环境中的不能驾驶的人或远程车辆,远程驾驶员或V2X应用可以操作或控制远程车辆。例如,如果路线是可预测的(例如公共交通),则基于云计算的驾驶可以用于远程车辆的操作或控制。另外,例如,可以考虑对基于云的后端服务平台的访问来进行远程驾驶。
此外,在基于NR的V2X通信中讨论了指定用于诸如车辆排队、高级驾驶、扩展传感器、远程驾驶等这样的各种V2X场景的服务需求的方案。
发明内容
技术目的
此外,在NR V2X中,可以支持基于距离的HARQ反馈操作。因此,需要提出一种发送UE实现基于距离的HARQ反馈操作的方法以及支持该方法的装置。另外,需要提出一种接收UE确定是否执行基于距离的HARQ反馈操作的方法以及支持该方法的装置。
技术方案
在一个实施方式中,提供了一种用于由第一装置执行无线通信的方法。该方法包括以下步骤:通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSSCH资源上向第二装置发送关于PSSCH的混合自动重传请求(HARQ)反馈信息,其中,第二SCI的格式可以是不包括关于第二装置的位置信息的第一格式或包括关于第二装置的位置信息的第二格式,并且基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者仅包括NACK。
在一个实施方式中,提供了被配置为执行无线通信的第一装置。第一装置可以包括:存储指令的一个或更多个存储器;一个或更多个收发器;以及连接到一个或更多个存储器和一个或更多个收发器的一个或更多个处理器。一个或更多个处理器可以执行指令以进行以下操作:通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSSCH资源上向第二装置发送关于PSSCH的混合自动重传请求(HARQ)反馈信息,其中,第二SCI的格式可以是不包括关于第二装置的位置信息的第一格式或包括关于第二装置的位置信息的第二格式,并且基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者仅包括NACK。
有益效果
用户设备(UE)可以高效地执行SL通信。
附图说明
图1是用于描述与基于NR之前使用的RAT的V2X通信相比的基于NR的V2X通信的图。
图2示出了根据本公开的实施方式的NR系统的结构。
图3示出了根据本公开的实施方式的NG-RAN与5GC之间的功能划分。
图4示出了根据本公开的实施方式的无线电协议架构。
图5示出了根据本公开的实施方式的NR系统的结构。
图6示出了根据本公开的实施方式的NR帧的时隙的结构。
图7示出了根据本公开的实施方式的BWP的示例。
图8示出了根据本公开的实施方式的SL通信的无线电协议架构。
图9示出了根据本公开的实施方式的执行V2X或SL通信的UE。
图10示出了根据本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。
图11示出了根据本公开的实施方式的三种播放类型。
图12示出了基于本公开的实施方式的用于CBR测量的资源单元。
图13示出了基于本公开的实施方式的其中具有保留的传输资源的UE向另一UE通知传输资源的方法。
图14示出了基于本公开的实施方式的TX UE向基站报告HARQ反馈信息的过程。
图15示出了基于本公开的实施方式的TX UE向基站报告HARQ反馈信息的过程。
图16示出了基于本公开的实施方式的RX UE基于不同的SCI格式执行HARQ反馈操作的过程。
图17示出了基于本公开的实施方式的预留信号。
图18示出了基于本公开的实施方式的第一装置向基站报告SL HARQ反馈信息的方法。
图19示出了基于本公开的实施方式的基站从第一装置接收SL HARQ反馈信息的方法。
图20示出了基于本公开的实施方式的第一装置执行无线通信的方法。
图21示出了基于本公开的实施方式的第二装置执行无线通信的方法。
图22示出了基于本公开的实施方式的第一装置执行无线通信的方法。
图23示出了基于本公开的实施方式的基站执行无线通信的方法。
图24示出了根据本公开的实施方式的通信系统1。
图25示出了根据本公开的实施方式的无线装置。
图26示出了根据本公开的实施方式的用于发送信号的信号处理电路。
图27示出了根据本公开的实施方式的无线装置。
图28示出了根据本公开的实施方式的手持装置。
图29示出了根据本公开的实施方式的车辆或自主车辆。
具体实施方式
在本说明书中,“A或B”可以意指“仅A”、“仅B”或“A和B二者”。换句话说,在本说明书中,“A或B”可以被解释为“A和/或B”。例如,在本说明书中,“A、B或C”可以意指“仅A”、“仅B”、“仅C”或“A、B、C的任何组合”。
在本说明书中使用的斜杠(/)或逗号可以意指“和/或”。例如,“A/B”可以意指“A和/或B”。因此,“A/B”可以意指“仅A”、“仅B”或“A和B二者”。例如,“A、B、C”可以意指“A、B或C”。
在本说明书中,“A和B中的至少一个”可以意指“仅A”、“仅B”或“A和B二者”。另外,在本说明书中,表述“A或B中的至少一个”或“A和/或B中的至少一个”可以被解释为“A和B中的至少一个”。
另外,在本说明书中,“A、B和C中的至少一个”可以意指“仅A”、“仅B”、“仅C”或“A、B和C的任何组合”。另外,“A、B或C中的至少一个”或“A、B和/或C中的至少一个”可以意指“A、B和C中的至少一个”。
另外,在本说明书中使用的括号可以意指“例如”。具体地,当被指示为“控制信息(PDCCH)”时,这可以意指提出“PDCCH”作为“控制信息”的示例。换句话说,本说明书的“控制信息”不限于“PDCCH”,并且可以提出“PDDCH”作为“控制信息”的示例。具体地,当被指示为“控制信息(即,PDCCH)”时,这也可以意指提出“PDCCH”作为“控制信息”的示例。
本说明书中的一副附图中分别描述的技术特征可以被分别实现,或者可以被同时实现。
下面描述的技术可以用在诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)等这样的各种无线通信系统中。CDMA可以利用诸如通用陆地无线电接入(UTRA)或CDMA-2000这样的无线电技术实现。TDMA可以利用诸如全球移动通信系统(GSM)/通用分组无线服务(GPRS)/增强数据速率GSM演进(EDGE)这样的无线电技术实现。OFDMA可以利用诸如电子电气工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、演进UTRA(E-UTRA)等这样的无线电技术实现。IEEE 802.16m是IEEE 802.16e的演进版本,并且提供对于基于IEEE 802.16e的系统的后向兼容性。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP)长期演进(LTE)是使用E-UTRA的演进UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中使用OFDMA,在上行链路中使用SC-FDMA。LTE-高级(LTE-A)是LTE的演进。
5G NR是与具有高性能、低延时、高可用性等特性的新型全新式移动通信系统相对应的LTE-A后续技术。5G NR可以使用包括小于1GHz的低频带、从1GHz到10GHz的中间频带以及24GHz以上的高频(毫米波)等的所有可用频谱的资源。
为了清楚描述,以下的描述将主要侧重于LTE-A或5G NR。然而,根据本公开的实施方式的技术特征将不仅限于此。
图2示出了按照本公开的实施方式的NR系统的结构。图2的实施方式可以与本公开的各种实施方式组合。
参照图2,下一代无线电接入网络(NG-RAN)可以包括向UE 10提供用户平面和控制平面协议终止的BS 20。例如,BS 20可以包括下一代节点B(gNB)和/或演进型节点B(eNB)。例如,UE 10可以是固定的或移动的,并且可以被称为诸如移动站(MS)、用户终端(UT)、订户站(SS)、移动终端(MT)、无线装置等这样的其它术语。例如,BS可以被称为与UE 10通信的固定站并且可以被称为诸如基站收发器系统(BTS)、接入点(AP)等这样的其它术语。
图2的实施方式例示了仅包括gNB的情况。BS 20可以经由Xn接口相互连接。BS 20可以经由第五代(5G)核心网络(5GC)和NG接口相互连接。更具体地,BS 20可以经由NG-C接口连接到接入和移动性管理功能(AMF)30,并且可以经由NG-U接口连接到用户平面功能(UPF)30。
图3示出了按照本公开的实施方式的NG-RAN与5GC之间的功能划分。
参照图3,gNB可以提供诸如小区间无线电资源管理(小区间RRM)、无线电承载(RB)控制、连接移动性控制、无线电准入控制、测量配置和规定、动态资源分配等这样的功能。AMF可以提供诸如非接入层(NAS)安全性、空闲状态移动性处理等这样的功能。UPF可以提供诸如移动性锚定、协议数据单元(PDU)处理等这样的功能。会话管理功能(SMF)可以提供诸如用户设备(UE)互联网协议(IP)地址分配、PDU会话控制等这样的功能。
UE与网络之间的无线电接口协议层可以基于通信系统中公知的开放系统互联(OSI)模型的下三层被分类为第一层(L1)、第二层(L2)以及第三层(L3)。这里,属于第一层的物理(PHY)层使用物理信道提供信息传输服务,并且位于第三层的无线电资源控制(RRC)层控制UE与网络之间的无线电资源。为此,RRC层在UE与BS层之间交换RRC消息。
图4示出了按照本公开的实施方式的无线电协议架构。图4的实施方式可以与本公开的各种实施方式组合。具体地,图4中的(a)示出了用于用户平面的无线电协议架构,并且图4中的(b)示出了用于控制平面的无线电协议架构。用户平面对应于用于用户数据发送的协议栈,并且控制平面对应于用于控制信号发送的协议栈。
参照图4,物理层通过物理信道向上层提供信息传送服务。物理层通过传输信道连接到作为物理层的上层的介质接入控制(MAC)层。数据通过传输信道在MAC层和物理层之间传送。传输信道根据通过无线电接口如何传输数据及其传输什么特性的数据来分类。
在不同的PHY层(即,发送器的PHY层和接收器的PHY层)之间,通过物理信道传送数据。可以使用正交频分复用(OFDM)方案对物理信道进行调制,并且物理信道使用时间和频率作为无线电资源。
MAC层经由逻辑信道向无线电链路控制(RLC)层提供服务,该RLC层是MAC层的高层。MAC层提供将多个逻辑信道映射到多个传输信道的功能。MAC层还通过将多个逻辑信道映射到单个传输信道提供逻辑信道复用的功能。MAC层通过逻辑信道提供数据传输服务。
RLC层执行无线电链路控制服务数据单元(RLC SDU)的串联、分割和重组。为了确保无线电承载(RB)所需要的不同服务质量(QoS),RLC层提供三个类型的操作模式,即,透明模式(TM)、非确认模式(UM)以及确认模式(AM)。AM RLC通过自动重传请求(ARQ)提供错误纠正。
无线电资源控制(RRC)层仅定义在控制平面中。并且,RRC层执行与无线电承载的配置、重配置以及释放有关的物理信道、传输信道以及逻辑信道的控制的功能。RB是指由第一层(即,PHY层)和第二层(即,MAC层、RLC层以及PDCP层)提供以在UE与网络之间传输数据的逻辑路径。
用户平面中的分组数据汇聚协议(PDCP)的功能包括用户数据的传输、报头压缩和加密。控制平面中的分组数据汇聚协议(PDCP)的功能包括控制平面数据的传输和加密/完整性保护。
仅在用户平面中定义了服务数据适配协议(SDAP)层。SDAP层执行服务质量(QoS)流与数据无线承载(DRB)之间的映射以及DL分组和UL分组二者中的QoS流ID(QFI)标记。
RB的配置是指用于指定无线电协议层和信道属性以提供特定服务以及用于确定相应的详细参数和操作方法的处理。RB随后可以被分类为两个类型,即,信令无线电承载(SRB)和数据无线电承载(DRB)。SRB被用作用于在控制平面中发送RRC消息的路径,DRB被用作用于在用户平面中发送用户数据的路径。
当RRC连接在UE的RRC层和E-UTRAN的RRC层之间建立时,UE处于RRC连接(RRC_CONNECTED)状态,否则UE可以处于RRC空闲(RRC_IDLE)状态。在NR的情况下,附加地定义了RRC不活动(RRC_INACTIVE)状态,并且处于RRC_INACTIVE状态的UE可以保持与核心网的连接而释放其与BS的连接。
从网络向UE发送(或传输)数据的下行链路传输信道包括发送系统信息的广播信道(BCH)和发送其它用户业务或控制消息的下行链路共享信道(SCH)。下行链路多播或广播服务的业务或控制消息可以经由下行链路SCH发送或者可以经由单独的下行链路多播信道(MCH)发送。此外,从UE向网络发送(或传输)数据的上行链路传输信道包括发送初始控制消息的随机接入信道(RACH)和发送其它用户业务或控制消息的上行链路共享信道(SCH)。
属于传输信道的更高层且映射到传输信道的逻辑信道的示例可以包括广播控制信道(BCCH)、寻呼控制信道(PCCH)、公共控制信道(CCCH)、多播控制信道(MCCH)、多播业务信道(MTCH)等。
物理信道由时域中的多个OFDM符号和频域中的多个子载波配置而成。一个子帧由时域中的多个OFDM符号配置而成。资源块由资源分配单元中的多个子载波和多个OFDM符号配置而成。另外,每个子帧可以使用物理下行链路控制信道(PDCCH)即L1/L2控制信道的相应子帧的特定OFDM符号(例如,第一OFDM符号)的特定子载波。传输时间间隔(TTI)是指子帧发送的单位时间。
图5示出了按照本公开的实施方式的NR系统的结构。图5的实施方式可以与本公开的各种实施方式组合。
参照图5,在NR中,无线电帧可以被用于执行上行链路和下行链路传输。无线电帧的长度为10ms,并且可以定义为由两个半帧(HF)构成。半帧可以包括五个1ms子帧(SF)。子帧(SF)可以被分成一个或更多个时隙,并且子帧内的时隙数量可以按照子载波间隔(SCS)来确定。每个时隙根据循环前缀(CP)可以包括12或14个OFDM(A)符号。
在使用正常CP的情况下,每个时隙可以包括14个符号。在使用扩展CP的情况下,每个时隙可以包括12个符号。本文中,符号可以包括OFDM符号(或CP-OFDM符号)和单载波-FDMA(SC-FDMA)符号(或离散傅里叶变换扩展OFDM(DFT-s-OFDM)符号)。
例示下表1表示在采用正常CP的情况下,根据SCS设置(μ)的每个符号的时隙个数(Nslot symb)、每帧的时隙个数(Nframe,μ slot)和每子帧的时隙个数(Nsubframe,μ slot)。
[表1]
SCS(15*2<sup>μ</sup>) N<sup>slot</sup><sub>symb</sub> N<sup>frame,μ</sup><sub>slot</sub> N<sup>subframe,μ</sup><sub>slot</sub>
15KHz(μ=0) 14 10 1
30KHz(μ=1) 14 20 2
60KHz(μ=2) 14 40 4
120KHz(μ=3) 14 80 8
240KHz(μ=4) 14 160 16
表2示出了在使用扩展CP的情况下,根据SCS,每个时隙的符号数量、每帧的时隙数量以及每个子帧的时隙数量的示例。
[表2]
SCS(15*2<sup>μ</sup>) N<sup>slot</sup><sub>symb</sub> N<sup>frame,μ</sup><sub>slot</sub> N<sup>subframe,μ</sup><sub>slot</sub>
60KHz(μ=2) 12 40 4
在NR系统中,被整合到一个UE的多个小区之间的OFDM(A)参数集(例如,SCS、CP长度等)可以被不同地配置。因此,由相同数量的符号构成的时间资源(例如,子帧、时隙或TTI)(为了简单,统称为时间单元(TU))的(绝对时间)持续时间(或区间)在所整合的小区中可以被不同地配置。
在NR中,可以支持用于支持各种5G服务的多个参数集或SCS。例如,在SCS为15kHz的情况下,可以支持传统蜂窝频带的宽范围,并且在SCS为30kHz/60kHz的情况下,可以支持密集的城市、更低的延时、更宽的载波带宽。在SCS为60kHz或更高的情况下,为了克服相位噪声,可以使用大于24.25GHz的带宽。
NR频带可以被定义为两种不同类型的频率范围。两种不同类型的频率范围可以是FR1和FR2。频率范围的值可以改变(或变化),例如,两种不同类型的频率范围可以如在下表3中所示。在NR系统中使用的频率范围当中,FR1可以意指“低于6GHz的范围”,并且FR2可以意指“高于6GHz的范围”,并且也可以被称为毫米波(mmW)。
[表3]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 450MHz–6000MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
如上所述,NR系统中的频率范围的值可以改变(或变化)。例如,如下表4中所示,FR1可以包括410MHz至7125MHz范围内的带宽。更具体地,FR1可以包括6GHz(或5850、5900、5925MHz等)及更高的频带。例如,FR1中所包括的6GHz(或5850、5900、5925MHz等)及更高的频带可以包括免授权频带。免授权频带可以用于各种目的,例如,免授权频带用于车辆特定通信(例如,自动驾驶)。
[表4]
频率范围指定 对应频率范围 子载波间隔(SCS)
FR1 410MHz–7125MHz 15、30、60kHz
FR2 24250MHz–52600MHz 60、120、240kHz
图6示出了按照本公开的实施方式的NR帧的时隙的结构。
参照图6,时隙在时域中包括多个符号。例如,在正常CP的情况下,一个时隙可以包括14个符号。例如,在扩展CP的情况下,一个时隙可以包括12个符号。另选地,在正常CP的情况下,一个时隙可以包括7个符号。然而,在扩展CP的情况下,一个时隙可以包括6个符号。
载波包括频域中的多个子载波。资源块(RB)可以被定义为频域中的多个连续子载波(例如,12个子载波)。带宽部分(BWP)可以被定义为频域中的多个连续(物理)资源块((P)RB),并且BWP可以对应于一个参数集(例如,SCS、CP长度等)。载波可以包括最多N个BWP(例如,5个BWP)。数据通信可以经由激活的BWP执行。每个元素可以被称为资源网格中的资源元素(RE),并且一个复数符号可以被映射到每个元素。
此外,UE与另一UE之间的无线电接口或UE与网络之间的无线电接口可以包括L1层、L2层和L3层。在本公开的各种实施方式中,L1层可以意指物理层。另外,例如,L2层可以意指MAC层、RLC层、PDCP层和SDAP层中的至少之一。另外,例如,L3层可以意指RRC层。
下文中,将详细描述带宽部分(BWP)和载波。
BWP可以是给定参数集内的物理资源块(PRB)的连续集合。PRB可以选自针对给定载波上的给定参数集的公共资源块(CRB)的连续部分集合。
当使用带宽适应(BA)时,不需要用户设备(UE)的接收带宽和发送带宽与小区的带宽一样宽(或大),并且可以控制(或调节)UE的接收带宽和发送带宽。例如,UE可以从网络/基站接收用于带宽控制(或调节)的信息/配置。在这种情况下,可以基于接收到的信息/配置来执行带宽控制(或调节)。例如,带宽控制(或调节)可以包括带宽的减小/扩大、带宽的位置改变或带宽的子载波间隔的改变。
例如,可以在活动很少的持续时间内减小带宽,以便节省功率。例如,可以从频域重新定位(或移动)带宽的位置。例如,可以从频域重新定位(或移动)带宽的位置,以便增强调度灵活性。例如,带宽的子载波间隔可以改变。例如,带宽的子载波间隔可以改变,以便许可进行不同的服务。小区的总小区带宽的子集可以被称为带宽部分(BWP)。当基站/网络为UE配置BWP时以及当基站/网络将BWP当中的当前处于激活状态的BWP通知给UE时,可以执行BA。
例如,BWP可以是活动BWP、初始BWP和/或默认BWP中的至少任意一者。例如,UE可以不监视主小区(PCell)上的激活DL BWP以外的DL BWP中的下行链路无线电链路质量。例如,UE可以不接收激活DL BWP之外的PDCCH、物理下行链路共享信道(PDSCH)或信道状态信息-参考信号(CSI-RS)(不包括RRM)。例如,UE可以不触发针对未激活DL BWP的信道状态信息(CSI)报告。例如,UE可以不在激活UL BWP之外发送物理上行链路控制信道(PUCCH)或物理上行链路共享信道(PUSCH)。例如,在下行链路的情况下,初始BWP可以作为(由物理广播信道(PBCH)配置的)针对剩余最小系统信息(RMSI)控制资源集(CORESET)的连续RB集合给出。例如,在上行链路的情况下,可以由针对随机接入过程的系统信息块(SIB)给出初始BWP。例如,可以由高层配置默认BWP。例如,默认BWP的初始值可以是初始DL BWP。为了节能,如果UE在指定时段期间无法检测到下行链路控制信息(DCI),则UE可以将UE的活动BWP切换成默认BWP。
此外,可以针对SL定义BWP。对于发送和接收,可以使用相同的SL BWP。例如,发送UE可以在特定BWP内发送SL信道或SL信号,并且接收UE可以在同一特定BWP内接收SL信道或SL信号。在授权载波中,SL BWP可以与Uu BWP被分开定义,并且SL BWP可以具有与Uu BWP分开的配置信令。例如,UE可以从基站/网络接收针对SL BWP的配置。可以(预先)针对覆盖范围外的NR V2X UE和RRC_IDLE UE配置SL BWP。对于在RRC_CONNECTED模式下操作的UE,可以在载波内激活至少一个SL BWP。
图7示出了按照本公开的实施方式的BWP的示例。图7的实施方式可以与本公开的各种实施方式组合。假定在图7的实施方式中,BWP的数量为3。
参照图7,公共资源块(CRB)可以是从载波频带的一端到其另一端地进行编号的载波资源块。另外,PRB可以是在每个BWP内被编号的资源块。点A可以指示资源块网格的公共参考点。
可以由点A、相对于点A的偏移(Nstart BWP)和带宽(Nsize BWP)来配置BWP。例如,点A可以是载波的PRB的外部参考点,所有参数集(例如,由网络在对应载波上支持的所有参数集)的子载波0在点A中对齐。例如,偏移可以是给定参数集内的最低子载波与点A之间的PRB距离。例如,带宽可以是给定参数集内的PRB的数量。
下文中,将描述V2X或SL通信。
图8示出了按照本公开的实施方式的S L通信的无线电协议架构。图8的实施方式可以与本公开的各种实施方式组合。更具体地,图8中的(a)示出了用户平面协议栈,并且图8中的(b)示出了控制平面协议栈。
下面,将详细描述侧链路同步信号(SLSS)和同步信息。
SLSS可以包括主侧链路同步信号(PSSS)和辅助侧链路同步信号(SSSS)作为SL特定序列。PSSS可以被称为侧链路主同步信号(S-PSS),并且SSSS可以被称为侧链路辅同步信号(S-SSS)。例如,长度为127的M序列可以用于S-PSS,并且长度为127的戈尔德(Gold)序列可以用于S-SSS。例如,UE可以将S-PSS用于初始信号检测和同步获取。例如,UE可以将S-PSS和S-SSS用于获取详细的同步并且用于检测同步信号ID。
物理侧链路广播信道(PSBCH)可以是用于发送默认(系统)信息的(广播)信道,该默认(系统)信息是在SL信号发送/接收之前UE必须首先知道的。例如,默认信息可以是与SLSS、双工模式(DM)、时分双工(TDD)上行链路/下行链路(UL/DL)配置相关的信息,与资源池相关的信息,与SLSS、子帧偏移、广播信息等相关的应用的类型。例如,为了评估PSBCH性能,在NR V2X中,PSBCH的有效载荷大小可以为56位,包括24位的循环冗余校验(CRC)。
S-PSS、S-SSS和PSBCH可以以支持周期性发送的块格式(例如,SL同步信号(SS)/PSBCH块,下文中,侧链路同步信号块(S-SSB))被包括。S-SSB可以具有与载波中的物理侧链路控制信道(PSCCH)/物理侧链路共享信道(PSSCH)相同的参数集(即,SCS和CP长度),并且传输带宽可以存在于(预先)配置的侧链路(SL)BWP内。例如,S-SSB可以具有11个资源块(SB)的带宽。例如,PSBCH可以跨11个RB存在。另外,可以(预先)配置S-SSB的频率位置。因此,UE不必在频率处执行假设检测以发现载波中的S-SSB。
图9示出了按照本公开的实施方式的执行V2X或SL通信的UE。图9的实施方式可以与本公开的各种实施方式组合。
参照图9,在V2X或SL通信中,术语“UE”可以通常是指用户的UE。然而,如果诸如BS这样的网络设备根据UE之间的通信方案来发送/接收信号,则BS也可以被视为一种UE。例如,UE 1可以是第一设备100,并且UE 2可以是第二设备200。
例如,UE 1可以在意指一组资源系列的资源池中选择与特定资源对应的资源单元。另外,UE 1可以通过使用资源单元来发送SL信号。例如,UE 1能够在其中发送信号的资源池可以被配置到作为接收UE的UE 2,并且可以在该资源池中检测UE 1的信号。
本文中,如果UE 1在BS的连接范围内,则BS可以将资源池告知UE1。否则,如果UE 1在BS的连接范围外,则另一UE可以将资源池告知UE 1,或者UE 1可以使用预先配置的资源池。
通常,可以以多个资源为单元配置资源池,并且每个UE可以选择一个或多个资源的单元,以在其SL信号发送中使用它。
下文中,将描述SL中的资源分配。
图10示出了按照本公开的实施方式的由UE基于发送模式执行V2X或SL通信的过程。图10的实施方式可以与本公开的各种实施方式组合。在本公开的各种实施方式中,发送模式可以被称为模式或资源分配模式。下文中,为了便于说明,在LTE中,发送模式可以被称为LTE发送模式。在NR中,发送模式可以被称为NR资源分配模式。
例如,图10中的(a)示出了与LTE发送模式1或LTE发送模式3相关的UE操作。另选地,例如,图10中的(a)示出了与NR资源分配模式1相关的UE操作。例如,可以将LTE发送模式1应用于常规SL通信,并且可以将LTE发送模式3应用于V2X通信。
例如,图10中的(b)示出了与LTE发送模式2或LTE发送模式4相关的UE操作。另选地,例如,图10中的(b)示出了与NR资源分配模式2相关的UE操作。
参照图10中的(a),在LTE发送模式1、LTE发送模式3或NR资源分配模式1下,BS可以调度将供UE用于SL发送的SL资源。例如,BS可以通过PDCCH(更具体地,下行链路控制信息(DCI))对UE 1执行资源调度,并且UE 1可以根据资源调度针对UE 2执行V2X或SL通信。例如,UE 1可以通过物理侧链路控制信道(PSCCH)向UE 2发送侧链路控制信息(SCI),此后通过物理侧链路共享信道(PSSCH)向UE 2发送基于SCI的数据。
参照图10中的(b),在LTE发送模式2、LTE发送模式4或NR资源分配模式2下,UE可以确定由BS/网络配置的SL资源或预先配置的SL资源内的SL传输资源。例如,所配置的SL资源或预先配置的SL资源可以是资源池。例如,UE可以自主地选择或调度用于SL发送的资源。例如,UE可以通过自主地选择所配置的资源池中的资源来执行SL通信。例如,UE可以通过执行感测和资源(重新)选择过程来自主地选择选择窗口内的资源。例如,可以以子信道为单元执行感测。另外,已在资源池中自主选择资源的UE 1可以通过PSCCH将SCI发送到UE 2,此后可以通过PSSCH将基于SCI的数据发送到UE 2。
图11示出了按照本公开的实施方式的三种播放类型。图11的实施方式可以与本公开的各种实施方式组合。具体地,图11中的(a)示出了广播型SL通信,图11中的(b)示出了单播型SL通信,并且图11中的(c)示出了组播型SL通信。在单播型SL通信的情况下,UE可以针对另一UE执行一对一通信。在组播型SL发送的情况下,UE可以针对UE所属的组中的一个或更多个UE执行SL通信。在本公开的各种实施方式中,SL组播通信可以被SL多播通信、SL一对多通信等替换。
下文中,将描述侧链路(SL)拥塞控制。
如果UE自主地确定SL传输资源,则UE还自主地确定供UE使用的资源的大小和使用频率。当然,由于来自网络等的约束,可以限制使用大于或等于特定水平的资源大小或使用频率。然而,如果在许多UE在特定时间集中在特定区域中的情形下所有UE使用相对大量的资源,则由于相互干扰,整体性能会显著劣化。
因此,UE可能需要观察信道情形。如果确定过度大量的资源被消耗时,则优选的是UE自主地减少资源的使用。在本公开中,这可以被定义为拥塞控制(CR)。例如,UE可以确定在单位时间/频率资源中测得的能量是否大于或等于特定水平,并且可以基于在其中观察到大于或等于特定水平的能量的单位时间/频率资源的比率来调整用于其传输资源的量和使用频率。在本公开中,其中观察到大于或等于特定水平的能量的时间/频率资源的比率可以被定义为信道繁忙比(CBR)。UE可以测量信道/频率的CBR。另外,UE可以将所测得的CBR发送到网络/BS。
图12示出了基于本公开的实施方式的用于CBR测量的资源单元。图12的实施方式可以与本公开的各种实施方式组合。
参照图12,作为UE在特定时段(例如,100ms)内基于子信道来测量RSSI的结果,CBR可以表示其中接收到的信号强度指示符(RSSI)的测量结果值具有大于或等于预配置阈值的值的子信道的数目。另选地,CBR可以表示在特定持续时间内子信道当中的具有大于或等于预配置阈值的值的子信道的比率。例如,在图12的实施方式中,如果假定带阴影子信道是具有大于或等于预配置阈值的值的子信道,则CBR可以表示100ms时段内带阴影子信道的比率。另外,可以向BS报告CBR。
另外,考虑到业务(例如,分组)的优先级的拥塞控制可以是必要的。为此,例如,UE可以测量信道占用比(CR)。具体地,UE可以测量CBR,并且UE可以基于CBR来确定可以由与每个优先级(例如,k)相对应的流量所占用的信道占用率k(CRk)的最大值CRlimitk。例如,UE可以基于CBR测量值的预定表来推导与每个流量的优先级有关的信道占用率的最大值CRlimitk。例如,在具有相对高优先级的业务的情况下,UE可以推导出相对大的信道占用率的最大值。此后,UE可以通过将其优先级k低于i的流量的信道占用率的总和限制为小于或等于特定值的值来执行拥塞控制。基于该方法,对于优先级相对低的业务,可以更严格地限制信道占用率。
除此之外,UE可以通过使用调整发送功率水平、丢弃分组、确定是否将执行重新发送、调整发送RB大小(MCS协调)等来执行SL拥塞控制。
下文中,将描述混合自动重传请求(HARQ)过程。
使用错误补偿方案来确保通信可靠性。错误补偿方案的示例可以包括前向纠错(FEC)方案和自动重传请求(ARQ)方案。在FEC方案中,可以通过将额外的纠错码附加到信息位来校正接收端中的错误。FEC方案具有时间延迟小并且在发送端和接收端之间没有另外地交换信息的优点,但同时具有在良好信道环境中系统效率下降的缺点。ARQ方案具有可以提高发送可靠性的优点,但同时具有在不良信道环境中出现时间延迟并且系统效率下降的缺点。
混合自动重传请求(HARQ)方案是FEC方案与ARQ方案的组合。在HARQ方案中,确定物理层所接收的数据中是否包括不可恢复的错误,并且在检测到该错误后请求重传,由此提高性能。
在SL单播和SL组播的情况下,可以支持物理层中的HARQ反馈和HARQ组合。例如,在接收UE在资源分配模式1或2下操作的情况下,接收UE可以从发送UE接收PSSCH,并且接收UE可以通过物理侧链路反馈信道(PSFCH)使用侧链路反馈控制信息(SFCI)格式将对应于PSSCH的HARQ反馈发送到发送UE。
例如,可以针对单播启用SL HARQ反馈。在这种情况下,在非代码块组(非CBG)中,接收UE可以对以接收UE为目标的PSCCH进行解码,并且当接收UE成功对与PSCCH相关的传输块进行解码时,接收UE可以生成HARQ-ACK。此后,接收UE可以将HARQ-ACK发送到发送UE。相反,在接收UE对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传输块进行成功解码,则接收UE可以生成HARQ-NACK,并且接收UE可以向发送UE发送HARQ-NACK。
例如,可以针对组播启用SL HARQ反馈。例如,在非CBG期间,可以针对组播支持两种不同类型的HARQ反馈选项。
(1)组播选项1:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传输块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。相反,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传输块进行解码时,接收UE不会向发送UE发送HARQ-ACK。
(2)组播选项2:在对以接收UE为目标的PSCCH进行解码之后,如果接收UE未能对与PSCCH相关的传输块进行解码,则接收UE可以经由PSFCH向发送UE发送HARQ-NACK。并且,当接收UE对以接收UE为目标的PSCCH进行解码时,并且当接收UE成功对与PSCCH相关的传输块进行解码时,接收UE可以经由PSFCH向发送UE发送HARQ-ACK。
例如,如果在SL HARQ反馈中使用组播选项1,则执行组播通信的所有UE都可以共享PSFCH资源。例如,属于同一组的UE可以通过使用相同的PSFCH资源来发送HARQ反馈。
例如,如果在SL HARQ反馈中使用组播选项2,则执行组播通信的每个UE都可以将不同的PSFCH资源用于HARQ反馈发送。例如,属于同一组的UE可以通过使用不同的PSFCH资源来发送HARQ反馈。
例如,当针对组播启用SL HARQ反馈时,接收UE可以基于发送-接收(TX-RX)距离和/或参考信号接收功率(RSRP)来确定是否向发送UE发送HARQ反馈。
例如,在组播选项1中,在基于TX-RX距离的HARQ反馈的情况下,如果TX-RX距离小于或等于通信范围要求,则接收UE可以将响应于PSSCH的HARQ反馈发送到发送UE。否则,如果TX-RX距离大于通信范围要求,则接收UE可以不将响应于PSSCH的HARQ反馈发送到发送UE。例如,发送UE可以通过与PSSCH相关的SCI将发送UE的位置告知接收UE。例如,与PSSCH相关的SCI可以是第二SCI。例如,接收UE可以基于接收UE的位置和发送UE的位置来估计或获得TX-RX距离。例如,接收UE可以对与PSSCH相关的SCI进行解码,因此可以知道用于PSSCH的通信范围要求。
例如,在资源分配模式1的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。在单播和组播的情况下,如果在SL上必须进行重传,则可以由使用PUCCH的覆盖范围内的UE将其向BS指示。发送UE可以以调度请求(SR)/缓冲状态报告(BSR)的形式而非HARQACK/NACK的形式向发送UE的服务BS发送指示。另外,即使BS未接收到该指示,BS也可以为UE调度SL重传资源。例如,在资源分配模式2的情况下,可以配置或预先配置PSFCH与PSSCH之间的时间(偏移)。
例如,从载波中的UE发送的角度来看,对于用于时隙中SL的PSFCH格式,可以允许PSCCH/PSSCH与PSFCH之间的TDM。例如,可以支持具有单个符号的基于序列的PSFCH格式。本文中,该单个符号可以不是AGC持续时间。例如,基于序列的PSFCH格式可以应用于单播和组播。
例如,在与资源池相关的时隙中,PSFCH资源可以被周期性配置为N个时隙持续时间,或者可以被预先配置。例如,N可以被配置为大于或等于1的一个或更多个值。例如,N可以为1、2或4。例如,可以仅在特定资源池上通过PSFCH发送针对特定资源池中的发送的HARQ反馈。
例如,如果发送UE跨时隙#x至时隙#n向接收UE发送PSSCH,则接收UE可以在时隙#(N+A)中将响应于PSSCH的HARQ反馈发送到发送UE。例如,时隙#(N+A)可以包括PSFCH资源。本文中,例如,A可以是大于或等于K的最小整数。例如,K可以是逻辑时隙的数量。在这种情况下,K可以是资源池中时隙的数量。另选地,例如,K可以是物理时隙的数量。在这种情况下,K可以是资源池内部或外部时隙的数量。
例如,如果接收UE响应于发送UE向接收UE发送的一个PSSCH而在PSFCH资源上发送HARQ反馈,则接收UE可以基于所配置的资源池中的隐式机制来确定PSFCH资源的频域和/或码域。例如,接收UE可以基于与PSCCH/PSSCH/PSFCH相关的时隙索引、与PSCCH/PSSCH相关的子信道或用于标识基于组播选项2的HARQ反馈的组中的每个接收UE的标识符中的至少一个来确定PSFCH资源的频域和/或码域。另外地/另选地,例如,接收UE可以基于SL RSRP、SINR、L1源ID和/或位置信息中的至少一个来确定PSFCH资源的频域和/或码域。
例如,如果通过UE的PSFCH进行的HARQ反馈发送与通过PSFCH进行的HARQ反馈接收交叠,则UE可以基于优先级规则来选择通过PSFCH进行的HARQ反馈发送和通过PSFCH进行的HARQ反馈接收中的任一个。例如,优先级规则至少可以基于相关PSCCH/PSSCH的优先级指示。
例如,如果针对多个UE,UE通过PSFCH进行的HARQ反馈发送交叠,则UE可以基于优先级规则来选择特定的HARQ反馈发送。例如,优先级规则可以基于相关PSCCH/PSSCH的最低优先级指示。
此外,在本公开中,例如,发送UE(TX UE)可以是向(目标)接收UE(RX UE)发送数据的UE。例如,TX UE可以是执行PSCCH发送和/或PSSCH发送的UE。例如,TX UE可以是向(目标)RX UE发送SL CSI-RS和/或SL CSI报告请求指示符的UE。例如,TX UE可以是将(预定义的)参考信号(例如,PSSCH解调参考信号(DM-RS))和/或SL(L1)RSRP报告请求指示符发送到(目标)RX UE以用于SL(L1)RSRP测量的UE。例如,TX UE可以是发送(控制)信道(例如,PSCCH、PSSCH等)和/或(控制)信道上的参考信号(例如,DM-RS、CSI-RS等)以用于(目标)RX UE的SLRLM操作和/或SL RFL操作的UE。
此外,在本公开中,例如,接收UE(RX UE)可以是基于从TX UE接收到的数据的解码是否成功和/或由TX UE发送的PSCCH(与PSSCH调度相关)的检测/解码是否成功来向发送UE(TX UE)发送SL HARQ反馈的UE。例如,RX UE可以是基于从TX UE接收到的SL CSI-RS和/或SL CSI报告请求指示符执行对TX UE的SL CSI发送的UE。例如,RX UE是向TX UE发送基于从TX UE接收到的SL(L1)RSRP报告请求指示符和/或(预定义的)参考信号测得的SL(L1)RSRP测量值的UE。例如,RX UE可以是将RX UE的数据发送到TX UE的UE。例如,RX UE可以是基于从TX UE接收到的(预先配置的)(控制)信道和/或(控制)信道上的参考信号来执行SL RLM操作和/或SL RLF操作的UE。
此外,在本公开中,例如,TX UE可以通过SCI将以下信息中的至少一条发送到RXUE。本文中,例如,TX UE可以通过第一SCI和/或第二SCI将以下信息中的至少一条发送到RXUE。
-PSSCH(和/或PSCCH)相关资源分配信息(例如,时间/频率资源的位置/数量、资源保留信息(例如,时段))
-SL CSI报告请求指示符或SL(L1)RSRP(和/或SL(L1)RSRQ和/或SL(L1)RSSI)报告请求指示符
-SL CSI发送指示符(或SL(L1)RSRP(和/或SL(L1)RSRQ和/或SL(L1)RSSI)信息发送指示符)(在PSSCH上)
-调制和编码方案(MCS)信息
-TX功率信息
-L1目的地ID信息和/或L1源ID信息
-SL HARQ进程ID信息
-新数据指示符(NDI)信息
-冗余版本(RV)信息
-(发送业务/分组相关的)QoS信息(例如,优先级信息)
-关于用于(发送)SL CSI-RS的天线端口的数量的信息或SL CSI-RS发送指示符
-(请求针对其的SL HARQ反馈的)目标RX UE的位置(或距离范围)信息或TX UE位置信息
-与通过PSSCH发送的数据的解码(和/或信道估计)相关的参考信号(例如,DM-RS等)信息。例如,与DM-RS的(时间-频率)映射资源的模式相关的信息、秩信息、天线端口索引信息等。
此外,在本公开中,例如,PSCCH可以被SCI和/或第一SCI和/或第二SCI更换/替换,反之亦然。例如,SCI可以被PSCCH和/或第一SCI和/或第二SCI更换/替换,反之亦然。例如,由于TX UE可以通过PSSCH向RX UE发送第二SCI,因此PSSCH可以被第二SCI更换/替换,反之亦然。例如,如果考虑到(相对)高的SCI有效载荷大小而将SCI配置字段划分为两个组,则包括第一SCI配置字段组的第一SCI可以被称为第一SCI或第一级SCI,并且包括第二SCI配置字段组的第二SCI可以被称为第二SCI或第二级SCI。例如,可以通过PSCCH发送第一SCI。例如,可以通过(独立的)PSCCH发送第二SCI。例如,第二SCI可以通过PSSCH与数据一起被承载和发送。
此外,在本公开中,例如,术语“配置/经配置的”或术语“定义/已定义的”可以是指(针对每个资源池)(通过预定义信令(例如,SIB、MAC、RRC等))来自基站或网络的(预先)配置。例如,“A被配置为”可以意指“基站/网络向UE发送与A相关的信息”。
此外,在本公开中,例如,RB可以被子载波更换/替换,反之亦然。例如,分组或业务可以被传输块(TB)或基于发送层的介质接入控制协议数据单元(MAC PDU)更换/替换,反之亦然。例如,代码块组(CBG)可以被TB更换/替换,反之亦然。例如,源ID可以被目的地ID更换/替换,反之亦然。例如,L1 ID可以被L2 ID更换/替换,反之亦然。例如,L1 ID可以是L1源ID或L1目的地ID。例如,L2 ID可以是L2源ID或L2目的地ID。
此外,在本公开中,例如,发送UE保留/选择/确定重新传输资源的操作可以包括:发送UE保留/选择/确定其实际使用将基于从接收UE接收到的SL HARQ反馈信息来确定的潜在重新传输资源的操作。
此外,在本公开中,子选择窗口可以用选择窗口和/或选择窗口内的预先配置数量的资源集来替换/替代,反之亦然。
此外,在本公开中,SL MODE 1可以是指其中基站通过预定义信令(例如,DCI或RRC消息)直接调度针对TX UE的SL传输资源的资源分配方法或通信方法。例如,SL MODE 2可以是指其中UE在由基站或网络预先配置或配置的资源池中独立地选择SL传输资源的资源分配方法或通信方法。例如,基于SL MODE 1执行SL通信的UE可以被称为MODE 1 UE或MODE 1TX UE,并且基于SL MODE 2执行SL通信的UE可以被称为MODE 2 UE或MODE 2 TX UE。
此外,在本公开中,例如,动态许可(DG)可以被配置许可(CG)和/或半永久调度(SPS)许可更换/替换,反之亦然。例如,DG可以被CG和SPS许可的组合更换/替换,反之亦然。例如,CG可以包括配置许可(CG)类型1和/或配置许可(CG)类型2中的至少一者。例如,在CG类型1中,许可可以由RRC信令提供并可以被作为配置许可存储。例如,在CG类型2中,许可可以由PDCCH提供,并可以基于指示许可的启用或禁用的L1信令作为配置许可被存储或删除。例如,在CG类型1中,基站可以通过RRC消息向TX UE分配周期性资源。例如,在CG类型2中,基站可以通过RRC消息向TX UE分配周期性资源,并且基站可以通过DCI动态地启用或禁用周期性资源。
此外,在本公开中,信道可以用信号替换/取代,或者反之亦然。例如,信道的发送/接收可以包括信号的发送/接收。例如,信号的发送/接收可以包括信道的发送/接收。例如,播放可以用单播、组播和/或广播中的至少一个替换/取代,或者反之亦然。例如,播放类型可以用单播、组播和/或广播中的至少一个替换/取代,或者反之亦然。
此外,在本公开中,可以利用时隙或符号来替换/替代资源,反之亦然。例如,资源可以包括时隙和/或符号。例如,PSSCH可以用PSCCH来替换/替代,反之亦然。
此外,在本公开中,盲重传可以指TX UE在不从RX UE接收SL HARQ反馈信息的情况下执行重传。例如,基于SL HARQ反馈的重传可以指TX UE基于从RX UE接收的SL HARQ反馈信息来确定是否执行重传。例如,如果TX UE从RX UE接收到NACK和/或DTX信息,则TX UE可以执行到RX UE的重传。
此外,在本公开中,可以用频率来替换/替代时间,反之亦然。
此外,在本公开中,例如,为了便于描述,当RX UE向TX UE发送以下信息中的至少一个时使用的(物理)信道可以被称为PSFCH。
-SL HARQ反馈、SL CSI、SL(L1)RSRP
此外,在本公开中,Uu信道可以包括UL信道和/或DL信道。例如,UL信道可以包括PUSCH、PUCCH、探测参考信号(SRS)等。例如,DL信道可以包括PDCCH、PDSCH、PSS/SSS等。例如,SL信道可以包括PSCCH、PSSCH、PSFCH、PSBCH、PSSS/SSSS等。
此外,在本公开中,侧链路信息可以包括侧链路消息、侧链路分组、侧链路服务、侧链路数据、侧链路控制信息和/或侧链路传输块(TB)中的至少一个。例如,可以通过PSSCH和/或PSCCH来发送侧链路信息。
此外,在本公开中,高优先级可以意指小优先级值,并且低优先级可以意指大优先级值。例如,表5示出了优先级的示例。
[表5]
服务或逻辑信道 优先级值
服务A或逻辑信道A 1
服务B或逻辑信道B 2
服务C或逻辑信道C 3
参照表5,例如,与最小优先级值相关的服务A或逻辑信道A可以具有最高优先级。例如,与最大优先级值相关的服务C或逻辑信道C可以具有最低优先级。
此外,在NR V2X通信或NR侧链路通信中,发送UE可以保留/选择用于侧链路传输(例如,初始传输和/或重传)的一个或更多个传输资源,并且发送UE可以向接收UE发送关于一个或更多个传输资源的位置的信息。
此外,当执行侧链路通信时,发送UE保留或预先确定针对接收UE的传输资源的方法可以代表性地如下。
例如,发送UE可以基于链来执行传输资源的保留。具体地,例如,如果发送UE保留K个传输资源,则发送UE可以通过在任何(或特定)传输时间或时间资源处发送到接收UE的SCI来向接收UE发送少于K个传输资源的位置信息。也就是说,例如,SCI可以包括少于K个传输资源的位置信息。另选地,例如,如果发送UE保留与特定TB相关的K个传输资源,则发送UE可以通过在任何(或特定)传输时间或时间资源处发送到接收UE的SCI来向接收UE发送少于K个传输资源的位置信息。也就是说,SCI可以包括少于K个传输资源的位置信息。在这种情况下,例如,通过仅经由由发送UE在任何(或特定)传输时间或时间资源处发送的一个SCI来向接收UE发信号通知少于K个传输资源的位置信息,可以防止由于SCI的有效载荷的过度增加而引起的性能劣化。
图13示出了基于本公开的实施方式的其中具有保留的传输资源的UE向另一UE通知传输资源的方法。图13的实施方式可以与本公开的各种实施方式组合。
具体地,例如,图13的(a)示出了在值K=4的情况下,通过经由一个SCI向接收UE发送/发信号通知(最大)2个传输资源的位置信息来由发送UE执行基于链的资源保留的方法。例如,图13的(b)示出了在值K=4的情况下,通过经由一个SCI向接收UE发送/发信号通知(最大)3个传输资源的位置信息来由发送UE执行基于链的资源保留的方法。例如,参照图13的(a)和(b),发送UE可以通过第四(或最后)传输相关PSCCH向接收UE仅发送/发信号通知第四传输相关资源的位置信息。例如,参照图13的(a),发送UE可以通过第四(或最后)传输相关PSCCH向接收UE不仅发送/发信号通知第四传输相关资源的位置信息,而且还另外发送/发信号通知第三传输相关资源的位置信息。例如,参照图13的(b),发送UE可以通过第四(或最后)船速相关PSCCH向接收UE不仅发送/发信号通知第四传输相关资源的位置信息,而且还另外发送/发信号通知第二传输相关资源的位置信息和第三传输相关资源的位置信息。在这种情况下,例如,在图13的(a)和(b)中,如果发送UE可以通过第四(或最后)传输相关PSCCH向接收UE仅发送/发信号通知第四传输相关资源的位置信息,则发送UE可以将未使用或剩余传输资源的位置信息的字段/比特设置或指定为预先配置的值(例如,0)。例如,在图13的(a)和(b)中,如果发送UE可以通过第四(或最后)传输相关PSCCH向接收UE仅发送/发信号通知第四传输相关资源的位置信息,则发送UE可以将未使用或剩余传输资源的位置信息的字段/比特设置或指定为指示/表示最后传输(在4个传输当中)的预先配置的状态/比特值。
此外,例如,发送UE可以基于块来执行传输资源的保留。具体地,例如,如果发送UE保留K个传输资源,则发送UE可以通过在任何(或特定)传输时间或时间资源处发送到接收UE的SCI向接收UE发送K个传输资源的位置信息。也就是说,SCI可以包括K个传输资源的位置信息。例如,如果发送UE保留与特定TB相关的K个传输资源,则发送UE可以通过在任何(或特定)传输时间或时间资源处发送到接收UE的SCI向接收UE发送K个传输资源的位置信息。也就是说,SCI可以包括K个传输资源的位置信息。例如,图13的(c)示出了在值K=4的情况下,通过经由一个SCI向接收UE发信号通知4个传输资源的位置信息,由发送UE执行基于块的资源保留的方法。
此外,例如,如果UE执行基于模式1的SL通信,则可以限制与UE的一个TB相关的最大重传次数。例如,如果UE执行基于模式1的SL通信,则可以限制与UE的SL HARQ过程相关的最大重传次数。例如,如果UE执行基于模式1的SL通信,则可以限制与UE的模式1配置许可(CG)相关的最大重传次数。例如,如果UE执行基于模式1的SL通信,则可以限制与UE的模式1动态许可(DG)相关的最大重传次数。例如,基站可以通过预定义的信令(例如,SIB、RRC、DCI等)来限制UE的最大重传次数。例如,基站可以通过预定义的信令来向UE发送与最大重传次数相关的信息。在下文中,为了便于描述,最大重传次数可以被称为MAX_RETXNUM。在下文中,为了便于描述,执行基于模式1的SL通信的UE可以被称为MODE 1 TX UE。例如,MAX_RETXNUM可以是包括初始传输和重传二者的传输的数量。另选地,例如,MAX_RETXNUM可以是排除初始传输而仅包括重传的传输次数。
例如,如果MODE 1 TX UE的MAX_RETXNUM是有限的,则MODE 1 TX UE可以在不区分与一个TB相关的初始传输/重传目的的情况下使用由特定(一个)模式1 CG或模式1 DG分配的资源。并且/或者,例如,如果MODE 1 TX UE的MAX_RETXNUM是有限的,则MODE 1 TX UE可以在不区分与SL HARQ过程相关的初始传输/重传目的的情况下使用由特定(一个)模式1CG或模式1 DG分配的资源。例如,如上所述,如果MODE 1 TX UE没有区分所分配的针对初始传输目的和重传目的的资源并使用其,则当MODE 1 TX UE通过(预先配置的)PUCCH资源(例如,用于MODE 1 TX UE向基站报告从RX UE接收到的SL HARQ反馈信息的资源)请求附加重传资源分配时,基站可能难以准确地确定(对应的)MODE 1 TX UE已经执行了多少次重传或相对于(对应的)一个TB和/或SL HARQ过程的剩余重传次数。换句话说,例如,当基站基于由MODE 1 TX UE发送的PUCCH来分配附加重传资源时,基站可能难以调整要针对重传分配的资源的数量以相对于一个TB和/或SL HARQ过程(如上所述)不超过UE的MAX_RETXNUM。例如,由基站分配给UE的相对于特定TB和/或SL HARQ的重传资源的总数可能大于MAX_RETXNUM。
基于本公开的各种实施方式,提出了一种用于有效地减轻上述问题的方法和支持该方法的装置。
例如,可以根据资源池、服务类型、服务优先级、播放类型、目的地UE、(L1或L2)目的地ID、(L1或L2)源ID、(服务)QoS参数(例如,可靠性、时延)、(资源池)拥塞级别、SL模式(例如,模式1、模式2)、许可类型(例如,CG、DG)和/或分组/消息(例如,TB)的大小中的至少一个来不同地或有限地配置或确定是否应用根据本公开的各种实施方式提出的方法和/或过程的全部或部分。例如,可以针对TX UE的基于链的资源保留操作、TX UE的基于块的资源保留操作、TX UE的盲重传操作、TX UE的基于SL HARQ反馈的重传操作、TX UE的基于CG的资源选择/保留/确定操作和/或TX UE的基于DG的资源选择/保留/确定操作中的至少一个来不同地或有限地配置或确定是否应用根据本公开的各种实施方式提出的方法和/或过程的全部或部分。
例如,可以根据资源池、服务类型、服务优先级、播放类型、目的地UE、(L1或L2)目的地ID、(L1或L2)源ID、(服务)QoS参数(例如,可靠性、时延)、(资源池)拥塞级别、SL模式(例如,模式1、模式2)、许可类型(例如,CG、DG)和/或分组/消息(例如,TB)的大小中的至少一个来不同地或有限地配置或确定根据本公开的各种实施方式的参数。例如,可以针对TXUE的基于链的资源保留操作、TX UE的基于块的资源保留操作、TX UE的盲重传操作、TX UE的基于SL HARQ反馈的重传操作、TX UE的基于CG的资源选择/保留/确定操作和/或TX UE的基于DG的资源选择/保留/确定操作中的至少一个来不同地或有限地配置或确定根据本公开的各种实施方式的参数。
例如,以下(一些)规则(例如,OPTION B)可以仅有限地应用于具有相对较低可靠性要求(与预先配置的阈值相比)的服务。例如,以下(一些)规则(例如,OPTION B)可以仅有限地应用于具有相对高错误率要求的服务。例如,以下(一些)规则(例如,OPTION B)可以仅有限地应用于具有错误率要求的服务。例如,错误率可以是块错误率(BLER)。
基于本公开的实施方式,即使与MODE 1 TX UE的特定TB相关的重传次数达到MAX_RETXNUM,MODE 1 TX UE也可以从RX UE接收NACK信息。例如,即使与MODE 1 TX UE的特定SLHARQ过程相关的重传次数达到MAX_RETXNUM,MODE 1 TX UE也可以从RX UE接收NACK信息。例如,即使与MODE 1 TX UE的特定TB相关的重传次数达到MAX_RETXNUM,MODE 1 TX UE也可以不从RX UE接收SL HARQ反馈信息。例如,即使与MODE 1 TX UE的特定SL HARQ过程相关的重传次数达到MAX_RETXNUM,MODE 1 TX UE也可以不从RX UE接收SL HARQ反馈信息。例如,如果RX UE未能对PSCCH进行解码/接收,或者如果TX UE未能接收/检测到PSFCH,则MODE 1TX UE可以不从RX UE接收SL HARQ反馈信息。例如,如果MODE 1 TX UE向RX UE发送HARQ反馈被禁用的TB,则MODE 1 TX UE可以不从RX UE接收SL HARQ反馈信息。
例如,如上所述,如果MODE 1 TX UE从RX UE接收到NACK信息,或者如果MODE 1 TXUE没有从RX UE接收到SL HARQ反馈信息,则MODE 1 TX UE可以被配置为通过(预先配置的)PUCCH资源向基站报告ACK信息或预先配置的状态/指示符信息。例如,MODE 1 TX UE可以通过(预先配置的)PUCCH资源向基站报告ACK信息或预先配置的状态/指示符信息。
例如,如上所述,如果MODE 1 TX UE从RX UE接收到NACK信息,或者如果MODE 1 TXUE未从RX UE接收到SL HARQ反馈信息,则MODE 1 TX UE可以被配置为通过(预先配置的)PUCCH资源向基站报告NACK信息或DTX信息。例如,MODE 1 TX UE可以通过(预先配置的)PUCCH资源向基站报告NACK信息或DTX信息。
在下文中,为了便于描述,其中MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告ACK信息、预先配置的状态/指示符信息、NACK信息或DTX信息的操作可以被称为OPTIONA。
另选地,例如,如上所述,如果MODE 1 TX UE从RX UE接收到NACK信息,或者如果MODE 1 TX UE未从RX UE接收到SL HARQ反馈信息,则MODE 1 TX UE可以被配置为不执行到基站的PUCCH传输。例如,MODE 1 TX UE可以不执行到基站的PUCCH传输。在下文中,为了便于描述,其中MODE 1 TX UE不执行到基站的PUCCH传输的操作可以被称为OPTION B。
在本文中,例如,仅当MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告的SLHARQ反馈信息是针对多个TB的SL HARQ反馈信息时,才可以应用或配置OPTION A。例如,仅当MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告的SL HARQ反馈信息是针对多个SL HARQ过程的SL HARQ反馈信息时,才可以应用或配置OPTION A。例如,仅当MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告的SL HARQ反馈信息包括针对其中重传次数已经达到MAX_RETXNUM的TB和/或HARQ过程的SL HARQ反馈信息和/或针对其中重传次数尚未达到MAX_RETXNUM的TB和/或HARQ过程的SL HARQ反馈信息时,才可以应用或配置OPTION A。
例如,基于OPTION A,基站可以从MODE 1 TX UE接收ACK信息或预先配置的状态/指示符信息。例如,如果由基站分配给MODE 1 TX UE的重传相关资源的总数大于MAX_RETXNUM,则基站可以从MODE 1 TX UE接收ACK信息或预先配置的状态/指示符信息。通过这一点,MODE 1 TX UE实际上不使用的重传资源可以用于其它目的(例如,UL通信)(由基站进行的)。例如,基站可以将MODE 1 TX UE实际上不使用的重传资源分配作为其它UE的SL资源。例如,基站可以将MODE 1 TX UE实际上不使用的重传资源分配为其它UE的UL资源。例如,基站可以将MODE 1TX UE实际上不使用的重传资源分配为MODE 1 TX UE的UL资源。
基于本公开的实施方式,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的SL HARQ过程的标识符信息以及SL HARQ反馈信息。例如,SL HARQ反馈信息可以是从RXUE接收的SL HARQ反馈信息。例如,如果未从RX UE接收到SL HARQ反馈信息,则可以由MODE1 TX UE生成通过PUCCH资源报告给基站的SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的模式1 CG的索引信息以及SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的TB信息以及SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的相对于SL HARQ过程执行的重传次数以及SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的相对于TB执行的重传次数以及SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE 1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的与SL HARQ过程相关的剩余重传次数以及SL HARQ反馈信息。例如,如果MODE 1 TX UE通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息,则MODE1 TX UE可以向基站发送与(每个)SL HARQ反馈信息相关联的与TB相关的剩余重传次数以及SL HARQ反馈信息。
图14示出了基于本公开的实施方式的TX UE向基站报告HARQ反馈信息的过程。图14的实施方式可以与本公开的各种实施方式组合。
参照图14,在步骤S1410中,TX UE可以从基站接收与SL资源相关的信息和/或与PUCCH资源相关的信息。例如,SL资源可以包括PSCCH资源和/或PSSCH资源。例如,PUCCH资源可以是与SL资源相关的资源。例如,PUCCH资源可以是用于向基站报告HARQ反馈的资源。另外,例如,TX UE可以从基站接收与最大传输次数相关的信息。例如,最大传输次数可以包括初始传输和重传。例如,最大传输次数可以是与特定TB相关的最大传输次数。例如,最大传输次数可以是与特定MAC PDU相关的最大传输次数。
在步骤S1420中,TX UE可以向RX UE发送PSCCH和/或PSSCH。例如,TX UE可以基于SL资源来向RX UE发送PSCCH和/或PSSCH。例如,TX UE可以基于SL资源来向RX UE发送HARQ反馈被禁用的介质接入控制(MAC)分组数据单元(PDU)。HARQ反馈被禁用的MAC PDU可以通过PSSCH来发送。例如,TX UE可以基于SL资源来执行针对MAC PDU的盲重传。在这种情况下,由于HARQ反馈针对MAC PDU被禁用,所以RX UE可以不发送针对MAC PDU的HARQ反馈。也就是说,在盲重传的MAC PDU的情况下,RX UE可以不发送针对MAC PDU的HARQ反馈。
在步骤S1430中,如果HARQ反馈针对MAC PDU被禁用并且不需要MAC PDU的重传,则TX UE可以生成与MAC PDU的传输相关的ACK信息。例如,如果针对MAC PDU的传输次数达到最大传输次数,则TX UE可以不需要MAC PDU的重传。例如,如果MAC PDU的传输次数达到最大传输次数,则可以不允许TX UE重传MAC PDU。
在步骤S1440中,TX UE可以基于PUCCH资源向基站发送ACK信息。例如,基于ACK信息,基站可以不向TX UE分配附加(重新)传输资源。
基于本公开的实施方式,MODE 1 TX UE未成功地向RX UE发送TB,或者通过使用先前分配/调度的(重新)传输资源未能成功地完成SL HARQ过程,MODE 1 TX UE可以从基站请求用于TB和/或SL HARQ过程的附加重传资源的分配/调度。为此,MODE 1 TX UE可以通过(预先配置的)PUCCH资源向基站报告SL HARQ反馈信息。例如,SL HARQ反馈信息可以是从RXUE接收的SL HARQ反馈信息。例如,如果未从RX UE接收到SL HARQ反馈信息,则可以由MODE1 TX UE生成通过PUCCH资源报告给基站的SL HARQ反馈信息。
图15示出了基于本公开的实施方式的TX UE向基站报告HARQ反馈信息的过程。图15的实施方式可以与本公开的各种实施方式组合。
参照图15,在步骤S1510中,TX UE可以从基站接收与SL资源相关的信息和/或与PUCCH资源相关的信息。在步骤S1520中,TX UE可以向RX UE发送PSCCH和/或PSSCH。
在步骤S1530中,TX UE可以从RX UE接收与PSCCH和/或PSSCH相关的PSFCH。另选地,例如,RX UE可以跳过/省略PSFCH的发送。另选地,例如,TX UE可以跳过/省略PSFCH的接收。
在步骤S1540中,TX UE可以向RX UE发送PUCCH和/或PUSCH。例如,TX UE可以通过PUCCH和/或PUSCH向基站报告HARQ反馈信息。例如,可以基于CASE A至CASE D来确定TX UE通过PUCCH和/或PUSCH报告的HARQ反馈信息。例如,可以基于CASE A至CASE D来确定TX UE是否跳过/省略PUCCH传输和/或PUSCH传输。为了便于描述,可以如下定义CASE A至CASE D。在本文中,例如,PSCCH/PSSCH可以是与(特定)TB相关的PSCCH/PSSCH。例如,PSCCH/PSSCH可以是与(特定)SL HARQ过程相关的PSCCH/PSSCH。例如,要发送的TB可以是要由TX UE关于(特定)SL HARQ过程发送的TB。
1)CASE A
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且RX UE由于未能对PSCCH进行解码而不向TX UE发送PSFCH(例如,SL HARQ反馈信息)的情况下,和/或
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且RX UE基于(预先配置的)基于优先级的丢弃规则而不向TX UE发送与PSCCH/PSSCH相关的PSFCH的情况下。
2)CASE B
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且已经接收到PSCCH/PSSCH的RX UE向TX UE发送与PSCCH/PSSCH相关的PSFCH(例如,SL HARQ反馈信息),并且TX UE未能接收到(对应的)PSFCH的情况下,和/或
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且已经成功对PSCCH/PSSCH进行解码的RX UE向TX UE发送与PSCCH/PSSCH相关的PSFCH(例如,SL HARQ反馈信息),并且TX UE未能接收到(对应的)PSFCH的情况下,和/或
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且已经接收到PSCCH/PSSCH的RX UE向TX UE发送与PSCCH/PSSCH相关的PSFCH(例如,SL HARQ反馈信息),并且TX UE基于(预先配置的)基于优先级的丢弃规则而不接收与PSCCH/PSSCH相关的PSFCH的情况下,和/或
例如,在TX UE向RX UE发送PSCCH/PSSCH,并且已经成功对PSCCH/PSSCH进行解码的RX UE向TX UE发送与PSCCH/PSSCH相关的PSFCH(例如,SL HARQ反馈信息),并且TX UE基于(预先配置的)基于优先级的丢弃规则而不接收与PSCCH/PSSCH相关的PSFCH的情况下
3)CASE C
例如,在因为要由TX UE发送到RX UE的TB不存在于TX UE的缓冲器中,所以TX UE不向RX UE发送PSCCH/PSSCH的情况下
4)CASE D
例如,在要由TX UE发送到RX UE的TB在TX UE的缓冲器中并且TX UE基于(预先配置的)基于优先级的丢弃规则而不发送PSCCH/PSSCH的情况下,和/或
例如,在要由TX UE发送到RX UE的TB在TX UE的缓冲器中并且TX UE根据基于拥塞控制的物理层参数限制(例如,(最大)CR值限制)而不发送PSCCH/PSSCH的情况下
例如,如果要由TX UE发送到RX UE的TB(仍然)存在于TX UE的缓冲器中,则TX UE可以通过PUCCH向基站发送NACK信息,以从基站请求附加重传资源分配/调度。例如,如果要由TX UE发送到RX UE的TB(仍然)存在于TX UE的缓冲器中,则TX UE可以通过PUCCH向基站发送DTX信息,以从基站请求附加重传资源分配/调度。例如,如果要由TX UE发送到RX UE的TB(仍然)存在于TX UE的缓冲器中,则TX UE可以通过PUCCH向基站发送预先配置的状态/指示符信息,以从基站请求附加重传资源分配/调度。例如,其中要由TX UE发送到RX UE的TB(仍然)存在于TX UE的缓冲器中的情况可以是CASE A、CASE B和/或CASE D中的至少一个。
例如,如果TX UE(实际上)不向RX UE发送TB,则TX UE可以通过PUCCH向基站发送NACK信息,以从基站请求附加重传资源分配/调度。例如,如果TX UE(实际上)不向RX UE发送TB,则TX UE可以通过PUCCH向基站发送DTX信息,以从基站请求附加重传资源分配/调度。例如,如果TX UE(实际上)不向RX UE发送TB,则TX UE可以通过PUCCH向基站发送预先配置的状态/指示符信息,以从基站请求附加重传资源分配/调度。例如,其中TX UE(实际上)不向RX UE发送TB的情况可以是CASE D。
例如,如果要由TX UE发送到RX UE的TB不存在于TX UE的缓冲器中,则TX UE可以通过PUCCH向基站发送ACK信息。例如,如果要由TX UE发送到RX UE的TB不存在于TX UE的缓冲器中,则TX UE可以不向基站发送PUCCH。在这种情况下,基站可以不执行针对TX UE的附加重传资源分配/调度。例如,其中要由TX UE发送到RX UE的TB不存在于TX UE的缓冲器中的情况可以是CASE C。
例如,如果TX UE从RX UE接收到针对由TX UE发送的PSCCH/PSSCH的ACK信息,则TXUE可以通过PUCCH向基站发送ACK信息。例如,如果TX UE从RX UE接收到针对由TX UE发送的PSCCH/PSSCH的ACK信息,则TX UE可以不向基站发送PUCCH。在这种情况下,基站可以不执行针对TX UE的附加重传资源分配/调度。
基于本公开的实施方式,如果满足第一条件至第三条件中的至少一个,则MODE1TX UE可以将包括在SCI中的(预定义的)SL HARQ反馈请求字段指定/设置为“禁用”。例如,SCI可以是通过PSCCH发送的第一SCI。例如,SCI可以是通过PSSCH发送的第二SCI。例如,如果SL HARQ反馈操作针对资源池(提前)启用,并且如果满足第一条件至第三条件中的至少一个,则MODE 1 TX UE可以将包括在SCI中的(预定义的)SL HARQ反馈请求字段指定/设置为“禁用”。例如,如果SL HARQ反馈操作针对资源池在TX UE与RX UE之间(提前)启用,并且如果满足第一条件至第三条件中的至少一个,则MODE 1 TX UE可以将包括在SCI中的(预定义的)SL HARQ反馈请求字段指定/设置为“禁用”。例如,如果SL HARQ反馈操作针对特定MACPDU启用,并且如果满足第一条件至第三条件中的至少一个,则MODE 1 TX UE可以将包括在SCI中的与MAC PDU相关的(预定义的)SL HARQ反馈请求字段指定/设置为“禁用”。例如,网络可以向UE配置或预先配置第一条件至第三条件。例如,网络可以是基站或RSU。
例如,如果满足第一条件至第三条件中的至少一个,则发送PSCCH/PSSCH的MODE 1TX UE可以指示或通知RX UE不发送针对PSCCH/PSSCH的SL HARQ反馈。例如,基于是否满足预先配置的条件,TX UE可以(独立地)改变(动态地)与PSCCH/PSSCH传输相关的SL HARQ反馈请求字段的值。
1)第一条件:如果由TX UE测量的(资源池相关的)拥塞级别高于预先配置的第一阈值,或者如果由TX UE测量的(资源池相关的)拥塞级别低于预先配置的第二阈值,和/或
2)第二条件:如果TX UE的PSCCH/PSSCH发送必需和/或所需的PSFCH资源的数量小于预先配置的阈值(在资源池中),和/或
3)第三条件:如果TX UE发送优先级低于预先配置的优先级的SL信息(即,大优先级值),或者如果TX UE发送具有低于预先配置的标准的要求(例如,低可靠性、高时延)的SL信息
此外,如果应用上述规则和/或操作,例如,当TX UE向RX UE发送PSCCH/PSSCH时,基站可能难以(准确地)确定在由TX UE指示的包括在SCI中的(预定义的)SL HARQ反馈请求字段的状态/值。考虑到这一点,例如,如果TX UE通过将SL HARQ反馈请求字段指定/设置为“禁用”来向RX UE发送PSCCH/PSSCH,则TX UE可以通过PUCCH向基站报告ACK信息。例如,如果TX UE通过将SL HARQ反馈请求字段指定/设置为“禁用”来向RX UE发送PSCCH/PSSCH,则TX UE可以不执行PUCCH传输。例如,如果TX UE通过将SL HARQ反馈请求字段指定/设置为“禁用”来向RX UE发送PSCCH/PSSCH,则TX UE可以通过PUCCH向基站报告NACK信息。例如,如果TX UE通过将SL HARQ反馈请求字段指定/设置为“禁用”来向RX UE发送PSCCH/PSSCH,则TX UE可以通过PUCCH向基站报告预先配置的状态/指示符信息。
基于本公开的实施方式,在预先配置的特定播放类型(例如,组播)的情况下,可以配置(RX UE的)基于TX UE与RX UE之间的距离的SL HARQ反馈传输操作。为了便于描述,基于TX UE与RX UE之间的距离的SL HARQ反馈操作可以被称为基于距离的HARQ反馈操作。例如,在基于距离的HARQ反馈操作中,如果TX UE与RX UE之间的距离小于或等于通信范围要求,则(i)未能对PSSCH进行解码的RX UE可以向TX UE发送NACK信息,并且(ii)已经成功对PSSCH进行解码的RX UE可以不向TX UE发送ACK信息。也就是说,RX UE可以执行仅NACK反馈。另一方面,例如,在基于距离的HARQ反馈操作中,如果TX UE与RX UE之间的距离大于通信范围要求,则RX UE可以不向TX UE发送HARQ反馈信息。也就是说,RX UE可以不执行HARQ反馈。
例如,如果配置/应用基于距离的HARQ反馈操作,则TX UE可以通过包括在由TX UE发送的SCI(例如,第二SCI)中的预定义的字段(下文中,TXLO_FLD)向RX UE发送/发信号通知TX UE的位置信息(例如,区域ID)。在这种情况下,例如,仅当RX UE未能对PSSCH进行解码/接收时,RX UE才可以被配置为向TX UE发送NACK信息。为了便于描述,这可以被称为OPTION 1。
另一方面,例如,可以配置/应用以下操作:如果RX UE成功对PSSCH进行解码/接收,则RX UE发送ACK信息,但是如果RX UE未能对PSSCH进行解码/接收,则RX UE发送NACK信息。为了便于描述,这可以被称为OPTION 2。例如,如果配置/应用OPTION 2,则TX UE可以不通过包括在SCI(例如,第二SCI)中的TXLO_FLD来发送TX UE的上述位置信息(例如,区域ID)。也就是说,如果配置/应用OPTION 2,则TX UE不需要通过包括在SCI(例如,第二SCI)中的TXLO_FLD来发送TX UE的上述位置信息(例如,区域ID)。例如,如果未配置基于距离的HARQ反馈操作,则TX UE可以不通过包括在SCI(例如,第二SCI)中的TXLO_FLD来发送TX UE的上述位置信息(例如,区域ID)。也就是说,如果未配置基于距离的HARQ反馈操作,则TX UE不需要通过包括在SCI(例如,第二SCI)中的TXLO_FLD来发送TX UE的上述位置信息(例如,区域ID)。
在本文中,例如,为了降低RX UE对具有不同有效载荷大小的大量SCI(例如,第二SCI、第一SCI)进行解码所需的(实现)复杂度,如果配置/应用OPTION 2,则TX UE可以用预先配置的比特值(例如,0)来填充TXLO_FLD。例如,为了降低RX UE对具有不同有效载荷大小的大量SCI(例如,第二SCI、第一SCI)进行解码所需的(实现)复杂度,如果配置/应用OPTION2,则TX UE可以(通过TXLO_FLD)重复发送与包括在预先配置的SCI(例如,第二SCI)中的特定字段相关的(一些)比特。在这种情况下,例如,SCI(例如,第二SCI)的有效载荷大小在OPTION 1与OPTION 2之间可以是相同的。例如,SCI(例如,第二SCI)的有效载荷大小在根据TX UE与RX UE之间的距离的SL HARQ反馈传输操作(即,基于距离的HARQ反馈操作)被启用的情况与基于距离的HARQ反馈操作被禁用的情况之间可以是相同的。
例如,TX UE可以被配置为省略TXLO_FLD。例如,SCI(例如,第二SCI)的有效载荷大小在OPTION 1与OPTION 2之间可以是不同的。例如,SCI(例如,第二SCI)的有效载荷大小在根据TX UE与RX UE之间的距离的SL HARQ反馈传输操作(即,基于距离的HARQ反馈操作)被启用的情况与基于距离的HARQ反馈操作被禁用的情况之间可以是不同的。
例如,SCI格式可以基于OPTION 1和OPTION 2来不同地定义。例如,SCI格式可以基于是启用还是禁用根据TX UE与RX UE之间的距离的SL HARQ反馈传输操作来不同地定义。
图16示出了基于本公开的实施方式的RX UE基于不同的SCI格式执行HARQ反馈操作的过程。图16的实施方式可以与本公开的各种实施方式组合。
参照图16,在步骤S1610中,TX UE可以通过PSCCH向RX UE发送第一SCI。
在步骤S1620中,TX UE可以通过PSSCH向RX UE发送第二SCI。另外,TX UE可以通过PSSCH向RX UE发送MAC PDU。例如,MAC PDU可以是HARQ反馈被启用的MAC PDU。例如,第二SCI的格式可以是(i)不包括TX UE的位置信息的SCI格式2-A或(ii)包括TX UE的位置信息的SCI格式2-B。
例如,SCI格式2-A可以如表6所示定义。
[表6]
Figure BDA0003671362020000351
例如,SCI格式2-B可以如表7所示定义。
[表7]
Figure BDA0003671362020000361
在步骤S1630中,RX UE可以确定是否向TX UE发送PSFCH。例如,RX UE可以基于第二SCI的格式来确定是否执行基于距离的HARQ反馈操作。例如,如果第二SCI的格式是不包括TX UE的位置信息的SCI格式2-A,则RX UE可以不执行基于距离的HARQ反馈操作。在这种情况下,例如,基于距离的HARQ反馈操作可以被禁用。例如,如果第二SCI的格式是包括TXUE的位置信息的SCI格式2-B,则RX UE可以执行基于距离的HARQ反馈操作。在这种情况下,例如,基于距离的HARQ反馈操作可以被启用。
基于本公开的实施方式,为了减少针对TB相关的初始传输的(不同UE之间的)资源冲突概率,TX UE可以(在初始传输之前)发送预留信号(pre-reservation signal)(例如,包括PSCCH和/或PSSCH)。例如,预留信号可以包括与初始传输相关的信息和/或与预留信号之后的重传相关的信息。例如,与初始传输相关的信息和/或与预留信号之后的重传相关的信息可以包括与由TX UE保留/选择的资源相关的位置信息和/或优先级信息。例如,资源可以包括时间资源和/或频率资源。例如,优先级信息可以是与由TX UE保留/选择的资源相关联的分组/消息的优先级信息。
例如,TX UE可以被配置为填充预先配置的比特(例如,0)和/或在与(对应的)预留相关的PSSCH资源中除了第二SCI之外的剩余RE上的后续TB相关的(一些)比特(下文中称为ALT 1)。例如,TX UE可以填充预先配置的比特(例如,0)和/或在与(对应的)预留相关的PSSCH资源中除了第二SCI之外的剩余RE上的后续TB相关的(一些)比特,并且可以将其发送给RX UE。
例如,TX UE可以被配置为在与(对应的)预留相关的PSSCH资源中除了第二SCI之外的剩余RE上(通过速率匹配)(重复地)发送第二SCI(下文中称为ALT 2)。例如,TX UE可以在与(对应的)预留相关的PSSCH资源中除了第二SCI之外的剩余RE上(通过速率匹配)向TXUE(重复地)发送第二SCI。
在本文中,例如,在这种情况下,预留信号的发送可以被计数为与TB相关的预先配置的最大重传次数。例如,特别是在ALT 2的情况下,预留信号的传输可以被计数为与TB相关的预先配置的最大重传次数。另选地,预留信号的传输可以不被计数为与TB相关的预先配置的最大重传次数。例如,可以针对每个资源池为TX UE不同地或独立地配置与TB相关的最大重传次数。例如,可以针对每个拥塞级别为TX UE不同地或独立地配置与TB相关的最大重传次数。例如,可以针对每个服务类型为TX UE不同地或独立地配置与TB相关的最大重传次数。例如,可以针对每个服务优先级为TX UE不同地或独立地配置与TB相关的最大重传次数。例如,最大重传次数可以是包括初始传输和重传的最大传输次数。例如,最大重传次数可以是排除初始传输而仅包括重传的最大发送次数。
例如,可以基于要由TX UE发送的分组/消息的大小是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,如果TX UE发送具有大于阈值的大小的TB,则可以针对TX UE(有限地)启用预留信号的发送/使用。例如,如果TX UE发送具有大于阈值的大小的TB,则TX UE可以向RX UE发送预留信号。例如,如果TX UE发送具有小于或等于阈值的大小的TB,则可以针对TX UE(有限地)禁用预留信号的发送/使用。例如,如果TXUE发送具有小于或等于阈值的大小的TB,则可以不允许TX UE发送预留信号。
例如,与用于TX UE发送预留信号的资源的大小相比,可以基于用于TX UE发送分组/消息的资源的大小是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,可以预先配置用于TX UE发送预留信号的子信道的数量。例如,为了使TX UE发送预留信号,可以预先配置一个子信道。例如,与用于TX UE发送预留信号的资源的大小相比,如果用于TX UE发送分组/消息的资源的大小大于预先配置的阈值,则可以针对TX UE(有限地)启用预留信号的发送/使用。例如,与用于TX UE发送预留信号的资源的大小相比,如果用于TX UE发送分组/消息的资源的大小小于或等于预先配置的阈值,则可以针对TXUE(有限地)禁用预留信号的发送/使用。
例如,可以基于子信道的大小来不同地配置TX UE是否可以发送/使用预留信号。例如,子信道的大小可以是与资源池相关的一个子信道的大小。例如,如果针对TX UE配置了RB数量大于预先配置的阈值的子信道,则可以针对TX UE(有限地)启用预留信号的发送/使用。例如,如果针对TX UE配置了RB数量小于或等于预先配置的阈值的子信道,则可以针对TX UE(有限地)禁用预留信号的发送/使用。
例如,可以基于与预留信号之后的初始传输(和/或重传)相关的子信道的数量是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,如果与预留信号之后的初始传输(和/或重传)相关的子信道的数量超过预先配置的阈值,则可以针对TX UE(有限地)启用预留信号的发送/使用。例如,如果与预留信号之后的初始传输(和/或重传)相关的子信道的数量小于或等于预先配置的阈值,则可以针对TX UE(有限地)禁用预留的发送/使用。
例如,可以基于SL HARQ反馈选项(例如,OPTION 1、OPTION 2、盲重传方案、基于HARQ反馈的重传方案)(如上所述)、播放类型、服务类型、服务优先级、资源池、拥塞级别(例如,CBR)和/或QoS要求(例如,可靠性、时延)中的至少一个来不同地配置TX UE是否可以发送/使用预留信号。
例如,可以基于要由TX UE发送的分组/消息的大小是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,如果TX UE发送具有大于阈值的大小的TB,则可以针对TX UE(有限地)禁用预留信号的发送/使用。例如,如果TX UE发送具有小于或等于阈值的大小的TB,则可以针对TX UE(有限地)启用预留信号的发送/使用。
例如,与用于TX UE发送预留信号的资源的大小相比,可以基于用于TX UE发送分组/消息的资源的大小是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,可以预先配置用于TX UE发送预留信号的子信道的数量。例如,为了使TX UE发送预留信号,可以预先配置一个子信道。例如,与用于TX UE发送预留信号的资源的大小相比,如果用于TX UE发送分组/消息的资源的大小大于预先配置的阈值,则可以针对TX UE(有限地)禁用预留信号的发送/使用。例如,与用于TX UE发送预留信号的资源的大小相比,如果用于TX UE发送分组/消息的资源的大小小于或等于预先配置的阈值,则可以针对TXUE(有限地)启用预留信号的发送/使用。
例如,可以基于子信道的大小来不同地配置TX UE是否可以发送/使用预留信号。例如,子信道的大小可以是与资源池相关的一个子信道的大小。例如,如果针对TX UE配置了RB数量大于预先配置的阈值的子信道,则可以针对TX UE(有限地)禁用预留信号的发送/使用。例如,如果针对TX UE配置了RB数量小于或等于预先配置的阈值的子信道,则可以针对TX UE(有限地)启用预留信号的发送/使用。
例如,可以基于与预留信号之后的初始传输(和/或重传)相关的子信道的数量是否超过预先配置的阈值来不同地配置TX UE是否可以发送/使用预留信号。例如,如果与预留信号之后的初始传输(和/或重传)相关的子信道的数量超过预先配置的阈值,则可以针对TX UE(有限地)禁用预留信号的发送/使用。例如,如果与预留信号之后的初始传输(和/或重传)相关的子信道的数量小于或等于预先配置的阈值,则可以针对TX UE(有限地)启用预留的发送/使用。
基于本公开的实施方式,可以基于分组/消息的大小是否超过预先配置的阈值来不同地配置可以通过包括在一个SCI中的(资源)保留/选择信息(在下文中,N_MAX)发信号通知的(最大或最小)资源的数量。例如,在分组/消息具有大于阈值的大小的情况下,N_MAX值可以被配置为相对大的值(与其它情况相比)。
例如,可以基于SL HARQ反馈选项来不同地配置包括在一个SCI中的N_MAX。例如,SL HARQ反馈选项可以包括OPTION 1、OPTION 2、盲重传方案、基于HARQ反馈的重传方案(如上所述)等。例如,在盲重传方案的情况下,N_MAX值可以被配置为相对大的值(与其它情况相比)。
例如,包括在一个SCI中的N_MAX可以基于播放类型不同地配置。例如,包括在一个SCI中的N_MAX可以基于服务类型不同地配置。例如,包括在一个SCI中的N_MAX可以基于服务优先级不同地配置。例如,包括在一个SCI中的N_MAX可以基于资源池不同地配置。例如,包括在一个SCI中的N_MAX可以基于拥塞级别(例如,CBR)不同地配置。例如,包括在一个SCI中的N_MAX可以基于QoS要求(例如,可靠性、时延)不同地配置。例如,包括在一个SCI中的N_MAX可以基于子信道的大小不同地配置。例如,子信道的大小可以是与资源池相关的一个子信道的大小。
基于本公开的实施方式,TX UE可以通过使用特定大小的频率资源来发送预留信号。例如,可以将预留信号发送给一个或更多个RX UE。例如,可以以PSCCH和PSSCH的形式来发送预留信号。例如,可以以PSCCH和/或PSSCH的形式来发送预留信号。例如,可以以图17中所示的形式来发送预留信号。
图17示出了基于本公开的实施方式的预留信号。图17的实施方式可以与本公开的各种实施方式组合。
参照图17,TX UE可以通过使用一个时隙和一个子信道来发送预留信号。
例如,由TX UE发送预留信号可以包括由TX UE在PSSCH资源当中的除了其上发送了第二SCI的资源之外的剩余资源上发送伪(dummy)信息。例如,TX UE可以在PSSCH资源当中的除了其上发送了第二SCI的资源之外的剩余资源上对预先配置(比特)值的伪信息进行速率匹配,并且可以发送它。例如,特定大小的频率资源可以是单个子信道。例如,可以针对TX UE预先配置通过其发送预留信号的频率资源和/或频率资源的大小。例如,基站可以向TX UE发送与通过其发送预留信号的频率资源相关的信息和/或与通过其发送预留信号的频率资源的大小相关的信息。
例如,如果TX UE在特定大小的频率资源上发送预留信号,则TX UE可以通过PSCCH(例如,第一SCI)来发送/发信号通知与后续初始传输相关保留资源的位置/时间和与PSCCH相关的资源的位置/时间之间的时间间隙相关的信息。例如,后续初始传输相关保留资源可以是用于TX UE执行(实际)传输的初始传输相关保留资源。例如,如果TX UE在特定大小的频率资源上发送预留信号,则TX UE可以通过PSCCH(例如,第一SCI)来发送/发信号通知与后续初始传输和/或重传相关保留资源的位置/时间和与PSCCH相关的资源的位置/时间之间的时间间隙相关的信息。例如,初始传输相关保留资源和/或重传相关保留资源可以是用于实际TB发送的资源。在本文中,例如,基于与包括在由TX UE发送的PSCCH(例如,第一SCI)中的(对应的)时间间隙相关的信息的值,RX UE可以区分或确定单个子信道传输(如上所述)是与预留信号相关的传输还是与通用TB传输相关的传输。例如,如果TX UE向RX UE发送PSCCH和/或PSSCH,则RX UE可以基于与包括在PSCCH(例如,第一SCI)中的时间间隙相关的信息来区分或确定PSCCH和/或PSSCH的传输是与预留信号相关的传呼还是与通用TB传输相关的传输。
例如,如果TX UE将时间间隙设置为预先配置的特定值并将其发送到RX UE,则RXUE可以将TX UE的PSCCH和/或PSSCH传输视为或确定为一般TB传输。例如,如果TX UE将时间间隙设置为零并将其发送到RX UE,则RX UE可以将TX UE的PSCCH和/或PSSCH传输视为或确定为一般TB传输。
例如,如果TX UE将时间间隙设置为除了预先配置的特定值之外的值并将其发送到RX UE,则RX UE可以将TX UE的PSCCH和/或PSSCH传输视为或确定为预留信号的传输。例如,如果TX UE将时间间隙设置为除了零之外的值并将其发送到RX UE,则RX UE可以将TXUE的PSCCH和/或PSSCH传输视为或确定为预留信号的传输。
在本文中,例如,基于上述实施方式,可以从TX UE可以通过SCI发信号通知/保留的传输资源的最大数量中排除与预留信号的传输相关的资源的数量。例如,如果TX UE(通过速率匹配)在与预留信号的传输相关的PSSCH资源当中的除了在其上发送第二SCI的资源之外的剩余资源上发送(预先配置的比特值的)伪信息,则可以从TX UE可以通过SCI发信号通知/保留的传输资源的最大数量中排除与预留信号的传输相关的资源的数量。例如,传输资源可以包括与初始传输相关的资源和/或与重传相关的资源。例如,TX UE可以通过SCI发信号通知/保留的传输资源的数量可以仅包括TX UE用于实际TB传输的资源的数量。
例如,如果针对TX UE配置了预留信号的传输,则TX UE可以通过与预留信号的传输相关的PSCCH来发送与时间间隙相关的信息。例如,如果针对TX UE未配置预留信号的传输,则与时间间隙相关的信息/字段可能不存在于由TX UE发送的PSCCH(例如,第一SCI)中。例如,如果专门针对TX UE的资源池配置了预留信号的传输,则TX UE可以在特定资源池上通过与预留信号的传输相关的PSCCH来发送与时间间隙相关的信息。例如,如果专门针对TXUE的服务类型配置了预留信号的传输,则期望发送特定类型的服务的TX UE可以通过与预留信号的传输相关的PSCCH来发送与时间间隙相关的信息。例如,如果专门针对TX UE的服务优先级配置了预留信号的传输,则期望发送特定优先级的服务的TX UE可以通过与预留信号的传输相关的PSCCH来发送与时间间隙相关的信息。例如,如果专门针对TX UE的QoS要求配置了预留信号的传输,则期望发送具有特定QoS要求的服务的TX UE可以通过与预留信号的传输相关的PSCCH来发送与时间间隙相关的信息。
例如,由于RX UE对预留信号进行解码必需/所需的处理时间(下文中,PRC_TIME),RX UE可能(实际上)不使用由与通过与预留信号的传输相关的PSCCH发送的时间间隙相关的信息可指示的(候选)值当中的一些值。例如,RX UE可以不使用小于PRC_TIME的时间间隙值。例如,,X UE可以不使用除了零之外的小于PRC_TIME的时间间隙值。考虑到这一点,例如,可以减小与时间间隙相关的信息的大小。例如,可以减小与时间间隙相关的字段的大小。
例如,考虑到PRC_TIME(如上所述),TX UE可以选择或确定与预留信号的传输相关的资源和与后续初始传输相关的资源。例如,与后续初始传输相关的资源可以是与用于TXUE发送(实际)TB的初始传输相关的资源。例如,考虑到PRC_TIME(如上所述),TX UE可以选择或确定与预留信号的传输相关的资源、与后续初始传输相关的资源以及与后续重传相关的资源。例如,与后续重传相关的资源可以是与用于TX UE发送(实际)TB的重传相关的资源。
例如,TX UE可以基于感测来优选地选择或确定与初始传输相关的资源和/或与重传相关的资源(在选择窗口内),并且TX UE可以从与初始传输相关的所选资源中选择或确定在PRC_TIME之前的可选候选资源当中与预留信号的传输相关的资源。例如,与初始传输相关的资源可以是与用于TX UE发送(实际)TB的初始传输相关的资源。例如,TX UE可以基于感测来优选地选择或确定与初始传输相关的资源和/或与重传相关的资源(在选择窗口内),并且TX UE可以从与初始传输相关的所选资源当中选择或确定在预先配置的值之前的可选候选资源当中与预留信号的传输相关的资源。例如,预先配置的值可以是大于PRC_TIME的值。例如,预先配置的值可以是小于PRC_TIME的值。
例如,TX UE可以基于感测来优选地选择或确定与初始传输相关的资源和/或与重传相关的资源(在选择窗口内),并且TX UE可以从与初始传输相关的所选资源中选择或确定在PRC_TIME之前的(剩余)选择窗口上的(可选)候选资源当中与预留信号的传输相关的资源。例如,与初始传输相关的资源可以是与用于TX UE发送(实际)TB的初始传输相关的资源。例如,TX UE可以基于感测来优选地选择或确定与初始传输相关的资源和/或与重传相关的资源(在选择窗口内),并且TX UE可以从与初始传输相关的所选资源中选择或确定在预先配置的值之前的(剩余)选择窗口上的(可选)候选资源当中与预留信号的传输相关的资源。例如,预先配置的值可以是大于PRC_TIME的值。例如,预先配置的值可以是小于PRC_TIME的值。
例如,可以针对TX UE(独立地)配置由TX UE用于选择或确定与预留信号的传输相关的资源的选择窗口大小。例如,可以针对TX UE(独立地)配置由TX UE用于选择或确定与预留信号的传输相关的资源的最大选择窗口大小。例如,可以针对TX UE(独立地)配置由TXUE用于选择或确定与预留信号的传输相关的资源的最小选择窗口大小。在本文中,例如,TXUE可以在根据上述实施方式确定的选择窗口内选择与预留信号的传输相关的资源。例如,如果在选择窗口内不存在与预留信号的传输相关的资源,则TX UE可以不发送预留信号。例如,如果在选择窗口内不存在与预留信号的传输相关的资源,则可以针对TX UE禁用预留信号的传输。例如,尽管TX UE基于预先配置的偏移值执行PSSCH DMRS RSRP阈值增大操作达最大允许次数,但是如果TX UE不能在选择窗口内确保/选择与预留信号的传输相关的资源,则TX UE可以不发送预留信号。例如,可以针对TX UE预先配置最大允许次数。例如,预先配置的偏移值可以是3[dB]。
图18示出了基于本公开的实施方式的第一装置向基站报告SL HARQ反馈信息的方法。图18的实施方式可以与本公开的各种实施方式组合。
参照图18,在步骤S1810中,第一装置可以通过第一资源向基站发送SL HARQ反馈信息。例如,第一资源可以是PUCCH资源。例如,如果与由第一装置执行的第一侧链路信息相关的重传次数达到MAX_RETXNUM,并且如果第一装置确定未成功地发送第一侧链路信息,则第一装置可以通过第一资源从基站接收ACK信息或预先配置的状态/指示符信息。例如,基于本公开的各种实施方式,第一装置可以通过第一资源向基站发送SL HARQ反馈信息。例如,如果第一装置通过第一资源向基站发送SL HARQ反馈信息,则可以通过第一资源向基站发送以下至少一个:与SL HARQ反馈信息相关联的SL HARQ进程的标识符信息、与SL HARQ反馈信息相关联的模式1 CG的索引、与SL HARQ反馈信息相关联的TB信息、关于与SL HARQ反馈信息相关联的SL HARQ进行相关的重传次数的信息、关于与SL HARQ反馈信息相关联的TB相关的重传次数的信息、关于与SL HARQ反馈信息相关联的SL HARQ进程相关的剩余重传次数的信息和/或关于与SL HARQ反馈信息相关联的TB相关的剩余重传次数的信息。
图19示出了基于本公开的实施方式的基站从第一装置接收SL HARQ反馈信息的方法。图19的实施方式可以与本公开的各种实施方式组合。
参照图19,在步骤S1910中,基站可以通过第一资源从第一装置接收SL HARQ反馈信息。例如,第一资源可以是PUCCH资源。例如,如果与由第一装置执行的第一侧链路信息相关的重传次数达到MAX_RETXNUM,并且如果第一装置确定未成功地发送第一侧链路信息,则基站可以通过第一资源从第一装置接收ACK信息或预先配置的状态/指示符信息。例如,基于本公开的各种实施方式,基站可以通过第一资源从第一装置接收SL HARQ反馈信息。例如,如果基站通过第一资源从第一装置接收到SL HARQ反馈信息,则可以通过第一资源从第一装置接收以下至少一个:与SL HARQ反馈信息相关联的SL HARQ进程的标识符信息、与SLHARQ反馈信息相关联的模式1 CG的索引、与SL HARQ反馈信息相关联的TB信息、关于与SLHARQ反馈信息相关联的SL HARQ进程相关的重传次数的信息、关于与SL HARQ反馈信息相关联的TB相关的重传次数的信息、关于与SL HARQ反馈信息相关联的SL HARQ进程相关的剩余重传次数的信息和/或关于与SL HARQ反馈信息相关联的TB相关的剩余重传次数的信息。
图20示出了基于本公开的实施方式的第一装置执行无线通信的方法。图20的实施方式可以与本公开的各种实施方式组合。
参照图20,在步骤S2010中,第一装置可以通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI)。在步骤S2020中,第一装置可以通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI。在步骤S2030中,第一装置可以基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源。在步骤S2040中,第一装置可以确定是否在PSFCH资源上向第二装置发送针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
例如,基于第二SCI的格式是包括第二装置的位置信息的第二格式,HARQ反馈信息可以仅包括NACK。例如,基于第一装置成功对PSSCH上的传输块(TB)进行解码,可以不向第二装置发送HARQ反馈信息,并且基于第一装置未能对PSSCH上的TB进行解码,可以向第二装置发送包括NACK的HARQ反馈信息。另外,例如,第一装置可以基于第二装置的位置信息和第一装置的位置信息来获得第一装置与第二装置之间的距离。例如,第一装置与第二装置之间的距离可以小于或等于通信范围要求。例如,与通信范围要求相关的信息可以包括在第二SCI中,并且包括与通信范围要求相关的信息的第二SCI的格式可以是第二格式。
例如,基于第二SCI的格式是不包括第二装置的位置信息的第一格式,HARQ反馈信息可以包括ACK或NACK。例如,基于第一装置成功对PSSCH上的传输块(TB)进行解码,可以向第二装置发送包括ACK的HARQ反馈信息,并且基于第一装置未能对PSSCH上的TB进行解码,可以向第二装置发送包括NACK的HARQ反馈信息。例如,基于第一装置成功对PSSCH上的传输块(TB)进行解码,可以不向第二装置发送HARQ反馈信息,并且基于第一装置未能对PSSCH上的TB进行解码,可以向第二装置发送包括NACK的HARQ反馈信息。
另外,例如,第一装置可以基于第二SCI的格式来确定是否执行基于距离的HARQ反馈操作。
例如,基于第二SCI的格式是包括第二装置的位置信息的第二格式,第一装置可以确定执行基于距离的HARQ反馈操作。例如,基于第一装置成功对PSSCH上的传输块(TB)进行解码,可以不向第二装置发送HARQ反馈信息,并且基于第一装置未能对PSSCH上的TB进行解码以及第一装置与第二装置之间的距离小于或等于通信范围要求,可以向第二装置发送包括NACK的HARQ反馈信息。
例如,基于第二SCI的格式是不包括第二装置的位置信息的第一格式,第一装置可以确定不执行基于距离的HARQ反馈操作。
例如,第二装置的位置信息可以包括第二装置所属的区域的ID。
所提出的方法可以应用于本公开的各个实施方式中描述的装置。首先,第一装置100的处理器102可以控制收发器106通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI)。另外,第一装置100的处理器102可以控制收发器106通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI。另外,第一装置100的处理器102可以基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源。另外,第一装置100的处理器102可以确定是否在PSFCH资源上向第二装置发送针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供被配置为执行无线通信的第一装置。例如,第一装置可以包括:存储指令的一个或更多个存储器;一个或更多个收发器;以及连接到一个或更多个存储器和一个或更多个收发器的一个或更多个处理器。例如,一个或更多个处理器可以执行指令以进行以下操作:通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSSCH资源上向第二装置发送针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第一用户设备(UE)的装置。例如,该装置可以包括:一个或更多个处理器;以及在操作上连接到一个或更多个处理器并存储指令的一个或更多个存储器。例如,一个或更多个处理器可以执行指令以进行以下操作:通过物理侧链路控制信道(PSCCH)从第二UE接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二UE接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSSCH资源上向第二UE发送针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供存储指令的非暂时性计算机可读存储介质。例如,指令在被执行时可以使第一装置进行以下操作:通过物理侧链路控制信道(PSCCH)从第二装置接收第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)从第二装置接收第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及确定是否在PSSCH资源上向第二装置发送针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
图21示出了基于本公开的实施方式的第二装置执行无线通信的方法。图21的实施方式可以与本公开的各种实施方式组合。
参照图21,在步骤S2110中,第二装置可以通过物理侧链路控制信道(PSCCH)向第一装置发送第一侧链路控制信息(SCI)。在步骤S2120中,第二装置可以通过与PSCCH相关的物理侧链路共享信道(PSSCH)向第一装置发送第二SCI。在步骤S2130中,第二装置可以基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源。在步骤S2140中,第二装置可以在PSFCH资源上从第一装置接收针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
所提出的方法可以应用于本公开的各个实施方式中描述的装置。首先,第二装置200的处理器202可以控制收发器206通过物理侧链路控制信道(PSCCH)向第一装置发送第一侧链路控制信息(SCI)。另外,第二装置200的处理器202可以控制收发器206通过与PSCCH相关的物理侧链路共享信道(PSSCH)向第一装置发送第二SCI。另外,第二装置200的处理器202可以基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源。另外,第二装置200的处理器202可以控制收发器206在PSFCH资源上从第一装置接收针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供被配置为执行无线通信的第二装置。例如,第二装置可以包括:存储指令的一个或更多个存储器;一个或更多个收发器;以及连接到一个或更多个存储器和一个或更多个收发器的一个或更多个处理器。例如,一个或更多个处理器可以执行指令以进行以下操作:通过物理侧链路控制信道(PSCCH)向第一装置发送第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)向第一装置发送第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及在PSFCH资源上从第一装置接收针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第二用户设备(UE)的装置。例如,该装置可以包括:一个或更多个处理器;以及在操作上连接到一个或更多个处理器并存储指令的一个或更多个存储器。例如,一个或更多个处理器可以执行指令以进行以下操作:通过物理侧链路控制信道(PSCCH)向第一UE发送第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)向第一UE发送第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及在PSFCH资源上从第一UE接收针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
基于本公开的实施方式,可以提供存储指令的非暂时性计算机可读存储介质。例如,指令在被执行时可以使第二装置进行以下操作:通过物理侧链路控制信道(PSCCH)向第一装置发送第一侧链路控制信息(SCI);通过与PSCCH相关的物理侧链路共享信道(PSSCH)向第一装置发送第二SCI;基于与PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道(PSFCH)资源;以及在PSFCH资源上从第一装置接收针对PSSCH的混合自动重传请求(HARQ)反馈信息。例如,第二SCI的格式可以是不包括第二装置的位置信息的第一格式或包括第二装置的位置信息的第二格式。例如,基于第二SCI的格式,HARQ反馈信息可以包括ACK或NACK,或者可以仅包括NACK。
图22示出了基于本公开的实施方式的第一装置执行无线通信的方法。图22的实施方式可以与本公开的各种实施方式组合。
参照图22,在步骤S2210中,第一装置可以从基站接收与侧链路SL资源相关的信息和与物理上行链路控制信道PUCCH资源相关的信息。在步骤S2220中,第一装置可以基于SL资源向第二装置发送混合自动重传请求HARQ反馈被禁用的介质接入控制(MAC)分组数据单元(PDU)。在步骤S2230中,第一装置可以基于HARQ反馈被禁用的MAC PDU和不需要MAC PDU的重传来生成与MAC PDU的传输相关的ACK信息。在步骤S2240中,第一装置可以基于PUCCH资源向基站发送ACK信息。
另外,例如,第一装置可以从基站接收与最大传输次数相关的信息。例如,基于MACPDU的传输次数达到最大传输次数,可能不需要MAC PDU的重传。例如,基于SL资源当中由基站分配的SL资源的数量大于最大传输次数,基站可以释放在ACK信息的传输之后的资源。
例如,基于正在执行的MAC PDU的盲重传,可以针对MAC PDU禁用HARQ反馈。
例如,基于ACK信息,基站可以不针对第一装置分配用于MAC PDU的重传资源。
例如,基于具有ACK信息的PUCCH资源,可以向基站发送与MAC PDU的传输次数相关的信息。
另外,例如,第一装置可以基于HARQ反馈被禁用的MAC PDU和需要MAC PDU的重传并且没有可用于MAC PDU的重传的SL许可来生成与MAC PDU的传输相关的NACK信息,并且第一装置可以基于PUCCH资源来向基站发送NACK信息。例如,基于NACK信息,基站可以将用于MAC PDU的重传资源分配给第一装置。
另外,例如,第一装置可以向第二装置发送侧链路控制信息SCI,SCI包括表示针对MAC PDU的HARQ反馈的禁用的HARQ反馈禁用信息。例如,基于HARQ反馈禁用信息,第二装置可以不发送针对MAC PDU的HARQ反馈。另外,例如,第一装置可以测量资源池的拥塞级别,并且基于拥塞级别大于阈值,可以通过SCI来发送HARQ反馈禁用信息。例如,基于MAC PDU的优先级低于预先配置的优先级,可以通过SCI发送HARQ反馈禁用信息。
所提出的方法可以应用于本公开的各个实施方式中描述的装置。首先,第一装置100的处理器102可以控制收发器106从基站接收与侧链路SL资源相关的信息和与物理上行链路控制信道PUCCH资源相关的信息。另外,第一装置100的处理器102可以基于SL资源向第二装置发送混合自动重传请求HARQ反馈被禁用的介质接入控制(MAC)分组数据单元(PDU)。另外,第一装置100的处理器102可以基于HARQ反馈被禁用的MAC PDU和不需要MAC PDU的重传来生成与MAC PDU的传输相关的ACK信息。另外,第一装置100的处理器102可以基于PUCCH资源向基站发送ACK信息。
基于本公开的实施方式,可以提供被配置为执行无线通信的第一装置。例如,第一装置可以包括:存储指令的一个或更多个存储器;一个或更多个收发器;以及连接到一个或更多个存储器和一个或更多个收发器的一个或更多个处理器。例如,一个或更多个处理器可以执行指令以进行以下操作:从基站接收与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;基于SL资源向第二装置发送混合自动重传请求(HARQ)反馈被禁用的介质接入控制(MAC)分组数据单元(PDU);基于HARQ反馈被禁用的MACPDU和不需要MAC PDU的重传来生成与MAC PDU的传输相关的ACK信息;以及基于PUCCH资源向基站发送ACK信息。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的第一用户设备(UE)的装置。例如,该装置可以包括:一个或更多个处理器;以及在操作上连接到一个或更多个处理器并存储指令的一个或更多个存储器。例如,一个或更多个处理器可以执行指令以进行以下操作:从基站接收与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;基于SL资源向第二UE发送混合自动重传请求(HARQ)反馈被禁用的介质接入控制(MAC)分组数据单元(PDU);基于HARQ反馈被禁用的MAC PDU和不需要MACPDU的重传来生成与MAC PDU的传输相关的ACK信息;以及基于PUCCH资源向基站发送ACK信息。
基于本公开的实施方式,可以提供存储指令的非暂时性计算机可读存储介质。例如,指令在被执行时可以使第一装置进行以下操作:从基站接收与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;基于SL资源向第二装置发送混合自动重传请求(HARQ)反馈被禁用的介质接入控制(MAC)分组数据单元(PDU);基于HARQ反馈被禁用的MAC PDU和不需要MAC PDU的重传来生成与MAC PDU的传输相关的ACK信息;以及基于PUCCH资源向基站发送ACK信息。
图23示出了基于本公开的实施方式的基站执行无线通信的方法。图23的实施方式可以与本公开的各种实施方式组合。
参照图23,在步骤S2310中,基站可以向第一装置发送与侧链路SL资源相关的信息和与物理上行链路控制信道PUCCH资源相关的信息。在步骤S2320中,基站可以基于由第一装置基于SL资源发送的混合自动重传请求HARQ反馈被禁用的介质接入控制MAC分组数据单元PDU,并且基于不需要MAC PDU的重传,在PUCCH资源上从第一装置接收ACK信息。
所提出的方法可以应用于本公开的各个实施方式中描述的装置。首先,基站200的处理器202可以控制收发器206向第一装置发送与侧链路SL资源相关的信息和与物理上行链路控制信道PUCCH资源相关的信息。另外,基站200的处理器202可以控制收发器206基于由第一装置基于SL资源发送的混合自动重传请求HARQ反馈被禁用的介质接入控制MAC分组数据单元PDU,并且基于不需要MAC PDU的重传,在PUCCH资源上从第一装置接收ACK信息。
基于本公开的实施方式,可以提供被配置为执行无线通信的基站。例如,基站可以包括:存储指令的一个或更多个存储器;一个或更多个收发器;以及连接到一个或更多个存储器和一个或更多个收发器的一个或更多个处理器。例如,一个或更多个处理器可以执行指令以进行以下操作:向第一装置发送与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;以及基于由第一装置基于SL资源发送的混合自动重传请求(HARQ)反馈被禁用的介质接入控制(MAC)分组数据单元(PDU),并且基于不需要MAC PDU的重传,在PUCCH资源上从第一装置接收ACK信息。
基于本公开的实施方式,可以提供一种被配置为控制执行无线通信的基站的装置例如,该装置可以包括:一个或更多个处理器;以及在操作上连接到一个或更多个处理器并存储指令的一个或更多个存储器。例如,一个或更多个处理器可以执行指令以进行以下操作:向第一用户设备(UE)发送与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;以及基于由第一UE基于SL资源发送的针对混合自动重传请求HARQ反馈被禁用的介质接入控制MAC分组数据单元PDU,并且基于不需要MAC PDU的重传,在PUCCH资源上从第一UE接收ACK信息。
基于本公开的实施方式,可以提供存储指令的非暂时性计算机可读存储介质。例如,指令在被执行时可以使基站进行以下操作:向第一装置发送与侧链路(SL)资源相关的信息和与物理上行链路控制信道(PUCCH)资源相关的信息;以及基于由第一装置基于SL资源发送的混合自动重传请求(HARQ)反馈被禁用的介质接入控制(MAC)分组数据单元(PDU),并且基于不需要MAC PDU的重传,在PUCCH资源上从第一装置接收ACK信息。
本公开的各种实施方式可以彼此结合。
下文中,将描述可以应用本公开的各个实施方式的设备。
本文档中描述的本公开的各种描述、功能、过程、提议、方法和/或操作流程可以应用于但不限于需要设备之间的无线通信/连接(例如,5G)的各种领域。
下文中,将参照附图更详细地给出描述。在以下附图/描述中,除非另有描述,否则相同的附图标记可以表示相同或对应的硬件块、软件块或功能块。
图24示出了根据本公开的实施方式的通信系统(1)。
参照图24,应用本公开的各种实施方式的通信系统(1)包括无线装置、基站(BS)和网络。本文中,无线装置表示使用无线电接入技术(RAT)(例如,5G新RAT(NR)或长期演进(LTE))执行通信的装置,并且可以被称为通信/无线电/5G装置。无线装置可以包括而不限于机器人(100a)、车辆(100b-1、100b-2)、扩展现实(XR)装置(100c)、手持装置(100d)、家用电器(100e)、物联网(IoT)装置(100f)和人工智能(AI)装置/服务器(400)。例如,车辆可以包括具有无线通信功能的车辆、自主车辆以及能够执行车辆间通信的车辆。本文中,车辆可以包括无人驾驶飞行器(UAV)(例如,无人机)。XR装置可以包括增强现实(AR)/虚拟现实(VR)/混合现实(MR)装置并且可以以头戴式装置(HMD)、安装在车辆中的平视显示器(HUD)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、车辆、机器人等形式来实现。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可以包括TV、冰箱和洗衣机。IoT装置可以包括传感器和智能仪表。例如,BS和网络可以被实现为无线装置,并且特定的无线装置(200a)可以相对于其它无线装置作为BS/网络节点进行操作。
这里,除了LTE、NR和6G之外,在本公开的无线装置100a至100f中实现的无线通信技术还可以包括用于低功率通信的窄带物联网。在这种情况下,例如,NB-IoT技术可以是低功率广域网(LPWAN)技术的示例,并可以作为诸如LTE Cat NB1和/或LTE Cat NB2这样的标准来实现,并不限于上述名称。另外地或另选地,在本公开的无线装置100a至100f中实现的无线通信技术可以基于LTE-M技术来执行通信。在这种情况下,作为示例,LTE-M技术可以是LPWAN的示例,并可以被称为包括增强型机器类型通信(eMTC)等的各种名称。例如,LTE-M技术可以被实现为诸如1)LTE CAT 0、2)LTE Cat M1、3)LTE Cat M2、4)LTE非带宽限制(非BL)、5)LTE-MTC、6)LTE机器类型通信和/或7)LTE M的各种标准中的至少任意一种,并不限于上述名称。另外地或另选地,在本公开的无线装置100a至100f中实现的无线通信技术可以包括蓝牙、低功率广域网(LPWAN)和考虑到低功率通信的ZigBee中的至少一种,并不限于上述名称。作为示例,ZigBee技术可以基于包括IEEE 802.15.4等的各种标准来生成与小/低功率数字通信相关的个域网(PAN),并可以被称为各种名称。
无线装置100a至100f可以经由BS 200连接到网络300。AI技术可以应用于无线装置100a至100f,并且无线装置100a至100f可以经由网络300连接到AI服务器400。网络300可以使用3G网络、4G(例如,LTE)网络或5G(例如,NR)网络进行配置。尽管无线装置100a至100f可以通过BS 200/网络300相互通信,但是无线装置100a至100f可以执行相互之间的直接通信(例如,侧链路通信)而无需通过BS/网络。例如,车辆100b-1和100b-2可以执行直接通信(例如,车辆到车辆(V2V)/车辆到一切(V2X)通信)。IoT装置(例如,传感器)可以执行与其它IoT装置(例如,传感器)或其它无线装置100a至100f的直接通信。
无线通信/连接150a、150b或150c可以建立在无线装置100a至100f/BS 200或BS200/BS 200之间。这里,无线通信/连接可以通过诸如上行链路/下行链路通信150a、侧链路通信150b(或D2D通信)或BS间通信(例如,中继、接入回传一体化(IAB))这样的各种RAT(例如,5G NR)建立。无线装置和BS/无线装置可以通过无线通信/连接150a和150b发送/接收去往/来自彼此的无线电信号。例如,无线通信/连接150a和150b可以通过各种物理信道发送/接收信号。为此,用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调和资源映射/解映射)以及资源分配过程的至少一部分可以基于本公开的各种提议执行。
图25示出了根据本公开的实施方式的无线装置。
参照图25,第一无线装置(100)和第二无线装置(200)可以通过各种RAT(例如,LTE和NR)发送无线电信号。本文中,{第一无线装置(100)和第二无线装置(200)}可以对应于图24中的{无线装置(100x)和BS(200)}和/或{无线装置(100x)和无线装置(100x)}。
第一无线装置100可以包括一个或多个处理器102和一个或多个存储器104,并且可以附加地进一步包括一个或多个收发器106和/或一个或多个天线108。(一个或多个)处理器102可以控制(一个或多个)存储器104和/或(一个或多个)收发器106,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器102可以处理(一个或多个)存储器104中的信息以生成第一信息/信号,然后通过(一个或多个)收发器106发送包括第一信息/信号的无线电信号。(一个或多个)处理器102可以通过收发器106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号得到的信息存储在(一个或多个)存储器104中。(一个或多个)存储器104可以连接到(一个或多个)处理器102,并且可以存储与(一个或多个)处理器102的操作有关的各种信息。例如,(一个或多个)存储器104可以存储包括用于执行由(一个或多个)处理器102控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器102和(一个或多个)存储器104可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发器106可以连接到(一个或多个)处理器102,并且通过(一个或多个)天线108发送和/或接收无线电信号。每个收发器106可以包括发送器和/或接收器。(一个或多个)收发器106可以与(一个或多个)射频(RF)单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
第二无线装置200可以包括一个或多个处理器202和一个或多个存储器204,并且可以附加地进一步包括一个或多个收发器206和/或一个或多个天线208。(一个或多个)处理器202可以控制(一个或多个)存储器204和/或(一个或多个)收发器206,并且可以被配置为实现本文档公开的描述、功能、过程、提议、方法和/或操作流程。例如,(一个或多个)处理器202可以处理(一个或多个)存储器204中的信息以生成第三信息/信号,并且随后通过(一个或多个)收发器206发送包括第三信息/信号的无线电信号。(一个或多个)处理器202可以通过(一个或多个)收发器106接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号得到的信息存储在(一个或多个)存储器204中。(一个或多个)存储器204可以连接到(一个或多个)处理器202,并且可以存储与(一个或多个)处理器202的操作有关的各种信息。例如,(一个或多个)存储器204可以存储包括用于执行由(一个或多个)处理器202控制的处理的一部分或全部或用于执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的命令的软件代码。这里,(一个或多个)处理器202和(一个或多个)存储器204可以是被设计为实现RAT(例如,LTE或NR)的通信调制解调器/电路/芯片的一部分。(一个或多个)收发器206可以连接到(一个或多个)处理器202,并且通过(一个或多个)天线208发送和/或接收无线电信号。每个收发器206可以包括发送器和/或接收器。(一个或多个)收发器206可以与(一个或多个)RF单元可交换地使用。在本公开中,无线装置可以代表通信调制解调器/电路/芯片。
下面,将更具体地描述无线装置100和200的硬件元件。一个或多个协议层可以但不限于由一个或多个处理器102和202实现。例如,一个或多个处理器102和202可以实现一个或多个层(例如,诸如PHY、MAC、RLC、PDCP、RRC和SDAP这样的功能层)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成一个或多个协议数据单元(PDU)和/或一个或多个服务数据单元(SDU)。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成消息、控制信息、数据或信息。一个或多个处理器102和202可以根据本文档公开的描述、功能、过程、提议、方法和/或操作流程生成包括PDU、SDU、消息、控制信息、数据或信息的信号(例如,基带信号),并将所生成的信号提供给一个或多个收发器106和206。一个或多个处理器102和202可以从一个或多个收发器106和206接收信号(例如,基带信号),并根据本文档公开的描述、功能、过程、提议、方法和/或操作流程获取PDU、SDU、消息、控制信息、数据或信息。
一个或多个处理器102和202可以被称为控制器、微控制器、微处理器或微计算机。一个或多个处理器102和202可以由硬件、固件、软件或它们的组合实现。例如,一个或多个专用集成电路(ASIC)、一个或多个数字信号处理器(DSP)、一个或多个数字信号处理装置(DSPD)、一个或多个可编程逻辑器件(PLD)或一个或多个现场可编程门阵列(FPGA)可以被包括在一个或多个处理器102和202中。本文档中公开的描述、功能、过程、提议、方法和/或操作流程可以使用固件或软件实现,并且该固件或软件可以被配置为包括模块、过程或功能。被配置为执行本文档公开的描述、功能、过程、提议、方法和/或操作流程的固件或软件可以被包括在一个或多个处理器102和202中或者被存储在一个或多个存储器104和204中,从而由一个或多个处理器102和202驱动。本文档公开的描述、功能、过程、提议、方法和/或操作流程可以使用代码、命令和/或命令集形式的软件或固件实现。
一个或多个存储器104和204可以连接到一个或多个处理器102和202,并且可以存储各种类型的数据、信号、消息、信息、程序、代码、指令和/或命令。一个或多个存储器104和204可以由只读存储器(ROM)、随机存取存储器(RAM)、电可擦除可编程只读存储器(EPROM)、闪存、硬驱动器、寄存器、现金存储器、计算机可读存储介质和/或它们的组合构成。一个或多个存储器104和204可以位于一个或多个处理器102和202内部和/或外部。一个或多个存储器104和204可以通过诸如有线或无线连接这样的各种技术连接到一个或多个处理器102和202。
一个或多个收发器106和206可以向一个或多个其它装置发送本文档的方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。一个或多个收发器106和206可以从一个或多个其它装置接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。例如,一个或多个收发器106和206可以连接到一个或多个处理器102和202,并且可以发送和接收无线电信号。例如,一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以向一个或多个其它装置发送用户数据、控制信息或无线电信号。一个或多个处理器102和202可以执行控制,使得一个或多个收发器106和206可以从一个或多个其它装置接收用户数据、控制信息或无线电信号。一个或多个收发器106和206可以连接到一个或多个天线108和208,并且一个或多个收发器106和206可以被配置为通过一个或多个天线108和208发送和接收本文档公开的描述、功能、过程、提议、方法和/或操作流程中提到的用户数据、控制信息和/或无线电信号/信道。在本文档中,一个或多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或多个收发器106和206可以将接收到的无线电信号/信道等从RF频带信号转换为基带信号,以使用一个或多个处理器102和202处理接收到的用户数据、控制信息、无线电信号/信道等。一个或多个收发器106和206可以将使用一个或多个处理器102和202处理后的用户数据、控制信息、无线电信号/信道等从基带信号转换为RF频带信号。为此,一个或多个收发器106和206可以包括(模拟)振荡器和/或滤波器。
图26示出了根据本公开的实施方式的用于发送信号的信号处理电路。
参照图26,信号处理电路(1000)可以包括加扰器(1010)、调制器(1020)、层映射器(1030)、预编码器(1040)、资源映射器(1050)和信号发生器(1060)。可以执行图26的操作/功能,而不限于图25的处理器(102、202)和/或收发器(106、206)。可以通过图29的处理器(102、202)和/或收发器(106、206)来实现图26的硬件元件。例如,可以通过图25的处理器(102、202)来实现框1010至1060。另选地,可以通过图25的处理器(102、202)来实现框1010至1050,并且可以通过图25的收发器(106、206)来实现框1060。
可以经由图26的信号处理电路(1000)将码字转换成无线电信号。本文中,码字是信息块的编码比特序列。信息块可以包括传输块(例如,UL-SCH传输块、DL-SCH传输块)。可以通过各种物理信道(例如,PUSCH和PDSCH)来发送无线电信号。
具体地,码字可以由加扰器1010转换为经过加扰的比特序列。用于进行加扰的加扰序列可以基于初始值生成,并且初始值可以包括无线装置的ID信息。经过加扰的比特序列可以由调制器1020调制为调制符号序列。调制方案可以包括pi/2-二进制相移键控(pi/2-BPSK)、m-相移键控(m-PSK)以及m-正交幅度调制(m-QAM)。复数调制符号序列可以由层映射器1030映射到一个或多个传输层。每个传输层的调制符号可以由预编码器1040映射(预编码)到(一个或多个)相应的天线端口。预编码器1040的输出z可以通过将层映射器1030的输出y与N*M预编码矩阵W相乘得出。这里,N是天线端口的数量,M是传输层的数量。预编码器1040可以在执行对于复数调制符号的变换预编码(例如,DFT)之后执行预编码。替代地,预编码器1040可以在不执行变换预编码的情况下执行预编码。
资源映射器1050可以将每个天线端口的调制符号映射到时频资源。时频资源可以包括时域中的多个符号(例如,CP-OFDMA符号和DFT-s-OFDMA符号)和频域中的多个子载波。信号发生器1060可以从所映射的调制符号生成无线电信号,并且所生成的无线电信号可以通过每个天线被发送到其它装置。为此,信号发生器1060可以包括逆快速傅里叶变换(IFFT)模块、循环前缀(CP)插入器、数模转换器(DAC)以及上变频器。
可以以与图26的信号处理过程(1010~1060)相反的方式来配置用于在无线装置中接收的信号的信号处理过程。例如,无线装置(例如,图25的100、200)可以通过天线端口/收发器从外部接收无线电信号。可以通过信号恢复器将接收到的无线电信号转换成基带信号。为此,信号恢复器可以包括频率下行链路转换器、模数转换器(ADC)、CP去除器和快速傅立叶变换(FFT)模块。接下来,可以通过资源解映射过程、后编码过程、解调处理器和解扰过程将基带信号恢复成码字。可以通过解码将码字恢复成原始信息块。因此,用于接收信号的信号处理电路(未例示)可以包括信号恢复器、资源解映射器、后编码器、解调器、解扰器和解码器。
图27示出了根据本公开的实施方式的无线装置的另一示例。可以根据用例/服务以各种形式实现无线装置(参照图24)。
参照图27,无线装置(100、200)可以对应于图25的无线装置(100,200),并且可以通过各种元件、组件、单元/部分和/或模块来配置。例如,无线装置(100、200)中的每一个可以包括通信单元(110)、控制单元(120)、存储器单元(130)和附加组件(140)。通信单元可以包括通信电路(112)和(一个或多个)收发器(114)。例如,通信电路(112)可以包括图25的一个或更多个处理器(102、202)和/或一个或更多个存储器(104、204)。例如,(一个或多个)收发器(114)可以包括图25的一个或更多个收发器(106、206)和/或一个或更多个天线(108、208)。控制单元(120)电连接到通信单元(110)、存储器(130)和附加组件(140),并且控制无线装置的整体操作。例如,控制单元(120)可以基于存储在存储器单元(130)中的程序/代码/命令/信息来控制无线装置的电气/机械操作。控制单元(120)可以通过无线/有线接口经由通信单元(110)将存储在存储器单元(130)中的信息发送到外部(例如,其它通信装置),或者将经由通信单元(110)通过无线/有线接口从外部(例如,其它通信装置)接收的信息存储在存储器单元(130)中。
可以根据无线装置的类型对附加组件(140)进行各种配置。例如,附加组件(140)可以包括电力单元/电池、输入/输出(I/O)单元、驱动单元和计算单元中的至少一个。无线装置可以采用而不限于以下的形式来实现:机器人(图24的100a)、车辆(图24的100b-1和100b-2)、XR装置(图24的100c)、手持装置(图24的100d)、家用电器(图24的100e)、IoT装置(图24的100f)、数字广播终端、全息图装置、公共安全装置、MTC装置、医疗装置、金融科技装置(或金融装置)、安全装置、气候/环境装置、AI服务器/装置(图24的400)、BS(图24的200)、网络节点等。根据用例/服务,无线装置可以在移动或固定的地方使用。
在图27中,无线装置(100、200)中的各种元件、组件、单元/部分和/或模块全部都可以通过有线接口彼此连接,或者其至少部分可以通过通信单元(110)无线地连接。例如,在无线装置(100、200)中的每一个中,控制单元(120)和通信单元(110)可以通过有线连接,并且控制单元(120)和第一单元(例如,130、140)可以通过通信单元(110)无线连接。无线装置(100、200)内的每个元件、组件、单元/部分和/或模块还可以包括一个或更多个元件。例如,可以通过一个或更多个处理器的集合来构造控制单元(120)。作为示例,可以通过通信控制处理器、应用处理器、电子控制单元(ECU)、图形处理单元和存储器控制处理器的集合来构造控制单元(120)。作为另一示例,可以通过随机存取存储器(RAM)、动态RAM(DRAM)、只读存储器(ROM)、闪存、易失性存储器、非易失性存储器和/或其组合来构造存储器(130)。
下文中,将参照附图详细地描述实现图27的示例。
图28示出了根据本公开的实施方式的手持装置。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)或便携式计算机(例如,笔记本)。手持式装置可以被称为移动站(MS)、用户终端(UT)、移动订户站(MSS)、订户站(SS)、高级移动站(AMS)或无线终端(WT)。
参照图28,手持装置(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、存储器单元(130)、电源单元(140a)、接口单元(140b)和I/O单元(140c)。天线单元(108)可以被配置为通信单元(110)的一部分。框110至130/140a至140c分别对应于图27的框110至130/140。
通信单元110可以发送和接收去往和来自其它无线装置或BS的信号(例如,数据信号和控制信号)。控制单元120可以通过控制手持装置100的构成元件来执行各种操作。控制单元120可以包括应用处理器(AP)。存储器单元130可以存储驱动手持装置100所需要的数据/参数/程序/代码/命令。存储器单元130可以存储输入/输出数据/信息。电源单元140a可以向手持装置100供应电力,并且包括有线/无线充电电路、电池等。接口单元140b可以支持手持装置100到其它外部装置的连接。接口单元140b可以包括用于与外部装置连接的各种端口(例如,音频I/O端口和视频I/O端口)。I/O单元140c可以输入或输出用户输入的视频信息/信号、音频信息/信号、数据和/或信息。I/O单元140c可以包括摄像头、麦克风、用户输入单元、显示单元140d、扬声器和/或触觉模块。
例如,在数据通信的情况下,I/O单元140c可以获取用户输入的信息/信号(例如,触摸、文本、语音、图像或视频),并且所获取的信息/信号可以被存储在存储器单元130中。通信单元110可以将存储器中存储的信息/信号转换为无线电信号,并将所转换的无线电信号直接发送给其它无线装置或发送给BS。通信单元110可以从其它无线装置或BS接收无线电信号,然后将所接收的无线电信号恢复为原始信息/信号。恢复出的信息/信号可以被存储在存储器单元130中,并且可以通过I/O单元140输出为各种类型(例如,文本、语音、图像、视频或触觉)。
图29示出了根据本公开的实施方式的车辆或自主车辆。可以通过移动机器人、汽车、火车、有人/无人驾驶飞行器(AV)、轮船等来实现车辆或自主车辆。
参照图29,车辆或自主车辆(100)可以包括天线单元(108)、通信单元(110)、控制单元(120)、驱动单元(140a)、电源单元(140b)、传感器单元(140c)和自主驾驶单元(140d)。天线单元(108)可以被配置为通信单元(110)的一部分。框110/130/140a至140d分别对应于图27的框110/130/140。
通信单元110可以发送和接收去往和来自诸如其它车辆、BS(例如,gNB和路侧单元)和服务器这样的外部装置的信号(例如,数据信号和控制信号)。控制单元120可以通过控制车辆或自主驾驶车辆100的元件执行各种操作。控制单元120可以包括电子控制单元(ECU)。驱动单元140a可以促使车辆或自主驾驶车辆100在路上行驶。驱动单元140a可以包括引擎、马达、传动系统、车轮、刹车、转向装置等。电源单元140b可以向车辆或自主驾驶车辆100供应电力,并且可以包括有线/无线充电电路、电池等。传感器单元140c可以获取车辆状态、外部环境信息、用户信息等。传感器单元140c可以包括惯性测量单元(IMU)传感器、碰撞传感器、车轮传感器、速度传感器、坡度传感器、重量传感器、航向传感器、位置模块、车辆前进/后退传感器、电池传感器、燃油传感器、轮胎传感器、转向传感器、温度传感器、湿度传感器、超声波传感器、照明传感器、踏板位置传感器等。自主驾驶单元140d可以实现用于保持车辆行驶的车道的技术、用于自动调节速度的技术(例如,自适应巡航控制)、用于自主沿着确定路径驾驶的技术、用于在设置了目的地的情况下通过自动设置路径驾驶的技术等。
例如,通信单元110可以从外部服务器接收地图数据、交通信息数据等。自主驾驶单元140d可以从所获取的数据生成自主驾驶路径和驾驶计划。控制单元120可以控制驱动单元140a,使得车辆或自主驾驶车辆100可以根据驾驶计划(例如,速度/方向控制)沿着自主驾驶路径移动。在自主驾驶中间,通信单元110可以非周期性/周期性地从外部服务器获取最近的交通信息数据,并且从相邻车辆获取周围的交通信息数据。在自主驾驶中间,传感器单元140c可以获取车辆状态和/或周围环境信息。自主驾驶单元140d可以基于新获取的数据/信息更新自主驾驶路径和驾驶计划。通信单元110可以向外部服务器传输有关车辆位置、自主驾驶路径和/或驾驶计划的信息。外部服务器可以基于从车辆或自主驾驶车辆收集的信息使用AI技术等预测交通信息数据,并将所预测的交通信息数据提供给车辆或自主驾驶车辆。
可以以各种方式组合本说明书中的权利要求。例如,本说明书的方法权利要求中的技术特征可以被组合以在设备中实现或执行,并且设备权利要求中的技术特征可以被组合以在方法中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在设备中实现或执行。另外,(一个或多个)方法权利要求和(一个或多个)设备权利要求中的技术特征可以被组合以在方法中实现或执行。

Claims (20)

1.一种用于由第一装置执行无线通信的方法,所述方法包括以下步骤:
通过物理侧链路控制信道PSCCH从第二装置接收第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH从所述第二装置接收第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
确定是否在所述PSFCH资源上向所述第二装置发送针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
2.根据权利要求1所述的方法,其中,基于所述第二SCI的所述格式是包括所述第二装置的所述位置信息的所述第二格式,所述HARQ反馈信息仅包括NACK。
3.根据权利要求2所述的方法,其中,基于所述第一装置成功对所述PSSCH上的传输块TB进行解码,不向所述第二装置发送所述HARQ反馈信息,并且
其中,基于所述第一装置未能对所述PSSCH上的所述TB进行解码,向所述第二装置发送包括所述NACK的所述HARQ反馈信息。
4.根据权利要求3所述的方法,所述方法还包括以下步骤:
基于所述第二装置的所述位置信息和所述第一装置的位置信息来获得所述第一装置与所述第二装置之间的距离,
其中,所述第一装置与所述第二装置之间的距离小于或等于通信范围要求。
5.根据权利要求4所述的方法,其中,与所述通信范围要求相关的信息被包括在所述第二SCI中,并且
其中,包括与所述通信范围要求相关的所述信息的所述第二SCI的所述格式是所述第二格式。
6.根据权利要求1所述的方法,其中,基于所述第二SCI的所述格式是不包括所述第二装置的所述位置信息的所述第一格式,所述HARQ反馈信息包括所述ACK或所述NACK。
7.根据权利要求6所述的方法,其中,基于所述第一装置成功对所述PSSCH上的传输块TB进行解码,向所述第二装置发送包括所述ACK的所述HARQ反馈信息,并且
其中,基于所述第一装置未能对所述PSSCH上的所述TB进行解码,向第二装置发送包括NACK的HARQ反馈信息。
8.根据权利要求6所述的方法,其中,基于所述第一装置成功对所述PSSCH上的传输块TB进行解码,不向所述第二装置发送所述HARQ反馈信息,并且
其中,基于所述第一装置未能对所述PSSCH上的所述TB进行解码,向所述第二装置发送包括所述NACK的所述HARQ反馈信息。
9.根据权利要求1所述的方法,所述方法还包括以下步骤:
基于所述第二SCI的所述格式来确定是否执行基于距离的HARQ反馈操作。
10.根据权利要求9所述的方法,其中,基于所述第二SCI的所述格式是包括所述第二装置的所述位置信息的所述第二格式,所述第一装置确定执行所述基于距离的HARQ反馈操作。
11.根据权利要求10所述的方法,其中,基于所述第一装置成功对所述PSSCH上的传输块TB进行解码,不向所述第二装置发送所述HARQ反馈信息,并且
其中,基于所述第一装置未能对所述PSSCH上的所述TB进行解码并且所述第一装置与所述第二装置之间的距离小于或等于通信范围要求,向所述第二装置发送包括所述NACK的所述HARQ反馈信息。
12.根据权利要求9所述的方法,其中,基于所述第二SCI的所述格式是不包括所述第二装置的所述位置信息的所述第一格式,所述第一装置确定不执行所述基于距离的HARQ反馈操作。
13.根据权利要求1所述的方法,其中,所述第二装置的所述位置信息包括所述第二装置所属的区域的ID。
14.一种被配置为执行无线通信的第一装置,所述第一装置包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令以进行以下操作:
通过物理侧链路控制信道PSCCH从第二装置接收第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH从所述第二装置接收第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
确定是否在所述PSFCH资源上向所述第二装置发送针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
15.一种被配置为控制执行无线通信的第一用户设备UE的装置,所述装置包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上连接到所述一个或更多个处理器并存储指令,其中,所述一个或更多个处理器执行所述指令以进行以下操作:
通过物理侧链路控制信道PSCCH从第二UE接收第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH从所述第二UE接收第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
确定是否在所述PSFCH资源上向所述第二UE发送针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二UE的位置信息的第一格式或包括所述第二UE的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
16.一种非暂时性计算机可读存储介质,所述非暂时性计算机可读存储介质存储指令,所述指令在被执行时使第一装置进行以下操作:
通过物理侧链路控制信道PSCCH从第二装置接收第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH从所述第二装置接收第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
确定是否在所述PSFCH资源上向所述第二装置发送针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
17.一种由第二装置执行无线通信的方法,所述方法包括以下步骤:
通过物理侧链路控制信道PSCCH向第一装置发送第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH向所述第一装置发送第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
在所述PSFCH资源上从所述第一装置接收针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
18.一种被配置为执行无线通信的第二装置,所述第二装置包括:
一个或更多个存储器,所述一个或更多个存储器存储指令;
一个或更多个收发器;以及
一个或更多个处理器,所述一个或更多个处理器连接到所述一个或更多个存储器和所述一个或更多个收发器,其中,所述一个或更多个处理器执行所述指令以进行以下操作:
通过物理侧链路控制信道PSCCH向第一装置发送第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH向所述第一装置发送第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
在所述PSFCH资源上从所述第一装置接收针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
19.一种被配置为控制执行无线通信的第二用户设备UE的装置,所述装置包括:
一个或更多个处理器;以及
一个或更多个存储器,所述一个或更多个存储器在操作上连接到所述一个或更多个处理器并存储指令,其中,所述一个或更多个处理器执行所述指令以进行以下操作:
通过物理侧链路控制信道PSCCH向第一UE发送第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH向所述第一UE发送第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
在所述PSFCH资源上从所述第一UE接收针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二UE的位置信息的第一格式或包括所述第二UE的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
20.一种非暂时性计算机可读存储介质,所述非暂时性计算机可读存储介质存储指令,所述指令在被执行时使第二装置进行以下操作:
通过物理侧链路控制信道PSCCH向第一装置发送第一侧链路控制信息SCI;
通过与所述PSCCH相关的物理侧链路共享信道PSSCH向所述第一装置发送第二SCI;
基于与所述PSSCH相关的时隙的索引和子信道的索引来确定物理侧链路反馈信道PSFCH资源;以及
在所述PSFCH资源上从所述第一装置接收针对所述PSSCH的混合自动重传请求HARQ反馈信息,
其中,所述第二SCI的格式是不包括所述第二装置的位置信息的第一格式或包括所述第二装置的位置信息的第二格式,并且
其中,基于所述第二SCI的所述格式,所述HARQ反馈信息包括ACK或NACK,或者仅包括NACK。
CN202080083452.4A 2019-10-10 2020-10-12 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置 Active CN114747167B (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201962913725P 2019-10-10 2019-10-10
US62/913,725 2019-10-10
KR20190133987 2019-10-25
KR10-2019-0133987 2019-10-25
US201962927679P 2019-10-29 2019-10-29
US62/927,679 2019-10-29
KR20190136678 2019-10-30
KR10-2019-0136678 2019-10-30
US201962938917P 2019-11-21 2019-11-21
US62/938,917 2019-11-21
PCT/KR2020/013848 WO2021071331A1 (ko) 2019-10-10 2020-10-12 Nr v2x에서 sci 포맷을 기반으로 harq 피드백 정보를 송수신하는 방법 및 장치

Publications (2)

Publication Number Publication Date
CN114747167A true CN114747167A (zh) 2022-07-12
CN114747167B CN114747167B (zh) 2023-11-10

Family

ID=75436884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080083452.4A Active CN114747167B (zh) 2019-10-10 2020-10-12 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置

Country Status (6)

Country Link
US (2) US11627556B2 (zh)
EP (1) EP4030663B1 (zh)
JP (1) JP7446417B2 (zh)
KR (1) KR102675470B1 (zh)
CN (1) CN114747167B (zh)
WO (1) WO2021071331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087116A1 (zh) * 2022-10-27 2024-05-02 华为技术有限公司 一种通信方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526588B (zh) * 2019-02-02 2023-05-12 华为技术有限公司 确定传输资源的方法和装置
CN114747167B (zh) * 2019-10-10 2023-11-10 Lg电子株式会社 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置
CA3157609A1 (en) * 2019-11-07 2021-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining sidelink feedback resource, and terminal and storage medium
WO2021091099A1 (ko) * 2019-11-08 2021-05-14 현대자동차주식회사 통신 시스템에서 harq 응답의 송수신을 위한 방법 및 장치
JP7532643B2 (ja) * 2020-08-05 2024-08-13 アップル インコーポレイテッド ロング物理サイドリンクフィードバックチャネル(psfch)フォーマットによるpsfchレンジ拡張
US11856577B2 (en) * 2021-07-09 2023-12-26 Qualcomm Incorporated Indication of sidelink process for sidelink feedback
KR20230030452A (ko) * 2021-08-25 2023-03-06 팅크웨어(주) 비면허 대역에서 통신을 수행하기 위한 정보를 송수신하기 위한 장치, 방법 및 컴퓨터 판독가능 저장매체
WO2023065151A1 (zh) * 2021-10-20 2023-04-27 富士通株式会社 边链路反馈信息的发送和接收方法以及装置
US20230262716A1 (en) * 2022-02-17 2023-08-17 Qualcomm Incorporated Conditional and proactive grants for sidelink communications
WO2023200278A1 (ko) * 2022-04-15 2023-10-19 엘지전자 주식회사 비면허 대역에서 다중 채널을 기반으로 사이드링크 통신을 수행하는 방법 및 장치
WO2024070600A1 (ja) * 2022-09-29 2024-04-04 シャープ株式会社 端末装置および通信方法
US20240113815A1 (en) * 2022-09-30 2024-04-04 Nokia Technologies Oy User equipment behavior of hybrid automatic repeat request retransmission in new radio sidelink co-existence scenario with other technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066337A1 (en) * 2014-09-03 2016-03-03 Futurewei Technologies, Inc. System and Method for D2D Resource Allocation
WO2016163972A1 (en) * 2015-04-08 2016-10-13 Intel Corporation Control signaling mechanisms for enhanced device-to-device (d2d)
CN108476390A (zh) * 2016-01-22 2018-08-31 日本电气株式会社 用于车辆到一切通信系统中的传输冲突检测和处理的方法和装置
WO2018174661A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Resource selection method in vehicle to everything communication and apparatus therefore
US20190029029A1 (en) * 2016-01-25 2019-01-24 Nec Corporation Network apparatus, radio terminal, and method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113214A1 (en) * 2014-01-28 2015-08-06 Mediatek Singapore Pte. Ltd. Methods for enhanced harq mechanism
WO2015152581A1 (ko) * 2014-03-30 2015-10-08 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
US11044748B2 (en) * 2018-05-01 2021-06-22 Huawei Technologies Co., Ltd. Methods and apparatus for sidelink communications and resource allocation
KR20200114828A (ko) * 2019-03-29 2020-10-07 삼성전자주식회사 무선 통신 시스템에서 사이드링크 피드백 채널의 신호 처리를 위한 방법 및 장치
US11296850B2 (en) * 2019-05-02 2022-04-05 Samsung Electronics Co., Ltd Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
US20200396040A1 (en) * 2019-07-19 2020-12-17 Honglei Miao Efficient sidelink harq feedback transmission
KR102416290B1 (ko) * 2019-08-01 2022-07-05 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 장치 간 통신을 위한 모니터링의 절전을 제공하는 방법 및 장치
EP3925129A4 (en) * 2019-08-13 2022-04-06 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING A FEEDBACK SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
US11825560B2 (en) * 2019-08-16 2023-11-21 Intel Corporation Physical sidelink feedback channel (PSFCH) transmission and reception in new radio (NR) systems
CN114747167B (zh) * 2019-10-10 2023-11-10 Lg电子株式会社 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160066337A1 (en) * 2014-09-03 2016-03-03 Futurewei Technologies, Inc. System and Method for D2D Resource Allocation
WO2016163972A1 (en) * 2015-04-08 2016-10-13 Intel Corporation Control signaling mechanisms for enhanced device-to-device (d2d)
CN108476390A (zh) * 2016-01-22 2018-08-31 日本电气株式会社 用于车辆到一切通信系统中的传输冲突检测和处理的方法和装置
US20190029029A1 (en) * 2016-01-25 2019-01-24 Nec Corporation Network apparatus, radio terminal, and method therefor
WO2018174661A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Resource selection method in vehicle to everything communication and apparatus therefore

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: ""Discussion on physical layer procedure for NR V2X"" *
HUAWEI, HISILICON: ""Design and contents of PSCCH and PSFCH"" *
SONY: ""Discussion on physical layer procedures for NR sidelink"" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087116A1 (zh) * 2022-10-27 2024-05-02 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4030663A4 (en) 2022-11-16
JP7446417B2 (ja) 2024-03-08
CN114747167B (zh) 2023-11-10
US20220240227A1 (en) 2022-07-28
KR20220066096A (ko) 2022-05-23
JP2022552248A (ja) 2022-12-15
KR102675470B1 (ko) 2024-06-17
WO2021071331A1 (ko) 2021-04-15
US20230247587A1 (en) 2023-08-03
EP4030663A1 (en) 2022-07-20
US11943746B2 (en) 2024-03-26
US11627556B2 (en) 2023-04-11
EP4030663B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
CN114747167B (zh) 在nr v2x中基于sci格式发送和接收harq反馈信息的方法和装置
CN114762278B (zh) 在nr v2x中向基站报告harq反馈的方法和装置
CN114747166B (zh) 在nr v2x中向基站报告harq反馈信息的方法和装置
CN114902596B (zh) 在nr v2x中执行sl传输的方法和装置
CN114556979A (zh) 用于在nr v2x中向基站发送harq反馈的方法和设备
CN114902778A (zh) 在nr v2x中请求csi的方法和设备
CN114830577B (zh) 基于nr v2x中的cr来执行副链路重新发送的方法和设备
CN114616877A (zh) Nr v2x中基于控制信息识别发送资源的方法以及同步
CN114830552A (zh) 在nr v2x中发送关于信道状态的信息的方法和设备
CN114586306A (zh) Nr v2x中确定harq反馈优先级的方法和设备
CN114762434A (zh) 用于在nr v2x中发送传输块的方法和装置
CN114762430A (zh) 在nr v2x中确定ul传输的优先级的方法和装置
CN114982179A (zh) 在nr v2x中发送参考信号的方法和装置
CN114930761B (zh) Nr v2x中执行拥塞控制的方法和设备
CN114762279A (zh) 在nr v2x中用于向基站报告harq反馈的方法和装置
CN114731540A (zh) 在nr v2x中执行资源预留的方法和设备
CN114557094A (zh) 在nr v2x中基于bwp向基站发送与副链路关联的信息的方法和设备
CN114514763A (zh) 在nr v2x中向基站报告harq反馈的方法和装置
CN115315978A (zh) 在nr v2x中执行拥塞控制的方法和装置
CN114930932A (zh) 用于在nr v2x中重传副链路的方法和装置
CN115699648A (zh) 用于在nr v2x中执行模式1 sl通信的方法和装置
CN114762433A (zh) 基于nr v2x中的控制信息识别发送资源的方法和装置
CN114503481B (zh) 基于nr v2x中的bwp发送harq反馈的方法和装置
CN115715479A (zh) Nr v2x中确定与侧链路传输相关的功率的方法和装置
CN115039489A (zh) 用于在nr v2x中请求重新发送资源的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant