CN114736678B - 一种铋离子掺杂的荧光粉及其制备方法和应用 - Google Patents

一种铋离子掺杂的荧光粉及其制备方法和应用 Download PDF

Info

Publication number
CN114736678B
CN114736678B CN202210329291.3A CN202210329291A CN114736678B CN 114736678 B CN114736678 B CN 114736678B CN 202210329291 A CN202210329291 A CN 202210329291A CN 114736678 B CN114736678 B CN 114736678B
Authority
CN
China
Prior art keywords
fluorescent powder
doped
temperature
emission
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210329291.3A
Other languages
English (en)
Other versions
CN114736678A (zh
Inventor
夏茂
李亚男
周智
尹剑
刘玉艳
邓湘
谭江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Bandian Lighting Co ltd
Original Assignee
Changsha Bandian Lighting Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Bandian Lighting Co ltd filed Critical Changsha Bandian Lighting Co ltd
Priority to CN202210329291.3A priority Critical patent/CN114736678B/zh
Publication of CN114736678A publication Critical patent/CN114736678A/zh
Application granted granted Critical
Publication of CN114736678B publication Critical patent/CN114736678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/745Germanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种铋离子掺杂的荧光粉及其制备方法,该荧光粉的化学式为:(Li/Na/K)xZn2‑2x‑α(Ba/Ca/Sr)αGe1‑β‑γSiβSnγO4:xBi3+。其中,x、α、β、γ分别为Bi3+、Ba2+/Ca2+/Sr2+取代Zn2+和Si4+、Sn4+取代Ge4+的摩尔数,0.002≤x≤0.04,0≤α≤0.8,0≤β≤0.6,0≤γ≤0.4。本发明提供的荧光粉能很好的吸收紫外光(260~360nm),可与近紫外半导体LED芯片很好地匹配;发射峰位可由446nm红移至750nm;半峰宽为118nm;在150℃工作温度下能保持优异的稳定性;通过控制Ge/Si/Sn元素的比例可以实现光谱调控。本荧光粉在生物传感、食品成分分析和医疗测量等领域具有潜在的应用前景。

Description

一种铋离子掺杂的荧光粉及其制备方法和应用
技术领域
本发明涉及发光材料及其制备技术领域,尤其涉及一种紫外激发的单基质红移荧光粉及其制备方法和应用。
背景技术
在科学技术飞速发展的今天,人类健康已经成为人们最关心的问题。近红外(NIR)光由于其低损伤和高穿透性,在生物传感、食品成分分析和医疗测量等领域得到了广泛的应用。传统的近红外光源来自钨卤灯、激光二极管和超连续体激光器。但其发光不稳定、耗电量高、使用寿命短等特点限制了其在未来光电器件中的应用。NIR-LEDs具有高效、低能耗、环保、长寿命等特点,是满足生命健康分析需求的可行策略。高效的近红外发光材料的开发是关键问题之一。通常情况下,Cr3+在650~1200nm范围内产生超广域近红外发射,这是由2E→4A24T24A2转变而来。Cr3+激活的荧光粉包括:Ca3xLuxHf2Al2+xSi1-xO12:Cr3+、ZnGa2O4:Cr3+,Sn4+、La3Ga5GeO14:Cr3+、La2MgZrO6:Cr3+和ScBO3:Cr3+。但Cr3+激活的荧光粉发光效率较低,且Cr3+的激发位置主要位于蓝色和红色区域,而在n-UV区域则没有。除Cr3+外,稀土离子Eu2+、Ce3+和Yb3+在合适的基质中也能发出近红外光。然而,这些荧光粉主要用于光学温度传感器。因此,开发高效的近红外发光材料仍然是未来近红外发光二极管应用的一大挑战,而相应的近红外发光荧光粉的设计原则亟待解决。
在无机化合物中,Bi3+离子能发出从蓝色到红色的各种光。此外,Bi3+的光致发光激发波段通常位于n-UV区域,可以有效地避免光谱重吸收现象,从而提高发光效率。据报道,一些Bi3+功能化的硼酸铝和硼酸锗玻璃可以发射宽波段近红外发射(800~1600nm),但玻璃的低透光率限制了大规模的应用。此外,除了BaBPO5:Bi3+外,Bi3+活化荧光粉的近红外发射鲜有报道。本发明设计了一种新型荧光粉(Li/Na/K)xZn2-2x-α(Ba/Ca/Sr)αGe1-β-γSiβSnγO4:xBi3+(0.002≤x≤0.04;0≤α≤0.8;0≤β≤0.6;0≤γ≤0.4),该荧光粉在近紫外光激发下具有从蓝色到近红外的可控发光特性。随着Si4+、Sn4+比重的增加,质心位移和晶体场劈裂效应将导致发射波段从446nm红移到750nm,这一策略和相应的机制为Bi3+激活荧光粉的近红外发射设计提供了新的思路。
发明内容
针对背景技术中所述的缺点与不足,本发明的目的在于提供了一种Bi3+掺杂的荧光粉及其制备方法。该类荧光粉的激发峰逐渐从265nm红移到310nm,且可与近紫外LED相匹配;发射峰从446nm红移到750nm;半峰宽为118nm,可有效避免重吸收现象;在150℃的工作温度下能保持较高的稳定性。该材料的制备方法简单,合成温度较低,原料价格便宜,便于大规模生产。
为了实现上述目的,本发明采用如下技术方案:
一种Bi3+掺杂的荧光粉,其化学通式为:(Li/Na/K)xZn2-2x-α(Ba/Ca/Sr)αGe1-β-γSiβSnγO4:xBi3+;其中,x、α、β、γ分别为Bi3+、Ba2+/Ca2+/Sr2+取代Zn2+和Si4+、Sn4+取代Ge4+的摩尔数,0.002≤x≤0.04,0≤α≤0.8,0≤β≤0.6,0≤γ≤0.4。合适的晶体环境和带隙值以实现Bi3+的占据是设计高效近红外发射的关键,这里选择的Zn2(Ge/Si/Sn)O4是一种具有宽带隙的传统基质材料。通过阳离子替换策略,通过改变掺杂离子的晶体环境,达到增强发光强度和红移至近红外的目的。
所述的Bi3+掺杂的荧光粉,在确定最佳补偿剂为Li+、Na+、K+,尤其是Na+离子后,改变α的大小,调节材料发光强度。
进一步地,所述的Bi3+掺杂的荧光粉,在确定最佳掺杂剂为Ba2+、Ca2+、Sr2+,尤其是Ba2+离子后,随着α的增加,发射强度先增加后减小,当α=0.6时,发射强度最强。
所述的Bi3+掺杂的荧光粉,通过控制β和γ的大小,即调控Ge/Si/Sn三种元素的比例,实现材料激发峰、发射峰位置的移动。
进一步地,所述的Bi3+掺杂的荧光粉,随着β和γ的增加,材料的激发峰逐渐从265nm红移到310nm,发射峰从446nm红移到750nm。
随着Si4+、Sn4+比重的增加,材料的发射峰逐渐从446nm红移到750nm,当Ge4+:Si4+:Sn4+=1:2:2时发射峰峰值位于750nm且发光强度最强。
本发明还提供了所述的Bi3+掺杂的荧光粉的制备方法,包括以下步骤:
S1.按化学通式称取原料,球磨混合均匀,得到混合物前驱体,备用;
S2.将第一步得到的混合物前驱体进行低温常压预烧;
S3.将第二步得到的预烧产物在还原气氛下高温烧结;
S4.取出煅烧后的样品,研磨均匀,即得到Bi3+掺杂的荧光粉。
进一步地,所述的制备方法,
所述S1步骤中,原料是含所需元素的氧化物或碳酸盐。优选:氧化物包括:氧化锌、氧化锗、氧化硅、氧化锡、氧化铋;碳酸盐包括碳酸锂、碳酸钠、碳酸钾、碳酸锶、碳酸钙、碳酸钡。
进一步地,所述的制备方法,
所述S2步骤中,低温常压预烧的温度范围为600~800℃,反应时间范围为4~6h,目的是为了除去原料中较容易分解的成分,如结晶水,结合水,低温分解物或挥发物等,使后期高温热处理的时候不至于过多的分解物产生。
所述S3步骤中,高温反应气氛为氢氮混合气或氢氩混合气,烧结温度范围为1000~1400℃,反应时间范围为4~10h。
进一步地,所述的制备方法,
S1湿磨过程中,采取球:料:无水乙醇=4:2:1的比例;
S2和S3中烧结产物烧结后均自然冷却至室温;
本发明还提供所述的Bi3+掺杂的荧光粉的应用,适用于生物传感、食品成分分析和医疗测量领域。
与现有技术相比,本发明具有以下有益效果:
(1)本发明所述荧光粉的激发峰位于紫外区域,可以与商用紫外芯片很好的匹配;本发明提供的荧光粉能很好的吸收紫外光(260~360nm),可与近紫外半导体LED芯片很好地匹配;
(2)本发明所述的荧光粉热稳定性优良,发射峰可从446nm红移到750nm;半峰宽为118nm,可有效避免重吸收现象;
(3)在150℃的工作温度下能保持高的稳定性,为初始温度(25℃)的99.2%;内量子效率高达98%;
(4)本发明所述的荧光粉所用的原料价格便宜,合成工艺简单,合成温度较低,化学性能稳定、无污染,便于大规模生产。
附图说明
图1是本发明实施例1在不同电荷补偿剂(Li2CO3、Na2CO3、K2CO3)下制备样品的发射光谱;
图2是本发明实施例1制备样品Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)的X射线粉末衍射图谱;图3是本发明实施例1制备样品Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)的激发和发射光谱;
图4是本发明实施例1制备样品Na0.02Zn1.36Ba0.6GeO4:0.02Bi3+的荧光发射光谱相对强度随测试温度的关系图(激发波长265nm);
图5是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)的X射线粉末衍射图谱;
图6是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+的X射线粉末衍射数据的Rietveld分析图谱;
图7是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)的激发光谱;
图8是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)的发射光谱;
图9是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+的SEM图;
图10是本发明实施例2制备样品Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+与n-UVLED芯片(310nm)封装的NIR-LED器件的电致发光(EL)光谱。
具体实施方式
以下结合实施例旨在进一步说明本发明,而非限制本发明。
实施例1:
本实施例按照如下方法制备化学式为Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)荧光粉。
Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)荧光粉制备过程:采用碳酸钡(99.9%),氧化锌(99.9%),氧化锗(99.9%),氧化铋(99.99%)作为原料,碳酸钠(99.9%)作为电荷补偿剂,按照化学通式称取原料:
碳酸钡 氧化锌 氧化锗 氧化铋 碳酸钠
α=0 0.0000g 0.3049g 0.2000g 0.0089g 0.0020g
α=0.2 0.0754g 0.2738g 0.2000g 0.0089g 0.0020g
α=0.4 0.1509g 0.2426g 0.2000g 0.0089g 0.0020g
α=0.6 0.2263g 0.2115g 0.2000g 0.0089g 0.0020g
α=0.8 0.3017g 0.1804g 0.2000g 0.0089g 0.0020g
原料根据球:料:无水乙醇=4:2:1的比例混合均匀,得到混合物前驱体,装入刚玉坩埚中,低温常压600℃预烧5h。氢氮混合气或氢氩混合气氛围下1400℃烧结6h,冷却至室温后研磨产物,过200目筛网,即得到一种Bi3+掺杂的荧光粉Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)。
如图1所示,为不同电荷补偿剂(Li2CO3、Na2CO3、K2CO3)下制备样品(Li/Na/K)0.02Zn1.96GeO4:0.02Bi3+的发射光谱。结果显示,发射光谱的峰形几乎没有变化,但是发射峰的积分强度表现为Na2CO3>K2CO3>Li2CO3,表明Na2CO3为最佳补偿剂。
如图2所示,为Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)荧光粉的XRD图谱,峰形与计算得到的结果(XRD Rietveld refinements)有较好的匹配,表明材料的成功合成。
图3为Na0.02Zn1.96-αBaαGeO4:0.02Bi3+(α=0,0.2,0.4,0.6,0.8)荧光粉的激发和发射光谱,可以看出,材料激发峰在265nm处,暗示该材料可被紫外光有效激发;材料在446nm处有一个宽带发射峰且在α=0.6时发光强度最高。
图4为Na0.02Zn1.36Ba0.6GeO4:0.02Bi3+荧光粉在不同温度下的发射光谱及其强度对比图,该材料在150℃的工作温度下还能保持初始温度(25℃)的99.2%,说明其热稳定性优良,有较大的应用潜力。
实施例2:
本实施例按照如下方法制备化学式为Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)荧光粉。
Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)荧光粉制备过程:采用碳酸钡(99.9%),氧化锌(99.9%),氧化锗(99.9%),氧化硅(99.9%),氧化锡(99.9%),氧化铋(99.99%)作为原料,碳酸钠(99.9%)作为电荷补偿剂,按照化学通式称取原料:
原料根据球:料:无水乙醇=4:2:1的比例混合均匀,得到混合物前驱体,装入刚玉坩埚中,低温常压600℃预烧5h。氢氮混合气或氢氩混合气氛围下1400℃烧结6h,冷却至室温后研磨产物,过200目筛网,即得到一种Bi3+掺杂的红移荧光粉Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)。
如图5所示,为Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)荧光粉的XRD图谱,峰形与标准PDF卡片有较好的匹配,表明材料的成功合成。
如图6所示,为样品Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+的X射线粉末衍射数据的Rietveld分析图谱,该样品的精修参数为Rwp=9.19%、Rp=7.04%和χ2=1.49。进一步证明了其相纯度。
图7为Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)荧光粉的激发光谱。从图中可以看出,随着Si4+、Sn4+比重的增加,材料的激发峰逐渐从265nm红移到310nm。
图8为Na0.02Zn1.36Ba0.6Ge1-β-γSiβSnγO4:0.02Bi3+(β=0~0.6;γ=0~0.4)荧光粉的发射光谱。从图中可以看出,随着Si4+、Sn4+比重的增加,材料的发射峰逐渐从446nm红移到750nm,当Ge4+:Si4+:Sn4+=1:2:2时发射峰峰值位于750nm且发光强度最强,说明可以通过增加Si4+、Sn4+的比重实现光谱的协调发射。
图9为Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+荧光粉的扫描电镜图(SEM),从图中可以看出,其平均粒径在0.1-0.4μm范围内,微粒呈现为形状不规则的块状结构。
图10是Na0.02Zn1.36Ba0.6Ge0.2Si0.4Sn0.4O4:0.02Bi3+与n-UV LED芯片(310nm)封装的NIR-LED器件的电致发光(EL)光谱。结果表明该材料具有稳定的发光性能。在100mA的输入电流下,所制备的LED发光的输出功率为0.18mW。

Claims (10)

1.一种Bi3+掺杂的荧光粉,其化学通式为:(Li/Na/K) x Zn2-2x-α (Ba/Ca/Sr) α Ge1-β-γ Si β Sn γ O4:xBi3+; 0.002 ≤ x ≤ 0.04,0 < α ≤ 0.8,0 <β ≤ 0.6,0 < γ ≤ 0.4。
2.根据权利要求1所述的Bi3+掺杂的荧光粉,其特征在于:改变α的大小,调节材料发光强度。
3.根据权利要求2所述的Bi3+掺杂的荧光粉,其特征在于:随着α的增加,发射强度先增加后减小,当α = 0.6时,发射强度最强。
4.根据权利要求1所述的Bi3+掺杂的荧光粉,其特征在于:通过控制βγ的大小,实现材料激发峰、发射峰位置的移动。
5.根据权利要求4所述的Bi3+掺杂的荧光粉,其特征在于:随着βγ的增加,材料的激发峰逐渐从265 nm红移到310 nm,发射峰从446 nm红移到750 nm。
6.权利要求1~5任一项所述的Bi3+掺杂的荧光粉的制备方法,包括以下步骤:
S1.按化学通式称取原料,球磨混合均匀,得到混合物前驱体,备用;
S2.将S1得到的混合物前驱体常压低温预烧,得到预烧产物;
S3.将S2得到的预烧产物在还原气氛下高温烧结;
S4.取出煅烧后的样品,研磨均匀,即得到Bi3+掺杂的荧光粉。
7.根据权利要求6所述的制备方法,其特征在于:
所述S1步骤中,原料是含所需元素的氧化物或碳酸盐。
8.根据权利要求6所述的制备方法,其特征在于:
所述S2步骤中,常压低温预烧的温度范围为600~800℃,反应时间范围为4~6 h;
所述S3步骤中,高温反应气氛为氢氮混合气或氢氩混合气,烧结温度范围为1000~1400℃,反应时间范围为4~10 h。
9.根据权利要求6所述的制备方法,其特征在于:
S1湿磨过程中,采取球:料:无水乙醇 = 4:2:1的比例;
S2和S3中烧结产物烧结后均自然冷却至室温。
10.权利要求1~5任一项所述的Bi3+掺杂的荧光粉的应用,其特征在于,适用于生物传感、食品成分分析和医疗测量领域。
CN202210329291.3A 2022-03-31 2022-03-31 一种铋离子掺杂的荧光粉及其制备方法和应用 Active CN114736678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210329291.3A CN114736678B (zh) 2022-03-31 2022-03-31 一种铋离子掺杂的荧光粉及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210329291.3A CN114736678B (zh) 2022-03-31 2022-03-31 一种铋离子掺杂的荧光粉及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114736678A CN114736678A (zh) 2022-07-12
CN114736678B true CN114736678B (zh) 2023-10-20

Family

ID=82279766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210329291.3A Active CN114736678B (zh) 2022-03-31 2022-03-31 一种铋离子掺杂的荧光粉及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114736678B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116333739A (zh) * 2023-03-27 2023-06-27 河北工业大学 一种免掺杂激活剂的基质发光红色荧光粉及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278418A (zh) * 2021-04-25 2021-08-20 鲁东大学 一种新型橙色长余辉发光材料及其制备方法
CN113817465A (zh) * 2021-08-27 2021-12-21 合肥工业大学 一种铋离子掺杂的锗酸盐基橙色长余辉材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113278418A (zh) * 2021-04-25 2021-08-20 鲁东大学 一种新型橙色长余辉发光材料及其制备方法
CN113817465A (zh) * 2021-08-27 2021-12-21 合肥工业大学 一种铋离子掺杂的锗酸盐基橙色长余辉材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors";Shaoan Zhang et al.;Optical Materials;第36卷;第1830-1835页 *
Shaoan Zhang et al.."Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors".Optical Materials.2014,第36卷第1830-1835页. *
刘光华.《稀土固体材料学》.机械工业出版社,1997,(第1版),第240-241页. *

Also Published As

Publication number Publication date
CN114736678A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
JP5013374B2 (ja) 蛍光体とその製造方法および発光器具
TWI502052B (zh) 矽磷酸鹽磷光體
Shi et al. High-efficiency and thermally stable far-red emission of Mn4+ in double cubic perovskite Sr9Y2W4O24 for plant cultivation
Yang et al. Luminescence investigations of Sr3SiO5: Eu2+ orange–yellow phosphor for UV-based white LED
Ma et al. KSr4 (BO3) 3: Pr3+: a new red-emitting phosphor for blue-pumped white light-emitting diodes
Xianghong et al. Luminescent properties and application of Eu3+-activated Gd2 (MoO4) 3 red-emitting phosphor with pseudo-pompon shape for solid-state lighting
Duan et al. Photoluminescence properties of Tb3Al5O12: Ce3+, Mn2+ phosphor ceramics for high color rendering index warm white LEDs
Chen et al. Ba2ZnWO6: Sm3+ as promising orange-red emitting phosphors: Photoluminescence properties and energy transfer process
CN114736678B (zh) 一种铋离子掺杂的荧光粉及其制备方法和应用
Dahiya et al. Spectroscopic characteristics of Eu3+-activated Ca9Y (PO4) 7 nanophosphors in Judd–Ofelt framework
CN114958351A (zh) 紫外激发的蓝紫色荧光粉及制备方法、发光器件
Du et al. A novel orange-red emitting phosphor Sr 3 Lu (PO 4) 3: Sm 3+ for near UV-pumped white light-emitting diodes
Zhang et al. Optical characteristics of Ce, Eu: YAG single crystal grown by Czochralski method
EP2788451A2 (en) Phosphors of rare earth and transition metal doped ca1+xsr1-xgayin2-yszse3-zf2;methods of manufacturing and applications
Zhou et al. Synthesis and characterization of highly Eu3+-doped CaY2Sb2 (ZnO4) 3 red phosphors with abnormal thermal quenching performance for w-LEDs application
CN114540013B (zh) 一种提升CaO:Eu2+近红外荧光粉发光强度和热稳定性的方法及其应用
Zhu et al. High quantum efficiency and thermal stability Sr3LiNbO6: Mn4+, Zn2+ phosphors for application in indoor plant growth lighting
Xue et al. Effect of the anion on the luminescence properties of Bi3+-doped X-mayenite (X= O, F, Cl) phosphors
Perumal et al. Optical properties of Eu 3+ activated SrLa 2 O 4 red-emitting phosphors for WLED applications
Anitha et al. Origin of the active luminescence from Sm 3+-activated borate phosphors: a correlational study of trap states and decay kinetics
Sahu et al. Studies on the structural, thermal and luminescence properties of Sr1− x ZrSi2O7: x Eu3+ phosphors for solid state lighting
Guo et al. Preparation and photoluminescence properties of high thermal stability Sr3Ga2Sn1. 5Si2. 5O14: Eu3+ red phosphors for high-power light-emitting diodes application
CN115521785B (zh) 一种氧化物近红外发光材料及其制备方法与发光装置
Verma et al. Structural and photoluminescent features of Eu3+ activated single‐phase niobate phosphor for lighting applications
CN115926792B (zh) 一种三价铕离子掺杂单一基质的荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant