CN114717657A - A method for growing nickel oxide single crystal thin films based on plasma-assisted laser molecular beam epitaxy - Google Patents
A method for growing nickel oxide single crystal thin films based on plasma-assisted laser molecular beam epitaxy Download PDFInfo
- Publication number
- CN114717657A CN114717657A CN202210272003.5A CN202210272003A CN114717657A CN 114717657 A CN114717657 A CN 114717657A CN 202210272003 A CN202210272003 A CN 202210272003A CN 114717657 A CN114717657 A CN 114717657A
- Authority
- CN
- China
- Prior art keywords
- nickel oxide
- single crystal
- molecular beam
- beam epitaxy
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 43
- 229910000480 nickel oxide Inorganic materials 0.000 title claims abstract description 37
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000001451 molecular beam epitaxy Methods 0.000 title claims abstract description 26
- 239000010409 thin film Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 230000003746 surface roughness Effects 0.000 claims abstract description 11
- 229910052594 sapphire Inorganic materials 0.000 claims description 11
- 239000010980 sapphire Substances 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 4
- 239000013077 target material Substances 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 238000007872 degassing Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 6
- 230000008021 deposition Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000001534 heteroepitaxy Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 125000004430 oxygen atom Chemical group O* 0.000 abstract description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 abstract 2
- 229910001195 gallium oxide Inorganic materials 0.000 abstract 2
- 238000000407 epitaxy Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 5
- 238000000089 atomic force micrograph Methods 0.000 description 4
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 2
- 241001354791 Baliga Species 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/025—Epitaxial-layer growth characterised by the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了基于等离子体辅助激光分子束外延生长氧化镍单晶薄膜的方法。首先对氧化物衬底进行预处理;再使用氧气等离子体辅助的激光分子束外延,常温下在氧化物衬底上异质外延氧化镍,获得单晶氧化镍。本发明结合衬底预处理和氧气等离子体辅助沉积,通过激光分子束外延,对生长条件进行了优化,在常温下获得了NiO单晶,提高了晶体质量,降低了表面粗糙度,使得器件性能的提升更为可观。得益于对衬底的有效预处理,衬底表面形成了宏观台阶流结构,从而有利于NiO单晶的形成;此外,氧气等离子体的辅助,活化了氧原子,在常温下异质外延单晶NiO。这种天然的p型材料在氧化镓衬底上的高质量异质外延,拓宽了氧化镓基高功率器件的实现途径。
The invention discloses a method for growing a nickel oxide single crystal thin film based on plasma-assisted laser molecular beam epitaxy. First, the oxide substrate is pretreated; then, oxygen plasma-assisted laser molecular beam epitaxy is used to heteroepitaxially grow nickel oxide on the oxide substrate at room temperature to obtain single crystal nickel oxide. The invention combines substrate pretreatment and oxygen plasma assisted deposition, optimizes growth conditions through laser molecular beam epitaxy, obtains NiO single crystal at normal temperature, improves crystal quality, reduces surface roughness, and improves device performance increase is more substantial. Benefiting from the effective pretreatment of the substrate, a macroscopic step flow structure is formed on the surface of the substrate, which is conducive to the formation of NiO single crystals; in addition, oxygen atoms are activated with the assistance of oxygen plasma, and heteroepitaxial single crystals are formed at room temperature. Crystalline NiO. The high-quality heteroepitaxy of this natural p-type material on gallium oxide substrates broadens the avenues for the realization of gallium oxide-based high-power devices.
Description
技术领域technical field
本发明涉及基于等离子体辅助激光分子束外延生长氧化镍单晶薄膜的方法,属于宽禁带半导体材料器件制备技术领域。The invention relates to a method for growing a nickel oxide single crystal thin film based on plasma-assisted laser molecular beam epitaxy, and belongs to the technical field of wide-bandgap semiconductor material device preparation.
背景技术Background technique
作为一种超宽禁带半导体材料,Ga2O3有着较大的禁带宽度(4.5–4.9eV)及高击穿场强(8MV/cm),其Baliga优值超过3000,是宽禁带半导体GaN、SiC的5–10倍,在功率器件、射频器件等领域有着广阔的应用前景。然而,Ga2O3研究中仍面临诸多挑战,缺乏p型掺杂能力仍是基于Ga2O3的功率电子器件的主要限制。探索其他p型宽禁带半导体材料并与Ga2O3形成高质量的异质集成是一种可能的解决方案。As an ultra-wide bandgap semiconductor material, Ga 2 O 3 has a large band gap (4.5–4.9eV) and high breakdown field strength (8MV/cm), and its Baliga figure of merit exceeds 3000, which is a wide band gap. It is 5-10 times that of semiconductor GaN and SiC, and has broad application prospects in the fields of power devices and radio frequency devices. However, there are still many challenges in Ga2O3 research, and the lack of p - type doping capability is still the main limitation of Ga2O3 - based power electronic devices. Exploring other p-type wide-bandgap semiconductor materials and forming high - quality heterointegration with Ga2O3 is a possible solution.
NiO是一种天然的p型氧化物半导体,由于其3.2–3.8eV的带隙、优异的化学稳定性和高可见光透射率而引起了广泛关注。此外,大的激子结合能(110meV)使其比GaN、ZnO等的应用更为广泛,且NiO和Ga2O3之间存在良好匹配的外延关系和能带结构。常用的氧化镍外延方法包括磁控溅射、激光分子束外延等。磁控溅射获得的氧化镍通常为多晶、非晶,这种粒子轰击沉积方式获得的薄膜表面粗糙度较大,晶体中存在各种缺陷,多晶界的存在也阻碍了载流子的输运,使得器件性能的提升仍存在较大限制。NiO, a natural p-type oxide semiconductor, has attracted much attention due to its band gap of 3.2–3.8 eV, excellent chemical stability, and high visible light transmittance. In addition, the large exciton binding energy (110 meV) makes it more widely used than GaN, ZnO, etc., and there is a well - matched epitaxial relationship and energy band structure between NiO and Ga2O3 . Commonly used nickel oxide epitaxy methods include magnetron sputtering, laser molecular beam epitaxy, and the like. The nickel oxide obtained by magnetron sputtering is usually polycrystalline and amorphous. The surface roughness of the film obtained by this particle bombardment deposition method is relatively large, and there are various defects in the crystal. The existence of polygrain boundaries also hinders the transfer of carriers. Transport, so that there is still a big limit to the improvement of device performance.
目前,为获得高质量氧化物的异质外延薄膜,常需进行高温外延,外延成本高、工艺复杂。此外,常用的生长手段如磁控溅射,常是粒子轰击沉积而非外延生长,通常获得多晶、非晶氧化镍,表面粗糙度较大,晶体质量差,使得器件性能的提升仍存在瓶颈。At present, in order to obtain a heteroepitaxial thin film of a high-quality oxide, high-temperature epitaxy is often required, and the epitaxy cost is high and the process is complicated. In addition, the commonly used growth methods such as magnetron sputtering are often particle bombardment deposition rather than epitaxial growth, and polycrystalline and amorphous nickel oxides are usually obtained. The surface roughness is large and the crystal quality is poor, so that there is still a bottleneck in the improvement of device performance. .
发明内容SUMMARY OF THE INVENTION
本发明目的是:针对提高氧化镍晶体质量、突破器件性能的瓶颈,提出结合衬底预处理和氧气等离子体辅助沉积,在常温下通过激光分子束外延(LMBE)获得低表面粗糙度的氧化镍单晶的方法。本发明中氧气等离子体辅助的NiO生长不需高温,简化了生长步骤,对衬底的预处理和生长条件的优化使得从常见的多晶、非晶产物优化为单晶NiO,提高了晶体质量,降低了表面粗糙度,使得器件性能的提升更为可观。The purpose of the invention is: aiming at improving the quality of nickel oxide crystal and breaking through the bottleneck of device performance, it is proposed to combine substrate pretreatment and oxygen plasma assisted deposition to obtain nickel oxide with low surface roughness by laser molecular beam epitaxy (LMBE) at room temperature single crystal method. The oxygen plasma-assisted NiO growth in the present invention does not require high temperature, simplifies the growth steps, and optimizes the pretreatment of the substrate and the growth conditions so that the common polycrystalline and amorphous products are optimized to single crystal NiO, and the crystal quality is improved. , which reduces the surface roughness and improves the device performance even more.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the above-mentioned technical problems:
基于等离子体辅助激光分子束外延生长氧化镍单晶薄膜的方法,结合衬底预处理和氧气等离子体辅助,在常温下通过激光分子束外延获得氧化镍单晶,具体包括以下步骤:Based on the method for growing nickel oxide single crystal thin film by plasma-assisted laser molecular beam epitaxy, combined with substrate pretreatment and oxygen plasma assistance, nickel oxide single crystal is obtained by laser molecular beam epitaxy at room temperature, which specifically includes the following steps:
(1)对氧化物衬底进行预处理;(1) Pretreatment of the oxide substrate;
(2)使用氧气等离子体辅助的激光分子束外延,在常温下,在氧化物衬底上异质外延氧化镍,获得单晶氧化镍。(2) Using oxygen plasma-assisted laser molecular beam epitaxy, at room temperature, heteroepitaxial nickel oxide is obtained on an oxide substrate to obtain single crystal nickel oxide.
进一步的,步骤(1)所述氧化物衬底为c面蓝宝石、ZnO或Ga2O3。Further, the oxide substrate in step (1) is c-plane sapphire, ZnO or Ga 2 O 3 .
进一步的,步骤(1)所述预处理具体步骤为:将氧化物衬底在热的浓硫酸中腐蚀0.5~1h,再高温退火12~24h。Further, the specific steps of the pretreatment in step (1) are: etching the oxide substrate in hot concentrated sulfuric acid for 0.5-1 h, and then annealing at high temperature for 12-24 h.
进一步的,所述浓硫酸的温度为120~180℃。Further, the temperature of the concentrated sulfuric acid is 120-180°C.
进一步的,所述退火温度为1000~1500℃。Further, the annealing temperature is 1000-1500°C.
进一步的,步骤(2)所述激光波长为λ=248nm,激光功率密度为135~225mJ;激光频率为1~10Hz。Further, in step (2), the laser wavelength is λ=248 nm, the laser power density is 135-225 mJ, and the laser frequency is 1-10 Hz.
进一步的,步骤(2)所述氧气等离子体功率为150~300W,氧气流量为1.5~3sccm,生长压强为1×10-5~9×10-5Torr。Further, the oxygen plasma power in step (2) is 150-300W, the oxygen flow rate is 1.5-3 sccm, and the growth pressure is 1×10 -5 -9×10 -5 Torr.
进一步的,步骤(2)所述在氧化物衬底上异质外延氧化镍的具体步骤为:Further, the specific steps of the heteroepitaxial nickel oxide on the oxide substrate described in step (2) are:
将经清洗、氮气吹干后的衬底放入激光分子束外延设备的预抽室,待在预抽室中经烘烤除气后送入生长室;靶材使用氧化镍,生长氛围为O2。Put the cleaned and nitrogen blown substrate into the pre-extraction chamber of the laser molecular beam epitaxy equipment, and then send it to the growth chamber after baking and degassing in the pre-extraction chamber; the target is nickel oxide, and the growth atmosphere is O 2 .
进一步的,所述的预抽室的真空度在6×10-7Torr以下,生长室的本底真空度在6×10-8Torr以下;所述衬底和靶材间距dS-T为40~50cm;所述O2的纯度在99.99%以上,氧化镍靶材的纯度在99.99%以上。Further, the vacuum degree of the pre-pumping chamber is below 6×10 -7 Torr, and the background vacuum degree of the growth chamber is below 6×10 -8 Torr; the distance d ST between the substrate and the target is 40~ 50cm; the purity of the O 2 is above 99.99%, and the purity of the nickel oxide target is above 99.99%.
根据所述方法制备的氧化镍单晶薄膜,氧化镍单晶薄膜表面粗糙度降至0.20nm。In the nickel oxide single crystal film prepared according to the method, the surface roughness of the nickel oxide single crystal film is reduced to 0.20 nm.
有益效果beneficial effect
(1)结合衬底预处理和氧气等离子体辅助,以及对生长条件的优化,通过激光分子束外延,在常温下获得了NiO单晶,表面粗糙度可降至0.20nm。(1) Combined with substrate pretreatment, oxygen plasma assistance, and optimization of growth conditions, NiO single crystals were obtained at room temperature by laser molecular beam epitaxy, and the surface roughness could be reduced to 0.20 nm.
(2)得益于对衬底的有效预处理,衬底表面形成,有利于NiO单晶的形成;氧气等离子体辅助沉积,活化了氧原子,使得能够在常温下异质外延NiO单晶。(2) Thanks to the effective pretreatment of the substrate, the surface of the substrate is formed, which is beneficial to the formation of NiO single crystal; the oxygen plasma-assisted deposition activates the oxygen atoms, enabling heteroepitaxial NiO single crystal at room temperature.
总之,异质外延获得的NiO为单晶,表面粗糙度大大降低。In short, the NiO obtained by heteroepitaxial is single crystal, and the surface roughness is greatly reduced.
附图说明Description of drawings
图1为在c面蓝宝石衬底上常温外延获得的NiO的反射高能电子衍射图。Figure 1 is a reflection high-energy electron diffraction pattern of NiO obtained by room temperature epitaxy on a c-plane sapphire substrate.
图2为在c面蓝宝石衬底上常温外延获得的NiO的X射线2θ–ω扫描图。Figure 2 is an X-ray 2θ–ω scan of NiO obtained by room temperature epitaxy on a c-plane sapphire substrate.
图3为所制备的NiO薄膜的X射线衍射(111)面的摇摆曲线图。FIG. 3 is a rocking curve diagram of the X-ray diffraction (111) plane of the prepared NiO thin film.
图4(a)为经过预处理的c面蓝宝石衬底的原子力显微镜图像,(b)为所制备的NiO单晶薄膜的原子力显微镜图像。Figure 4(a) is the atomic force microscope image of the pretreated c-plane sapphire substrate, and (b) is the atomic force microscope image of the prepared NiO single crystal thin film.
具体实施方式Detailed ways
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.
NiO异质外延所用的氧化物衬底为c面蓝宝石、ZnO、Ga2O3。The oxide substrates used for NiO heteroepitaxy are c-plane sapphire, ZnO, Ga 2 O 3 .
实施例1Example 1
本实施例为在蓝宝石衬底上,借助氧气等离子体进行常温下氧化镍单晶的外延,具体步骤如下:This embodiment is to carry out the epitaxy of nickel oxide single crystal at room temperature with the help of oxygen plasma on a sapphire substrate, and the specific steps are as follows:
(1)对c面蓝宝石衬底进行预处理:在热的浓硫酸(150℃)中腐蚀30min,在退火炉中高温(1200℃)退火12h;(1) Pretreatment of the c-plane sapphire substrate: etching in hot concentrated sulfuric acid (150°C) for 30min, and annealing at high temperature (1200°C) in an annealing furnace for 12h;
(2)使用激光分子束外延(λ=248nm),在常温下异质外延NiO:将经清洗、氮气吹干后的衬底放入激光分子束外延设备的预抽室,预抽室的真空度为6×10-7Torr,待在预抽室中经烘烤除气后送入生长室,生长室的本底真空度为6×10-8Torr;靶材使用NiO(纯度为99.99%),生长氛围为O2(纯度99.99%以上);衬底靶材间距dS-T为45cm,激光功率密度为135mJ,激光频率为2Hz;(2) Using laser molecular beam epitaxy (λ=248nm), heteroepitaxial NiO at room temperature: put the cleaned and nitrogen-drying substrate into the pre-extraction chamber of the laser molecular beam epitaxy equipment, and the vacuum of the pre-extraction chamber The vacuum degree is 6×10 -7 Torr, and it is sent to the growth chamber after being baked and degassed in the pre-extraction chamber. The background vacuum degree of the growth chamber is 6×10 -8 Torr; the target material is NiO (purity 99.99%). ), the growth atmosphere is O 2 (purity above 99.99%); the substrate-target spacing d ST is 45cm, the laser power density is 135mJ, and the laser frequency is 2Hz;
(3)借助氧气等离子体辅助沉积,氧气等离子体功率为200W,氧气流量为2sccm,生长压强为6×10-5Torr,在常温下进行NiO的外延,生长时间为3h。(3) With the aid of oxygen plasma assisted deposition, the oxygen plasma power is 200W, the oxygen flow rate is 2sccm, and the growth pressure is 6×10 -5 Torr. The NiO epitaxy is carried out at room temperature, and the growth time is 3h.
如图1所示为在c面蓝宝石衬底上常温外延获得的NiO的反射高能电子衍射图,从图中的衍射条纹可以看出,制备的NiO为单晶,且样品表面非常平整。Figure 1 shows the reflection high-energy electron diffraction pattern of NiO obtained by room temperature epitaxy on a c-plane sapphire substrate. From the diffraction fringes in the figure, it can be seen that the prepared NiO is a single crystal, and the surface of the sample is very flat.
如图2所示为在c面蓝宝石衬底上常温外延获得的NiO的X射线2θ–ω扫描图,从图中可以看出,NiO的衍射峰为立方相NiO,确认异质外延获得的是立方相NiO单晶。Figure 2 shows the X-ray 2θ–ω scan of NiO obtained by room temperature epitaxy on a c-plane sapphire substrate. It can be seen from the figure that the diffraction peak of NiO is cubic NiO, confirming that the obtained heteroepitaxy is Cubic NiO single crystal.
如图3为所制备的NiO薄膜的X射线衍射(111)面的摇摆曲线图,摇摆曲线的半高宽是表征单晶质量的重要指标,所制备的NiO薄膜(111)面摇摆曲线半高宽为0.77°,说明所制备的NiO单晶薄膜晶体质量良好。Figure 3 is the rocking curve diagram of the X-ray diffraction (111) surface of the prepared NiO thin film, the half-height width of the rocking curve is an important indicator to characterize the quality of the single crystal, and the half-height of the rocking curve of the prepared NiO thin film (111) surface The width is 0.77°, indicating that the prepared NiO single crystal thin film has good crystal quality.
如图4(a)为经过预处理的c面蓝宝石衬底的原子力显微镜图像,从图中可以看到沟壑,表面粗糙度为0.23nm;(b)为所制备的NiO薄膜的原子力显微镜图像,表面粗糙度为0.20nm。Figure 4(a) is the atomic force microscope image of the pretreated c-plane sapphire substrate. From the figure, we can see the grooves and the surface roughness is 0.23nm; (b) is the atomic force microscope image of the prepared NiO thin film, The surface roughness was 0.20 nm.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210272003.5A CN114717657B (en) | 2022-03-18 | 2022-03-18 | Method for growing nickel oxide monocrystal film based on plasma-assisted laser molecular beam epitaxy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210272003.5A CN114717657B (en) | 2022-03-18 | 2022-03-18 | Method for growing nickel oxide monocrystal film based on plasma-assisted laser molecular beam epitaxy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114717657A true CN114717657A (en) | 2022-07-08 |
CN114717657B CN114717657B (en) | 2023-08-22 |
Family
ID=82237721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210272003.5A Active CN114717657B (en) | 2022-03-18 | 2022-03-18 | Method for growing nickel oxide monocrystal film based on plasma-assisted laser molecular beam epitaxy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114717657B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115838971A (en) * | 2023-02-14 | 2023-03-24 | 楚赟精工科技(上海)有限公司 | Gallium oxide film and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534767A (en) * | 2011-12-29 | 2012-07-04 | 浙江大学 | Na-mixing method for growing p-type ZnO single crystal film |
CN111334856A (en) * | 2020-02-18 | 2020-06-26 | 浙江大学 | Method for growing high-quality ZnO single crystal film by quasi van der waals epitaxy using plasma-assisted molecular beam epitaxy |
-
2022
- 2022-03-18 CN CN202210272003.5A patent/CN114717657B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102534767A (en) * | 2011-12-29 | 2012-07-04 | 浙江大学 | Na-mixing method for growing p-type ZnO single crystal film |
CN111334856A (en) * | 2020-02-18 | 2020-06-26 | 浙江大学 | Method for growing high-quality ZnO single crystal film by quasi van der waals epitaxy using plasma-assisted molecular beam epitaxy |
Non-Patent Citations (3)
Title |
---|
MELANIE BUDDE 等: "Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy", 《JOURNAL OF APPLIED PHYSICS》 * |
倪曼曼: "基于ZnO的异质结的组建及其光电性能研究", 《中国优秀硕士学位论文数据库 信息科技辑》 * |
贝力等: "脉冲激光沉积制备NiO(111)外延薄膜及其结构研究", 《电子元件与材料》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115838971A (en) * | 2023-02-14 | 2023-03-24 | 楚赟精工科技(上海)有限公司 | Gallium oxide film and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114717657B (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113235047B (en) | A kind of preparation method of AlN thin film | |
CN108206130B (en) | Indium nitride nanocolumn epitaxial wafer grown on aluminum foil substrate and preparation method thereof | |
CN210120127U (en) | Composite silicon substrate | |
CN110867368A (en) | Preparation method of gallium oxide epitaxial film | |
CN105810562B (en) | Growing method of gallium nitride based on molybdenum disulfide and magnetron sputtering aluminium nitride | |
CN108878266B (en) | Method for growing single crystal gallium nitride film on polycrystalline or amorphous substrate | |
CN108428618A (en) | Growing method of gallium nitride based on graphene insert layer structure | |
CN111334856B (en) | A method for quasi-van der Waals epitaxy growth of high-quality ZnO single crystal thin films by plasma-assisted molecular beam epitaxy | |
CN114717657B (en) | Method for growing nickel oxide monocrystal film based on plasma-assisted laser molecular beam epitaxy | |
CN108039321A (en) | Using SiC as substrate GaN-based HEMT device epitaxial growth method | |
CN110323308A (en) | A method of nitride vertical structure LED is prepared using graphene barrier layer | |
CN104818452A (en) | Method for preparing nitrogen aluminum co-doping p type zinc oxide thin film | |
CN101560692A (en) | Growth method of non-polar plane InN material | |
CN111962154A (en) | A kind of AlN dielectric film with high dielectric constant and high Q value and preparation method thereof | |
CN110791805A (en) | Substrate, epitaxial wafer and growth method thereof | |
CN110752146A (en) | Method for growing gallium nitride film on silicon substrate | |
CN108330536B (en) | Preparation method of PA-MBE homoepitaxial high-quality GaN single crystal thin films | |
CN105977135A (en) | Gallium nitride growth method based on tin disulfide and magnetron sputtering aluminium nitride | |
CN114497185B (en) | Preparation method of carbon doped insulating layer, HEMT device and preparation method thereof | |
CN117577748A (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN100545314C (en) | In-situ processing method for sapphire substrates for the preparation of high-quality ZnO thin films | |
CN114108087B (en) | A kind of preparation method of orthorhombic phase tantalum pentoxide single crystal thin film | |
CN104593772A (en) | Method for heteroepitaxial growth of antimonide semiconductor on macrolattice dismatch substrate | |
CN115036361A (en) | Preparation of AlN/GaN Heterojunctions for Nucleation Layer Optimization on Single Crystal Diamond Substrates | |
CN110993505B (en) | Semiconductor structure preparation method and semiconductor structure based on silicon carbide substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |