CN114716466A - 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法 - Google Patents

一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法 Download PDF

Info

Publication number
CN114716466A
CN114716466A CN202210526440.5A CN202210526440A CN114716466A CN 114716466 A CN114716466 A CN 114716466A CN 202210526440 A CN202210526440 A CN 202210526440A CN 114716466 A CN114716466 A CN 114716466A
Authority
CN
China
Prior art keywords
nickel
boric acid
amino
hydroamidation
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210526440.5A
Other languages
English (en)
Other versions
CN114716466B (zh
Inventor
朱少林
张遥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202210526440.5A priority Critical patent/CN114716466B/zh
Publication of CN114716466A publication Critical patent/CN114716466A/zh
Application granted granted Critical
Publication of CN114716466B publication Critical patent/CN114716466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种镍催化的不对称氢酰胺化制备手性α‑氨基硼酸/硼酸酯的方法。在金属镍盐、手性配体、氢源、添加剂等作用下,使烯烃和酰胺化试剂溶于有机溶剂中进行反应,得到区域选择性和对映选择性优秀的手性α‑氨基硼酸/硼酸酯。本方法原料易得,催化剂简单,操作简便,利用本方法可以合成一系列含有手性α‑氨基硼酸/硼酸酯的药物(生物活性)分子,如Vaborbactam。

Description

一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯 的方法
技术领域
本发明方法属于合成化学和药物化学领域,涉及烯基硼酸/烯基硼酸酯和酰 胺化试剂发生不对称氢酰胺化制备具有光学活性的含有手性α-氨基硼酸/硼酸酯 结构产物以及相关结构的药物(生物活性)分子的方法
背景技术
手性α-氨基硼酸/硼酸酯及其衍生物是氨基酸的生物电子等排体,广泛地应 用于合成化学、材料科学和药物科学的研究中。以药物科学为例,下式代表性地 列举了近年来含有手性α-氨基硼酸/硼酸酯的活性药物分子,其中部分已经作为 商业化的药物分子上市销售。
Figure BDA0003644553610000011
发展廉价高效高选择性地制备手性α-氨基硼酸/硼酸酯类化合物的方法是重 要的研究领域。[(a)W.Ming,H.S.Soor,X.Liu,A.Trofimova,A.K.Yudin,T.B. Marder,Chem.Soc.Rev.2021,50,12151;(b)A.
Figure BDA0003644553610000012
I.
Figure BDA0003644553610000013
S.Gobec,Z.
Figure BDA0003644553610000014
Org.Chem.Front.2019,6,2991;(c)D.B.Diaz,A.K.Yudin,Nat.Chem.2017,9, 731;(d)R.Smoum,A.Rubinstein,V.M.Dembitsky,M.Srebnik,Chem.Rev.2012, 112,4156;(e)T.Ohmura,T.Awano,M.Suginome,J.Am.Chem.Soc.2010,132, 13191;(f)T.Awano,T.Ohmura,M.Suginome,J.Am.Chem.Soc.2011,133,20738.]
目前,除了传统的依靠手性辅基的合成方法,过渡金属不对称催化的方法也 有一系列报道,但其缺点在于催化剂昂贵且难以合成、反应条件苛刻等。此外, 铜氢催化的烯基硼酸酯的不对称氢氨化已有两例报道,但反应得到的手性α-二烷 基胺Bdan分子仍需要额外的多个步骤才能转化为手性α-氨基硼酸/硼酸酯化合 物,限制了该方法的使用。[(a)D.S.Matteson,K.M.Sadhu,G.E.Lienhard,J.Am. Chem.Soc.1981,103,5241;(b)M.A.Beenen,C.An,J.A.Ellman,J.Am.Chem.Soc. 2008,130,6910;(c)Q.Qi,X.Yang,X.Fu,S.Xu,E.Negishi,Angew.Chem.,Int.Ed. 2018,57,15138;(d)K.Hong,J.P.Morken,J.Am.Chem.Soc.2013,135,9252;(e) C.B.Schwamb,K.P.Fitzpatrick,A.C.Brueckner,H.C.Richardson,P.H.Y.Cheong, K.A.Scheidt,J.Am.Chem.Soc.2018,140,10644;(f)N.Hu,G.Zhao,Y.Zhang,X. Liu,G.Li,W.Tang,J.Am.Chem.Soc.2015,137,6746;(g)X.-Y.Bai,W.Zhao,X. Sun,B.-J.Li,J.Am.Chem.Soc.2019,141,19870;(h)I.
Figure BDA0003644553610000015
E. Casas-Arcé,S.J.Roseblade,U.Nettekoven,A.Zanotti-Gerosa,M.
Figure BDA0003644553610000016
Z.
Figure BDA0003644553610000017
Angew.Chem.,Int.Ed.2012,51,1014;(i)Y.Lou,J.Wang,G.Gong,F.Guan, J.Lu,J.Wen,X.Zhang,Chem.Sci.2020,11,851;(j)D.Fan,J.Zhang,Y.Hu,Z. Zhang,I.D.Gridnev,W.Zhang,ACS Catal.2020,10,3232;(k)R.L.Reyes,M.Sato, T.Iwai,M.Sawamura,J.Am.Chem.Soc.2020,142,589.(l)D.Nishikawa,K. Hirano,M.Miura,J.Am.Chem.Soc.2015,137,15620;(m)D.-W.Gao,Y.Gao,H. Shao,T.-Z.Qiao,X.Wang,B.B.Sanchez,J.S.Chen,P.Liu,K.M.Engle,Nat.Catal. 2019,3,23.]
近几年,镍氢催化的烯烃不对称氢官能团化方法得到了较大的发展,高活性 的镍氢物种对烯烃迁移插入后,在手性配体的控制下可以与多种亲电试剂偶联得 到高对映选择性的产物。[(a)Z.Wang,H.Yin,G.C.Fu,Nature 2018,563,379;(b)F. Zhou,Y.Zhang,X.Xu,S.Zhu,Angew.Chem.,Int.Ed.2019,58,1754;(c)S.-J.He, J.-W.Wang,Y.Li,Z.-Y.Xu,X.-X.Wang,X.Lu,Y.Fu,J.Am.Chem.Soc.2020,142, 214;(d)Z.-P.Yang,G.C.Fu,J.Am.Chem.Soc.2020,142,5870;(e)Y.He,C.Liu,L. Yu,S.Zhu,Angew.Chem.,Int.Ed.2020,59,21530;(f)S.Bera,R.Mao,X.Hu,Nat. Chem.2021,13,270;(g)L.Shi,L.-L.Xing,W.-B.Hu,W.Shu,Angew.Chem.,Int. Ed.2021,60,1599;(h)S.Cuesta-Galisteo,J.
Figure BDA0003644553610000022
X.Wei,E.Merino,C. Nevado,Angew.Chem.,Int.Ed.2021,60,1605;(i)J.Liu,H.Gong,S.Zhu,Angew. Chem.,Int.Ed.2021,60,4060;(j)Y.He,H.Song,S.Zhu,Nat.Commun.2021,12, 638;(k)D.Qian,S.Bera,X.Hu,J.Am.Chem.Soc.2021,143,1959;(l)J.-W.Wang, Y.Li,W.Nie,Z.Chang,Z.-A.Yu,Y.-F.Zhao,X.Lu,Y.Fu,Nat.Commun.2021,12,1313;(m)X.-X.Wang,L.Yu,X.Lu,Z.-L.Zhang,D.-G.Liu,C.Tian,Y.Fu,CCS Chem.2021,3,727;(n)S.Wang,J.-X.Zhang,T.-Y.Zhang,H.Meng,B.-H.Chen,W. Shu,Nat.Commun.2021,12,2771;(o)X.Jiang,B.Han,Y.Xue,M.Duan,Z.Gui,Y. Wang,S.Zhu,Nat.Commun.2021,12,3792;(p)F.Zhou,S.Zhu,ACS Catal.2021, 11,8766;(q)J.Chen,S.Zhu,J.Am.Chem.Soc.2021,143,14089;(r)Y.Zhang,J. Ma,J.Chen,L.Meng,Y.Liang,S.Zhu,Chem 2021,7,3171.]
在此,我们以烯基硼酸/烯基硼酸酯为原料,二恶唑酮为酰胺化试剂,多取 代氨基醇为手性配体,一步合成手性α-氨基硼酸/硼酸酯化合物。该方法原料简 单廉价、容易合成,反应条件简单温和,产物区域选择性单一、对映选择性优秀 (一般ee值大于90%)。该方法可以用于含有手性α-氨基硼酸/硼酸酯结构的药 物(生物活性)分子合成。
Figure BDA0003644553610000021
发明内容
本发明的目的是提供一种含多种官能团的手性类化合物的合成方法,该方法原料便宜易得,操作简便,底物范围广且官能团兼容性好,具有优秀的区域选择性 和对映选择性。具体为一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸 酯的方法及其在手性α-氨基硼酸药物分子合成中的应用。
本发明实现上述目的之一采用以下技术方案:
一种镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化的方法,包括以下步骤: 在惰性气体中,将金属镍类催化剂、手性配体L*、氢源、添加剂溶于干燥的有 机溶剂中,然后加入烯基硼酸/硼酸酯
Figure BDA0003644553610000031
和酰胺化试剂
Figure BDA0003644553610000032
得到反 应混合物,随后将上述反应混合物密封并从惰性气体中取出,反应完全后,减压 浓缩除去有机溶剂,再经分离纯化得到目标的手性化合物
Figure BDA0003644553610000033
其中,1)R1为原烯烃的取代基,为氢原子、烷基、酯基、酰胺基、磺酰基、 烷氧基、硅醚、芳基、卤素中的任一种;2)R2为氨化试剂的取代基,为烷基、 烯基、芳基、炔基中的一种;3)BR2为硼酸或硼酸酯。
优选地,-BR2为硼酸(-B(OH)2)、硼酸酯(-B(OR3)2、-B(NR4R5)2,其中R3-R5为氢原子、烷基、芳基、酰基中的一种或多种)如:
Figure BDA0003644553610000034
Figure BDA0003644553610000035
Figure BDA0003644553610000036
Figure BDA0003644553610000037
中的一 种。
优选地,所述方法反应路线如下:
Figure BDA0003644553610000038
优选地,金属镍类催化剂:手性配体:氢源:离子添加剂:质子添加剂:烯 烃:亲电试剂:有机溶剂的用量比为摩尔:摩尔:摩尔:摩尔:摩尔:摩尔:摩 尔:体积mL=0.01-0.50:0.01-1.0:1.5-4.0:0.1-5.0:0.1-10.0:1.0-3.0:1.0-3.0: 0.2-5.0。
优选地,所述的金属镍盐是碘化镍、碘化镍水合物、氯化镍、氯化镍六水合 物、氯化镍乙二醇二甲醚复合物、溴化镍、溴化镍三水合物、溴化镍二乙二醇二 甲醚复合物、溴化镍乙二醇二甲醚复合物、双-(1,5-环辛二烯)镍复合物、硝酸 镍六水合物、高氯酸镍六水合物、四氟硼酸镍六水合物、乙酰丙酮镍、氟化镍、 氟化镍四水合物、三氟甲磺酸镍、乙酸镍水合物、双三苯基膦二氯化镍、双(三 苯基膦)二溴化镍、1,3-双(二苯基膦)丙烷二氯化镍、(1,1'-双(二苯基膦)二茂铁)二 氯化镍、四(三苯基膦)镍中的任一种;
优选地,所述的手性配体L*为具有以下结构的任一种(包括其对映异构体):
Figure BDA0003644553610000041
其中,R6-R17为手性配体上的取代基,为氢原子、烷基、酯基、氨基、取代胺基、 膦酰基、膦酰胺基、酰胺基、磺酰基、烷氧基、硅醚、硫醚、硒醚、芳基、烯基、 炔基、氰基、异氰基、卤素中的任一种。
优选地,所述的氢源为聚甲基氢硅氧烷、三甲氧基氢硅烷、三乙氧基氢硅烷、 二乙氧基甲基氢硅烷、二甲氧基甲基氢硅烷、苯基氢硅烷、二苯基氢硅烷、三苯 基氢硅烷、硼烷及其复合物、频那醇硼烷、烷基溴和锰粉的组合、烷基溴和锌粉 的组合、电化学还原、光催化还原剂(如二异丙基胺和光催化剂的组合)中的任一 种。
优选地,所述的离子添加剂为氯化锂、氯化钠、溴化锂、溴化钾、溴化镁、 溴化镁水合物、碘化锂、碘化钠、碘化钾、碘化锌、碘化镁、四丁基氟化铵、四 丁基氯化铵、四丁基溴化铵、四丁基碘化铵、乙酸钠、乙酸钾中的一种或多种。
优选地,所述的质子添加剂为水、醇、酚、胺类化合物、硫醇、硫酚中的一 种或多种。
优选地,所述的溶剂为四氢呋喃、甲苯、二氯甲烷、1,2-二氯乙烷、氯仿、 乙腈、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N,N-二甲基丙酰胺、N,N-二甲基 丙烯基脲、N-甲基吡咯烷酮、甲醇、乙醇、水、乙二醇二甲醚、二乙二醇二乙醚 和二甲基亚砜中的一种或多种。
优选地,所述的反应温度为0~50℃。
本发明的目的是提供一种全新的合成手性α-氨基硼酸/硼酸酯化合物的方 法。
本发明的有益效果是:
目前,合成手性α-氨基硼酸/硼酸酯化合物主要通过手性辅基辅助合成(如 反应式(1-2)),该类方法中手性辅基的引入和脱除增加了反应步骤,造成当量 的手性辅基浪费,降低了反应的原子利用效率[(a)Matteson,D.S.;Majumdar,D.J. Am.Chem.Soc.1980,102,7588;(b)Matteson,D.S.;Sadhu,K.M.J.Am.Chem.Soc. 1981,103,5241;(c)Beenen,M.A.;An,C.-H.;Ellman,J.A.J.Am.Chem.Soc.2008, 130,6910.];已有报道的过渡金属催化的方法,催化剂价格昂贵且难以合成,反 应条件苛刻(如反应式(3-5))[(a)Hong,K.;Morken,J.P.J.Am.Chem.Soc.2013, 135,9252;(b)Schwamb,C.B.;Fitzpatrick,K.P.;Brueckner,A.C.;Camille Richardson,H.;Cheong,P.H.-Y.;ScheidtK.A.J.Am.Chem.Soc.2018,140,10644; (c)Bai,X.-Y.;Zhao,W.;Sun,X.;Li,B.-J.J.Am.Chem.Soc.2019,141,19870.];铜 氢催化的不对称氢氨化反应制备所得的分子需要额外的多个步骤才能转化为所 需的手性α-氨基硼酸/硼酸酯,限制了该反应的使用价值(如反应式(6-8))。本 发明通过镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化,以恶唑啉酮为氨化试剂, 一步即可高效(反应化学选择性单一,酰胺基只在硼的α位生成)、高对映选择性(一般ee值能达到90%)地制备手性α-氨基硼酸/硼酸酯(反应式9),并可以 顺利应用于含有手性α-氨基硼酸/硼酸酯的药物(生物活性)分子,如Vaborbactam 的合成中(反应式10),利用本方法,可以从5步简单反应制备得到的端炔出发, 经过3步反应得到Vaborbactam。对比以前报道的方法(反应式11)[S.J.Hecker, K.R.Reddy,M.Totrov,G.C.Hirst,O.Lomovskaya,D.C.Griffith,P.King,R. Tsivkovski,D.Sun,M.Sabet,Z.Tarazi,M.C.Clifton,K.Atkins,A.Raymond,K.T. Potts,J.Abendroth,S.H.Boyer,J.S.Loutit,E.E.Morgan,S.Durso,M.N.Dudley,J. Med.Chem.2015,58,3682.],本方法优势在于步骤较短,不需要手性辅基参与, 不需要贵金属催化、酶催化、-40℃以下的低温反应条件。因此,相较于以前制 备手性α-氨基硼酸/硼酸酯的方法而言,本发明具有明显的实用性和竞争力。
(1)
Figure BDA0003644553610000051
Figure BDA0003644553610000052
(2)
Figure BDA0003644553610000053
(3)
Figure BDA0003644553610000061
(4)
Figure BDA0003644553610000062
(5)
Figure BDA0003644553610000063
(6)
Figure BDA0003644553610000064
(7)
Figure BDA0003644553610000065
(8)
Figure BDA0003644553610000066
(9)
Figure BDA0003644553610000071
(10)制备Vaborbactam(详见实施例19)
Figure BDA0003644553610000072
(11)已报道的Vaborbactam制备路线
Figure BDA0003644553610000073
附图说明
下面结合附图对本发明的作进一步说明。
图1是实施例1产物的H谱;
图2是实施例1产物的C谱;
图3是实施例2产物的H谱;
图4是实施例2产物的C谱;
图5是实施例10产物的H谱;
图6是实施例10产物的C谱;
图7是实施例16产物的H谱;
图8是实施例16产物的C谱;
图9是实施例19中产物3a的H谱;
图10是实施例19中产物3a的C谱;
图11是实施例19中产物Vaborbactam的H谱;
图12是实施例19中产物Vaborbactam的C谱。
具体实施方式
通过以下详细说明可以进一步理解本发明的特点和优点。所提供的实施例仅 是对本发明方法的说明,而不以任何方式限制本发明揭示的其余内容。
下述实施例中,Bpin指
Figure BDA0003644553610000081
NiCl2·6H2O指氯化镍六水合物,L*指手 性配体
Figure BDA0003644553610000082
(EtO)3SiH指三乙氧基氢硅烷,DMA指N,N-二甲基乙酰 胺。
实施例1
Figure BDA0003644553610000083
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反 应20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产 物(白色固体,产率71%),1H NMR(500MHz,CDCl3)δ8.47(s,1H),7.80(d,J= 7.4Hz,2H),7.45(t,J=7.4Hz,1H),7.32(t,J=7.7Hz,2H),2.79(t,J=6.3Hz,1H),1.75–1.65(m,1H),1.61–1.52(m,1H),1.49–1.37(m,2H),1.34–1.28(m,4H), 1.26(s,12H),0.88(t,J=7.0Hz,3H);13C NMR(126MHz,CDCl3)δ170.8,133.1, 128.6,128.2,128.1,81.2,32.1,31.3,27.7,25.4,25.2,22.7,14.2;11B NMR(160 MHz,CDCl3)δ17.8;HRMS(ESI)calcd.for C19H30BNNaO3[M+Na]+m/z 354.2211, found 354.2202;IR(neat,cm-1)3079,2925,1608,1530,1127,1099,709;m.p.130– 132℃;[α]D 25=–35.8(c=1.06,CHCl3);HPLCanalysis:the ee(95%)was determined using a
Figure BDA0003644553610000084
IE-3column,5%EtOH inhexane,1.0mL/min, 240nm UV detector,tR(major)=6.8min,tR(minor)=7.4min.
实施例2
Figure BDA0003644553610000085
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1b(39.2mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反 应20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产 物(白色固体,产率68%),1H NMR(500MHz,CDCl3)δ7.77(d,J=7.4Hz,2H), 7.64(s,1H),7.50(t,J=7.4Hz,1H),7.38(t,J=7.7Hz,2H),2.95(t,J=6.8Hz,1H),1.79–1.67(m,1H),1.53–1.47(m,2H),1.27(s,12H),0.96(d,J=6.5Hz,6H);13C NMR(126MHz,CDCl3)δ170.9,133.1,128.7,128.4,128.0,81.2,40.6,26.3,25.3, 25.3,23.6,22.2;11B NMR(160MHz,CDCl3)δ18.6;HRMS(ESI)calcd.for C18H29BNO3[M+H]+m/z 318.2235,found 318.2231;IR(neat,cm-1)2958,1609, 1528,1113,1098,707;[α]D 25=–37.3(c=0.96,CHCl3);HPLC analysis:the ee (92%)was determined using a
Figure BDA0003644553610000091
AD-Hcolumn,5%iPrOH in hexane, 1.0mL/min,240nm UV detector,tR(minor)=4.8min,tR(major)=5.5min.
实施例3
Figure BDA0003644553610000092
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1c(46.1mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反 应20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产 物(无色液体,产率55%),1H NMR(500MHz,CDCl3)δ8.52(s,1H),7.80(d,J= 7.3Hz,2H),7.47(t,J=7.5Hz,1H),7.34(t,J=7.8Hz,2H),3.59–3.48(m,2H), 2.83–2.75(m,1H),1.83–1.74(m,2H),1.74–1.66(s,1H),1.64–1.51(m,3H), 1.26(s,12H);13CNMR(126MHz,CDCl3)δ171.1,133.3,128.7,128.3,127.7,81.2, 45.2,32.8,30.7,25.5,25.3,25.1;11B NMR(160MHz,CDCl3)δ17.6;HRMS(ESI) calcd.for C18H27BClNNaO3[M+Na]+m/z 374.1665,found 374.1656;IR(neat,cm-1) 3193,2971,2929,1610,1576,1111,734;[α]D 25=–40.0(c=1.08,CHCl3);HPLC analysis:the ee(96%)was determined using a
Figure BDA0003644553610000093
AD-H column,5% iPrOH in hexane,1.0mL/min,240nm UV detector,tR(minor)=6.9min,tR(major)= 8.2min.
实施例4
Figure BDA0003644553610000094
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1g(65.3mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率76%),1H NMR(500MHz,CDCl3)δ7.82–7.77(m,2H),7.68(s,1H), 7.53(t,J=7.5Hz,1H),7.41(t,J=7.8Hz,2H),3.64(t,J=6.2Hz,2H),2.92–2.83 (m,1H),1.78–1.67(m,1H),1.68–1.44(m,5H),1.27(s,6H),1.26(s,6H),0.88(s,9H),0.04(s,6H);13C NMR(126MHz,CDCl3)δ170.9,133.2,128.8,128.5,128.0, 81.3,63.3,32.9,31.0,26.2,25.4,25.2,24.2,18.5,-5.1;11B NMR(160MHz,CDCl3) δ18.9;HRMS(ESI)calcd.for C24H42BNNaO4Si[M+Na]+m/z 470.2868,found 470.2858;IR(neat,cm-1)3070,2928,2857,1611,1096,706;[α]D 25=–41.6(c=0.98, CHCl3);HPLC analysis:the ee(95%)was determined using a
Figure BDA0003644553610000101
IG-3 column,5%EtOH in hexane,0.8mL/min,240nm UV detector,tR(major)=4.9min, tR(minor)=5.7min.
实施例5
Figure BDA0003644553610000102
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1e(66.0mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率66%),1H NMR(500MHz,CDCl3)δ8.06–7.92(m,3H),7.87(d,J= 7.3Hz,2H),7.57–7.48(m,2H),7.44–7.37(m,4H),4.48–4.39(m,1H),4.32–4.22(m,1H),2.83(t,J=5.9Hz,1H),1.87–1.78(m,1H),1.78–1.67(m,2H),1.66 –1.57(m,1H),1.56–1.39(m,4H),1.26(s,6H),1.25(s,6H);13C NMR(126MHz, CDCl3)δ171.0,167.2,133.3,133.1,130.5,129.7,128.8,128.5,128.2,81.1,64.7, 31.2,29.0,27.1,25.7,25.5,25.2;11B NMR(160MHz,CDCl3)δ18.2;HRMS(ESI) calcd.for C26H34BNNaO5[M+Na]+m/z474.2422,found 474.2413;IR(neat,cm-1) 3050,2970,2930,1716,1610,1265,1117,734;[α]D 25=–58.1(c=0.98,CHCl3); HPLC analysis:the ee(95%)was determined using a
Figure BDA0003644553610000103
IF-3column, 10%EtOH in hexane,1.0mL/min,254nm UV detector,tR(major)=6.3min,tR (minor)=7.2min.
实施例6
Figure BDA0003644553610000104
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1f(78.7mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(白 色固体,产率57%),1H NMR(500MHz,CDCl3)δ8.10(s,1H),7.92(d,J=7.5Hz, 2H),7.63(d,J=8.2Hz,2H),7.51(t,J=7.4Hz,1H),7.39(t,J=7.7Hz,2H),7.30 (d,J=8.1Hz,2H),3.21–3.11(m,1H),2.93–2.85(m,1H),2.82–2.73(m,1H), 2.68(s,3H),2.42(s,3H),1.72–1.43(m,7H),1.38–1.31(m,1H),1.27(s,6H),1.26 (s,6H);13C NMR(126MHz,CDCl3)δ171.3,143.5,134.4,133.2,129.8,128.7, 128.4,127.9,127.4,80.8,49.0,34.5,30.9,26.4,26.0,25.5,25.2,24.8,21.6;11B NMR(160MHz,CDCl3)δ17.3;m.p.123–125℃;HRMS(ESI)calcd.for C27H39BN2NaO5S[M+Na]+m/z 537.2565,found537.2556;IR(neat,cm-1)3050, 2929,1610,1156,732;[α]D 25=–25.5(c=1.05,CHCl3);HPLC analysis:the ee (97%)was determined using a
Figure BDA0003644553610000111
IG-3column,20%EtOH in hexane, 1.0mL/min,254nm UV detector,tR(major)=9.5min,tR(minor)=12.0min.
实施例7
Figure BDA0003644553610000112
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2a(48.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1g(60.4mg,0.2mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率66%),1H NMR(500MHz,CDCl3)δ7.93(s,1H),7.77(d,J=7.5Hz, 2H),7.50(t,J=7.5Hz,1H),7.36(t,J=7.8Hz,2H),7.33–7.29(m,4H),7.28–7.24(m,1H),4.50(s,2H),3.51(t,J=6.3Hz,2H),2.90–2.80(m,1H),1.76–1.57 (m,4H),1.57–1.51(m,2H),1.26(s,12H);13C NMR(126MHz,CDCl3)δ171.0, 138.6,133.2,128.7,128.5,128.1,127.8,127.7,81.1,73.1,70.6,30.9,29.6,25.4,25.2, 24.6;11B NMR(160MHz,CDCl3)δ18.3;HRMS(ESI)calcd.for C25H34BNNaO4 [M+Na]+m/z 446.2473,found446.2462;IR(neat,cm-1)3195,2927,2856,1610, 1098,707;[α]D 25=–41.6(c=1.06,CHCl3);HPLC analysis:the ee(96%)was determined using a
Figure BDA0003644553610000113
IG-3column,5%EtOH in hexane,1.0mL/min, 254nm UV detector,tR(major)=8.3min,tR(minor)=11.6min.
实施例8
Figure BDA0003644553610000114
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2b(57.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(白 色固体,产率72%),1H NMR(500MHz,CDCl3)δ8.52(s,1H),7.78(d,J=8.9Hz, 2H),6.79(d,J=8.9Hz,2H),3.80(s,3H),2.69(t,J=6.6Hz,1H),1.72–1.63(m, 1H),1.58–1.48(m,1H),1.47–1.36(m,2H),1.35–1.27(m,4H),1.26(s,6H),1.25 (s,6H),0.88(t,J=7.0Hz,3H);13C NMR(126MHz,CDCl3)δ170.7,163.6,130.5, 119.4,113.8,80.7,55.5,32.2,31.4,27.7,25.5,25.3,22.7,14.3;11B NMR(160MHz, CDCl3)δ15.8;m.p.166–168℃;HRMS(ESI)calcd.for C20H33BNO4[M+H]+m/z 362.2497,found 362.2489;IR(neat,cm-1)3064,2925,2854,1609,1497,1260,1108; [α]D 25=–59.2(c=0.98,CHCl3);HPLC analysis:the ee(95%)was determined using a
Figure BDA0003644553610000121
IG-3column,5%EtOH in hexane,1.0mL/min,254nm UV detector,tR(major)=7.2min,tR(minor)=8.1min.
实施例9
Figure BDA0003644553610000122
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2c(62.8mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(白 色固体,产率61%),1H NMR(500MHz,CDCl3)δ8.68(s,1H),7.70(d,J=8.5Hz, 2H),7.10(d,J=8.5Hz,2H),2.73(t,J=6.5Hz,1H),2.47(s,3H),1.74–1.63(m, 1H),1.59–1.49(m,1H),1.48–1.37(m,2H),1.35–1.27(m,4H),1.27(s,12H), 0.88(t,J=7.0Hz,3H);13C NMR(126MHz,CDCl3)δ170.5,146.2,128.7,124.9, 123.2,81.0,32.2,31.4,27.6,25.4,25.3,22.7,14.8,14.2;11B NMR(160MHz,CDCl3) δ16.6;m.p.166–167℃;HRMS(ESI)calcd.for C20H33BNO3S[M+H]+m/z 378.2269,found 378.2260;IR(neat,cm-1)3205,2969,2929,1602,1547,1115,733; [α]D 25=–59.5(c=1.16,CHCl3);HPLC analysis:the ee(93%)was determined using a
Figure BDA0003644553610000123
IE-3column,5%EtOH in hexane,1.0mL/min,220nm UV detector,tR(major)=9.3min,tR(minor)=10.4min.
实施例10
Figure BDA0003644553610000124
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2d(66.4mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),甲醇(3.2mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(白 色固体,产率62%),1H NMR(500MHz,CDCl3)δ8.18(s,1H),7.98(d,J=8.4Hz, 2H),7.85(d,J=8.5Hz,2H),3.93(s,3H),3.00–2.91(m,1H),1.77–1.68(m,1H), 1.65–1.53(m,1H),1.48–1.37(m,2H),1.35–1.24(m,16H),0.88(t,J=7.0Hz,3H);13C NMR(126MHz,CDCl3)δ169.2,166.1,133.8,133.3,129.8,128.1,82.1, 52.6,32.1,31.2,27.4,25.3,25.2,22.7,14.2;11B NMR(160MHz,CDCl3)δ21.8;m.p.116–118℃;HRMS(ESI)calcd.for C21H33BNO5[M+H]+m/z 390.2446, found 390.2436;IR(neat,cm-1)2925,2856,1730,1603,1278,1107,725;[α]D 25= –27.8(c=1.01,CHCl3);HPLC analysis:theee(93%)was determined using two connected
Figure BDA0003644553610000131
OD-H columns,3%iPrOHin hexane,0.8mL/min,254nm UV detector,tR(major)=15.7min,tR(minor)=18.7min.
实施例11
Figure BDA0003644553610000132
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2e(50.7mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率74%),1H NMR(500MHz,CDCl3)δ8.65(s,1H),8.09(dd,J=2.9, 1.0Hz,1H),7.44(dd,J=5.1,1.1Hz,1H),7.21(dd,J=5.1,3.0Hz,1H),2.76(t,J= 5.9Hz,1H),1.74–1.63(m,1H),1.60–1.48(m,1H),1.48–1.36(m,2H),1.35– 1.27(m,4H),1.26(s,12H),0.88(t,J=7.0Hz,3H);13C NMR(126MHz,CDCl3)δ 166.4,132.3,130.5,126.6,126.6,81.3,32.1,31.3,27.5,25.3,25.2,22.7,14.2;11B NMR(160MHz,CDCl3)δ17.3;HRMS(ESI)calcd.for C17H28BNNaO3S[M+Na]+ m/z 360.1775,found360.1765;IR(neat,cm-1)3119,2965,2925,1594,1098;[α]D 25=–51.0(c=1.01,CHCl3);HPLC analysis:the ee(98%)was determined using a
Figure BDA0003644553610000133
OD-H column,2%iPrOH in hexane,1.0mL/min,254nm UV detector,tR(minor)=6.1min,tR(major)=8.4min.
实施例12
Figure BDA0003644553610000134
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2f(42.6mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率63%),1H NMR(500MHz,CDCl3)δ8.65(s,1H),5.74(s,1H),2.40– 2.33(m,1H),2.18(s,3H),1.87(s,3H),1.60–1.51(m,1H),1.47–1.39(m,1H), 1.36–1.24(m,6H),1.21(s,6H),1.19(s,6H),0.87(t,J=6.9Hz,3H);13C NMR(126MHz,CDCl3)δ170.8,158.2,112.1,80.2,32.2,31.5,28.3,28.0,25.5,25.1,22.8,21.0,14.3;11B NMR(160MHz,CDCl3)δ14.1;HRMS(ESI)calcd.for C17H33BNO3 [M+H]+m/z310.2548,found 310.2543;IR(neat,cm-1)3176,2965,2927,1665,1573, 1156,1107;[α]D 25=–79.0(c=1.00,CHCl3);HPLC analysis:the ee(97%)was determined using a
Figure BDA0003644553610000141
AD-H column,5%iPrOH in hexane,1.0mL/min, 240nm UV detector,tR(major)=5.2min,tR(minor)=7.2min.
Figure BDA0003644553610000142
将羧酸2f’(1.00g,10mmol,1.0equiv)溶于干燥的四氢呋喃(1.0M)中,加入 N,N'-羰基二咪唑(CDI,1.5equiv),室温搅拌2小时后,加入盐酸羟胺 (NH2OH·HCl,2.0equiv)搅拌过夜。反应用5%KHSO4水溶液稀释,乙酸乙酯 萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,蒸去溶剂得到肟酸。将肟酸 溶于干燥的二氯甲烷,加入N,N'-羰基二咪唑(CDI,1.0equiv),室温搅拌2小时 后,用1N HCl水溶液淬灭,乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫 酸钠干燥,蒸去溶剂,粗产品快速过短硅胶柱纯化(石油醚/乙酸乙酯=10:1~ 5:1)得2f(黄色液体,产率55%)。1H NMR(500MHz,CDCl3)δ5.83–5.74(m,1H), 2.13(d,J=0.9Hz,3H),2.04(d,J=1.3Hz,3H);13C NMR(126MHz,CDCl3)δ 163.0,156.6,154.0,104.8,27.8,21.8;HRMS(ESI)calcd.for C5H8NO[M–CO2+H]+ m/z 98.0601,found 98.0602.
实施例13
Figure BDA0003644553610000143
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2g(57.4mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率61%),1H NMR(500MHz,CDCl3)δ7.43(s,1H),7.30–7.24(m,2H), 7.20(t,J=7.3Hz,1H),7.15(d,J=7.4Hz,2H),2.91(t,J=7.8Hz,2H),2.64–2.51 (m,3H),1.61–1.51(m,1H),1.39–1.32(m,1H),1.31–1.22(m,6H),1.21(s,12H), 0.87(t,J=6.8Hz,3H);13C NMR(126MHz,CDCl3)δ176.3,139.8,128.8,128.4, 126.7,81.1,34.1,32.0,31.2,31.2,27.8,25.4,25.2,22.7,14.2;11B NMR(160MHz, CDCl3)δ19.2;HRMS(ESI)calcd.for C21H35BNO3[M+H]+m/z 360.2705,found 360.2696;IR(neat,cm-1)3168,2961,2926,1604,1550,1155,1109;[α]D 25=–43.0 (c=0.91,CHCl3);HPLC analysis:theee(97%)was determined using a
Figure BDA0003644553610000144
OD-H column,5%iPrOH in hexane,1.0mL/min,220nm UV detector,tR(minor)=5.4min,tR(major)=6.2min.
实施例14
Figure BDA0003644553610000145
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2h(54.3mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(黄 色液体,产率58%),1H NMR(500MHz,CDCl3)δ7.34–7.26(m,2H),6.26(dd,J =3.1,1.9Hz,1H),6.04(d,J=2.7Hz,1H),2.95(t,J=7.6Hz,2H),2.69–2.55(m, 3H),1.62–1.52(m,1H),1.43–1.35(m,1H),1.33–1.23(m,6H),1.21(s,12H), 0.87(t,J=6.8Hz,3H);13C NMR(126MHz,CDCl3)δ175.6,153.3,141.6,110.5, 106.2,81.3,32.0,31.3,31.2,27.7,25.3,25.1,23.7,22.7,14.2;11B NMR(160MHz, CDCl3)δ19.9;HRMS(ESI)calcd.for C19H33BNO4[M+H]+m/z 350.2497,found 350.2491;IR(neat,cm-1)3168,2964,2926,1605,1552,1154,1109,729;[α]D 25= –37.7(c=1.04,CHCl3);HPLC analysis:theee(96%)was determined using a
Figure BDA0003644553610000151
AD-H column,5%iPrOH in hexane,0.8mL/min,220nm UV detector,tR(major)=5.6min,tR(minor)=7.5min.
Figure BDA0003644553610000152
将羧酸2h’(1.40g,10mmol,1.0equiv)溶于干燥的四氢呋喃(1.0M)中, 加入N,N'-羰基二咪唑(CDI,1.5equiv),室温搅拌2小时后,加入盐酸羟胺 (NH2OH·HCl,2.0equiv)搅拌过夜。反应用5%KHSO4水溶液稀释,乙酸乙酯 萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,蒸去溶剂得到肟酸中间体。 将肟酸溶于干燥的二氯甲烷,加入N,N'-羰基二咪唑(CDI,1.0equiv),室温搅拌 2小时后,用1N HCl水溶液淬灭,乙酸乙酯萃取,有机相用饱和食盐水洗涤,无 水硫酸钠干燥,蒸去溶剂,粗产品快速过短硅胶柱纯化(石油醚/乙酸乙酯=10:1 ~5:1)得2h(白色固体,产率72%)。1H NMR(500MHz,CDCl3)δ7.34(dd,J=1.8,0.6Hz,1H),6.30(dd,J=3.2,1.9Hz,1H),6.15–6.06(m,1H),3.08(t,J=7.3Hz, 2H),3.03–2.94(m,2H);13C NMR(126MHz,CDCl3)δ165.7,154.1,151.4,142.2, 110.6,106.8,24.1,23.3;m.p.50–51℃;HRMS(ESI)calcd.for C7H7NNaO2 [M–CO2+Na]+m/z 160.0369,found160.0365。
实施例15
Figure BDA0003644553610000153
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2i(38.1mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1j(54.4mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率55%),1H NMR(500MHz,CDCl3)δ8.32(s,1H),7.28–7.22(m,2H), 7.19–7.12(m,3H),2.67–2.53(m,2H),2.52–2.45(m,1H),1.70–1.52(m,4H),1.52–1.32(m,3H),1.31–1.21(m,1H),1.16(s,6H),1.15(s,6H),1.12–1.06(m, 1H),0.95–0.85(m,2H);13C NMR(126MHz,CDCl3)δ178.6,142.8,128.5,128.4, 125.8,80.5,36.0,31.7,31.3,27.9,25.5,25.1,10.9,8.6;11B NMR(160MHz,CDCl3) δ16.2;HRMS(ESI)calcd.for C21H33BNO3[M+H]+m/z 358.2548,found 358.2538; IR(neat,cm-1)3206,3062,2929,1603,1548,1154,1115,734;[α]D 25=–61.3(c= 0.97,CHCl3);HPLC analysis:theee(98%)was determined using a
Figure BDA0003644553610000161
AD-H column,5%iPrOH in hexane,1.0mL/min,220nm UV detector,tR(major)= 4.3min,tR(minor)=6.4min.
实施例16
Figure BDA0003644553610000162
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2j(82.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(黄 色液体,产率47%),1H NMR(500MHz,CDCl3)δ7.36–7.29(m,5H),6.14(s,1H), 5.08(s,2H),4.24–4.14(m,2H),4.11(t,J=8.5Hz,2H),3.29–3.20(m,1H),3.06– 2.96(m,1H),1.67–1.56(m,1H),1.54–1.42(m,1H),1.33–1.26(m,6H),1.24(s, 6H),1.24(s,6H),0.87(t,J=6.6Hz,3H);13C NMR(126MHz,CDCl3)δ172.9, 156.4,136.6,128.6,128.2,128.1,83.2,66.9,52.0,32.5,31.9,31.0,27.1,25.1,25.1, 22.6,14.1;11B NMR(160MHz,CDCl3)δ27.9;HRMS(ESI)calcd.for C24H37BN2NaO5[M+Na]+m/z 467.2688,found467.2678;IR(neat,cm-1)3210,2959, 2829,1711,1605,1352,1132;[α]D 25=–13.4(c=0.95,CHCl3);HPLC analysis:the ee(96%)was determined using a
Figure BDA0003644553610000163
OD-Hcolumn,5%iPrOH in hexane, 1.0mL/min,210nm UV detector,tR(minor)=9.9min,tR(major)=11.7min.
Figure BDA0003644553610000164
将羧酸2j’(2.35g,10mmol,1.0equiv)溶于干燥的四氢呋喃(1.0M)中, 加入N,N'-羰基二咪唑(CDI,1.5equiv),室温搅拌2小时后,加入盐酸羟胺 (NH2OH·HCl,2.0equiv)搅拌过夜。反应用5%KHSO4水溶液稀释,乙酸乙酯 萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,蒸去溶剂得到肟酸中间体。 将肟酸溶于干燥的二氯甲烷,加入N,N'-羰基二咪唑(CDI,1.0equiv),室温搅拌 2小时后,用1N HCl水溶液淬灭,乙酸乙酯萃取,有机相用饱和食盐水洗涤,无 水硫酸钠干燥,蒸去溶剂,粗产品快速过短硅胶柱纯化(石油醚/乙酸乙酯=10:1 ~5:1)得2j(白色固体,产率63%)。1H NMR(500MHz,CDCl3)δ7.42–7.29(m, 5H),5.12(s,2H),4.37(t,J=9.0Hz,2H),4.26(dd,J=9.1,6.0Hz,2H),3.84–3.73 (m,1H);13CNMR(126MHz,CDCl3)δ165.6,156.0,153.6,136.1,128.7,128.5, 128.3,67.4,51.3,24.7;m.p.110–111℃;HRMS(ESI)calcd.for C12H12N2NaO3 [M–CO2+Na]+m/z 255.0740,found255.0733.
实施例17
Figure BDA0003644553610000171
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2j(42.9mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1k(60.4mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率53%),1H NMR(500MHz,CDCl3)δ7.35–7.30(m,4H),7.29–7.25 (m,1H),6.85(s,1H),4.49(s,2H),3.49(t,J=6.3Hz,2H),2.59–2.51(m,1H),1.72 –1.56(m,3H),1.51–1.38(m,3H),1.21–1.16(m,21H);13C NMR(126MHz, CDCl3)δ183.9,138.6,128.5,127.8,127.7,80.4,73.1,70.5,35.7,30.9,29.6,26.9, 25.4,25.2,24.8;11B NMR(160MHz,CDCl3)δ15.8;HRMS(ESI)calcd.for C23H39BNO4[M+H]+m/z 404.2967,found 404.2956;IR(neat,cm-1)3204,2970, 2931,1581,1097,732;[α]D 25=–49.9(c=0.99,CHCl3);HPLC analysis:the ee(83%) was determined using a
Figure BDA0003644553610000172
OD-Hcolumn,5%iPrOH in hexane,1.0 mL/min,220nm UV detector,tR(major)=5.3min,tR(minor)=8.2min.
实施例18
Figure BDA0003644553610000173
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体 L*(8.0mg,12mol%),碘化锂(13.4mg,0.1mmol),2l(92.8mg,0.3mmol), 无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol) 和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃下反应 20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标产物(无 色液体,产率50%),1H NMR(500MHz,CDCl3)δ8.05(d,J=2.2Hz,1H),7.92– 7.82(m,1H),7.59–7.53(m,1H),7.51–7.44(m,1H),7.40(dd,J=8.4,2.3Hz,1H), 7.38–7.34(m,1H),7.03(d,J=8.4Hz,1H),6.47(s,1H),5.18(s,2H),3.64(s,2H),2.76–2.68(m,1H),1.61–1.51(m,1H),1.44–1.34(m,1H),1.29–1.17(m,18H), 0.82(t,J=6.7Hz,3H);13C NMR(126MHz,CDCl3)δ190.7,174.2,160.9,140.4, 136.4,135.6,133.1,132.7,129.6,129.5,128.0,127.1,125.5,121.8,81.8,73.8,39.3, 31.9,31.1,27.4,25.3,25.1,22.6,14.1;11B NMR(160MHz,CDCl3)δ22.4;HRMS (ESI)calcd.for C28H36BNNaO5[M+Na]+m/z 500.2579,found 500.2569;IR(neat, cm-1)3055,2927,1660,1613,1265,735;[α]D 25=–20.5(c=1.01,CHCl3);HPLC analysis:the ee(97%)was determined using a
Figure BDA0003644553610000181
AD-H column,10% iPrOH in hexane,1.0mL/min,240nm UV detector,tR(major)=6.3min,tR(minor)= 7.7min.
实施例19:制备Vaborbactam
Figure BDA0003644553610000182
氮气氛围下,烧瓶中加入氢氯二茂锆(HZrCp2Cl,0.351g,10mol%),CH2Cl2 (13mL)和端炔(2l’,4.060g,13.6mmol,1.0equiv),室温搅拌5分钟后置于冰 水浴,滴加频哪醇硼烷(HBpin,2.089g,16.3mmol,1.2equiv),室温下搅拌反 应。反应完成后,小心滴加水淬灭反应,乙醚萃取,减压浓缩除去反应溶剂,柱 层析分离纯化得到烯基硼酸酯2l(无色液体,产率53%),1H NMR(500MHz, CDCl3)δ6.57(dt,J=17.9,7.0Hz,1H),5.47(d,J=17.9Hz,1H),4.22–4.13(m, 1H),2.40–2.32(m,4H),1.43(s,9H),1.25(s,12H),0.86(s,9H),0.06(s,3H),0.05 (s,3H);13C NMR(126MHz,CDCl3)δ171.0,150.1,83.2,80.4,68.9,44.4,43.7,28.3,26.0,24.9,24.9,18.2,-4.3,-4.6;11B NMR(160MHz,CDCl3)δ29.9;HRMS (ESI)calcd.for C22H43BNaO5Si[M+Na]+m/z 449.2865,found 449.2853;IR(neat, cm-1)2978,2930,1730,1640,1361,1142,832;[α]D 25=+13.8(c=1.09,CHCl3); HPLC analysis:theee(>99%)was determined using a
Figure BDA0003644553610000183
IF-3column, 0.5%iPrOH in hexane,1.0mL/min,220nm UV detector,tR(minor)=6.9min,tR (major)=8.8min.
Figure BDA0003644553610000184
在充满氮气的手套箱中,将氯化镍六水合物(5.9mg,12.5mol%),手性配 体L*(12.0mg,15mol%),四丁基碘化铵(18.5mg,0.05mmol),2m(44.0mg,0.24 mmol),无水DMA(1mL,0.2M),烯烃1l(85.3mg,0.20mmol),水(5.4mg,0.3 mmol)和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取出,在25℃ 下反应20小时。反应结束后,减压浓缩除去反应溶剂,柱层析分离纯化得到目标 产物(黄色液体,产率50%),1H NMR(500MHz,CDCl3)δ7.25(dd,J=5.1,0.9Hz, 1H),6.98(dd,J=5.1,3.5Hz,1H),6.93(d,J=3.1Hz,1H),6.58(s,1H),4.08–3.97 (m,1H),3.87(s,2H),2.76–2.66(m,1H),2.39–2.26(m,2H),1.65–1.55(m,1H), 1.55–1.44(m,3H),1.41(s,9H),1.22(s,12H),0.84(s,9H),0.02(s,3H),0.02(s,3H);13C NMR(126MHz,CDCl3)δ173.9,171.3,133.9,128.2,127.7,126.2,81.7, 80.5,68.9,43.6,35.0,34.1,28.3,26.4,26.0,25.3,25.1,18.1,-4.4,-4.6;11B NMR (160MHz,CDCl3)δ21.8;HRMS(ESI)calcd.for C28H50BNNaO6SSi[M+Na]+m/z 590.3113,found 590.3103;IR(neat,cm-1)2968,2929,1729,1607,1149,834;[α]D 25=–20.2(c=1.00,CHCl3);HPLCanalysis:the dr(97:3)was determined using a
Figure BDA0003644553610000191
AD-H column,5%iPrOHin hexane,1.0mL/min,240nm UV detector,tR(major)=4.3min,tR(minor)=6.5min.
Figure BDA0003644553610000192
50mL烧瓶中加入3a(398mg,0.7mmol),二氧六环(2mL)、3N HCl(2mL), 体系回流2h。冷却后,加入2mL水,用乙醚洗涤3次,水相旋干后用乙腈共沸旋 干,再溶于20%的二氧六环-水溶液,冷冻干燥24h得白色粉末。取该白色粉末(150 mg)加入乙酸乙酯(3mL)和水(0.5mL),超声30min,静置后产生白色固体 沉淀,过滤沉淀,用石油醚或乙醚洗涤,得白色固体,再溶于20%的二氧六环- 水溶液,充分冷冻干燥得白色粉末即为产物。1H NMR(500MHz,CD3OD)δ7.34 (dd,J=5.2,1.2Hz,1H),7.09–7.02(m,1H),7.00(dd,J=5.2,3.5Hz,1H),4.14– 4.04(m,1H),3.97(s,2H),2.66–2.57(m,1H),2.37(dd,J=15.0,7.3Hz,1H),2.25 (dd,J=15.0,5.8Hz,1H),1.78–1.68(m,1H),1.68–1.52(m,2H),1.11–0.97(m,1H);13C NMR(126MHz,CD3OD)δ177.8,175.6,135.2,128.8,128.2,126.7,70.5, 44.4,32.6,28.5,27.6;11B NMR(160MHz,CD3OD)δ11.7;HRMS(ESI)calcd.for C12H15BNO4S[M–H2O+H]+m/z280.0809,found 280.0802;IR(neat,cm-1)3511, 2941,1718,1607,1225,1183,701;[α]D 25=–6.1(c=0.85,CH3OH).
Figure BDA0003644553610000193
将羧酸2m’(1.42g,10mmol,1.0equiv)溶于干燥的四氢呋喃(1.0M)中, 加入N,N'-羰基二咪唑(CDI,1.5equiv),室温搅拌2小时后,加入盐酸羟胺 (NH2OH·HCl,2.0equiv)搅拌过夜。反应用5%KHSO4水溶液稀释,乙酸乙酯 萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,蒸去溶剂得到肟酸中间体。 将肟酸溶于干燥的二氯甲烷,加入N,N'-羰基二咪唑(CDI,1.0equiv),室温搅拌 2小时后,用1N HCl水溶液淬灭,乙酸乙酯萃取,有机相用饱和食盐水洗涤,无 水硫酸钠干燥,蒸去溶剂,粗产品快速过短硅胶柱纯化(石油醚/乙酸乙酯=10:1 ~5:1)得2m(橙色固体,产率62%)。1H NMR(500MHz,CDCl3)δ7.30(dd,J=5.1,1.2Hz,1H),7.08–6.97(m,2H),4.17(s,2H);13C NMR(126MHz,CDCl3)δ164.5, 153.8,131.0,128.4,127.7,126.6,25.7;m.p.51–52℃;HRMS(ESI)calcd.for C6H6NOS[M–CO2+H]+m/z140.0165,found 140.0161.
对比例1(与实施例1对比)
Figure BDA0003644553610000194
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体L*(8.0mg,12mol%),2a(48.9mg,0.3mmol),无水DMA(1mL,0.2M),烯 烃1a(42.0mg,0.20mmol),水(1.8mg,0.1mmol)和EtO3SiH(92μL,0.5mmol), 将反应管密封并从手套箱中取出,在25℃下反应20小时。反应结束后,通过气 相色谱法(内标法)测得该反应的目标产物收率为46%,产物分离后用高效液相 测得ee值为97%。不加离子添加剂的情况下,反应收率较低但对映选择性较好。
对比例2(与实施例1对比)
Figure BDA0003644553610000201
在充满氮气的手套箱中,将氯化镍六水合物(4.8mg,10mol%),手性配体L*(8.0mg, 12mol%),2a(48.9mg,0.3mmol),无水DMA(1mL,0.2M),烯烃1a(42.0mg,0.20mmol), 碘化锂(13.4mg,0.1mmol)和EtO3SiH(92μL,0.5mmol),将反应管密封并从手套箱中取 出,在25℃下反应20小时。反应结束后,通过气相色谱法(内标法)测得该反应的目标产 物收率为58%,产物分离后用高效液相测得ee值为81%。不加质子添加剂的情况下,反应收 率和对映选择性均降低。

Claims (10)

1.一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:包括以下步骤:将金属镍类催化剂、手性配体L*、氢源、添加剂溶于有机溶剂中,然后加入烯基硼酸/硼酸酯
Figure RE-FDA0003673790640000011
和酰胺化试剂
Figure RE-FDA0003673790640000012
混合物反应后,经分离纯化得到目标的手性α-氨基硼酸/硼酸酯化合物
Figure RE-FDA0003673790640000013
其中,1)R1为原烯烃的取代基,为氢原子、烷基、酯基、酰胺基、磺酰基、烷氧基、硅醚、芳基、卤素中的任一种;2)R2为酰胺化试剂的取代基,为烷基、烯基、芳基、炔基中的一种;3)BR2为硼酸或硼酸酯。
2.根据权利要求1所述的镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:BR2为硼酸(-B(OH)2)、硼酸酯(-B(OR3)2、-B(NR4R5)2中的任一种,其中R3-R5为氢原子、烷基、芳基、酰基中的一种或多种)。
3.根据权利要求1所述的镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:具体制备方法反应路线如下:
Figure RE-FDA0003673790640000014
4.根据权利要求1所述的镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:金属镍类催化剂:手性配体:氢源:离子添加剂:质子添加剂:烯烃:亲电试剂:有机溶剂的用量比为摩尔:摩尔:摩尔:摩尔:摩尔:摩尔:摩尔:体积mL=0.01-0.50:0.01-1.0:1.5-4.0:0.1-5.0:0.1-10.0:1.0-3.0:1.0-3.0:0.2-5.0。
5.根据权利要求1所述的镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:所述的金属镍盐是碘化镍、碘化镍水合物、氯化镍、氯化镍六水合物、氯化镍乙二醇二甲醚复合物、溴化镍、溴化镍三水合物、溴化镍二乙二醇二甲醚复合物、溴化镍乙二醇二甲醚复合物、双-(1,5-环辛二烯)镍复合物、硝酸镍六水合物、高氯酸镍六水合物、四氟硼酸镍六水合物、乙酰丙酮镍、氟化镍、氟化镍四水合物、三氟甲磺酸镍、乙酸镍水合物、双三苯基膦二氯化镍、双(三苯基膦)二溴化镍、1,3-双(二苯基膦)丙烷二氯化镍、(1,1'-双(二苯基膦)二茂铁)二氯化镍、四(三苯基膦)镍中的任一种。
6.根据权利要求1所述的镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法,其特征在于:所述的手性配体L*为具有以下结构的任一种,包括其对映异构体:
Figure RE-FDA0003673790640000021
其中,R6-R17为手性配体上的取代基,为氢原子、烷基、酯基、氨基、取代胺基、膦酰基、膦酰胺基、酰胺基、磺酰基、烷氧基、硅醚、硫醚、硒醚、烯基、芳基、炔基、氰基、异氰基、卤素中的任一种。
7.根据权利要求1所述的镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化的方法,其特征在于:所述的氢源为聚甲基氢硅氧烷、三甲氧基氢硅烷、三乙氧基氢硅烷、二乙氧基甲基氢硅烷、二甲氧基甲基氢硅烷、苯基氢硅烷、二苯基氢硅烷、三苯基氢硅烷、硼烷及其复合物、频那醇硼烷、烷基溴和锰粉的组合、烷基溴和锌粉的组合、电化学还原、光催化还原剂中的任一种。
8.根据权利要求1所述的镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化的方法,其特征在于:所述的离子添加剂为氯化锂、氯化钠、溴化锂、溴化钾、溴化镁、溴化镁水合物、碘化锂、碘化钠、碘化钾、碘化锌、碘化镁、四丁基氟化铵、四丁基氯化铵、四丁基溴化铵、四丁基碘化铵、乙酸钠、乙酸钾中的一种或多种。
9.根据权利要求1所述的镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化的方法,其特征在于:所述的质子添加剂为水、醇、酚、胺类化合物、硫醇、硫酚中的一种或多种。
10.根据权利要求1所述的镍氢催化烯基硼酸/硼酸酯的不对称氢酰胺化的方法,其特征在于:所述的溶剂为四氢呋喃、甲苯、二氯甲烷、1,2-二氯乙烷、氯仿、乙腈、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N,N-二甲基丙酰胺、N,N-二甲基丙烯基脲、N-甲基吡咯烷酮、甲醇、乙醇、水、乙二醇二甲醚、二乙二醇二乙醚和二甲基亚砜中的一种或多种,反应温度为0~50℃。
CN202210526440.5A 2022-05-16 2022-05-16 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法 Active CN114716466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210526440.5A CN114716466B (zh) 2022-05-16 2022-05-16 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210526440.5A CN114716466B (zh) 2022-05-16 2022-05-16 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法

Publications (2)

Publication Number Publication Date
CN114716466A true CN114716466A (zh) 2022-07-08
CN114716466B CN114716466B (zh) 2024-03-19

Family

ID=82230992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210526440.5A Active CN114716466B (zh) 2022-05-16 2022-05-16 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法

Country Status (1)

Country Link
CN (1) CN114716466B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217415A (zh) * 2023-02-13 2023-06-06 武汉大学 一种合成手性3-氨基-1-苯基丙醇和手性3-(甲氨基)-1-苯基丙醇的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799193A (zh) * 2017-03-21 2020-02-14 斯克利普斯研究院 铜和镍催化的脱羧硼化反应
CN112679290A (zh) * 2021-01-04 2021-04-20 南京大学 一种镍催化的烯烃不对称氢炔基化方法及在制备amg837中的应用
CN112939750A (zh) * 2021-02-04 2021-06-11 南京大学 一种配体接力策略促进的镍氢催化烯烃迁移不对称官能团化的方法
CN113754689A (zh) * 2021-08-03 2021-12-07 南京大学 一种镍催化的烯烃不对称氢胺化方法
CN117303993A (zh) * 2023-09-22 2023-12-29 南京大学 一种镍催化的烯烃不对称氢芳基化方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799193A (zh) * 2017-03-21 2020-02-14 斯克利普斯研究院 铜和镍催化的脱羧硼化反应
CN112679290A (zh) * 2021-01-04 2021-04-20 南京大学 一种镍催化的烯烃不对称氢炔基化方法及在制备amg837中的应用
CN112939750A (zh) * 2021-02-04 2021-06-11 南京大学 一种配体接力策略促进的镍氢催化烯烃迁移不对称官能团化的方法
CN113754689A (zh) * 2021-08-03 2021-12-07 南京大学 一种镍催化的烯烃不对称氢胺化方法
CN117303993A (zh) * 2023-09-22 2023-12-29 南京大学 一种镍催化的烯烃不对称氢芳基化方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张遥: "以硼酸酯为定位基团的烯烃远程氢芳基化及其不对称反应研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 07, 15 July 2019 (2019-07-15), pages 014 - 157 *
浦兴晖: "镍催化下酯的脱羰硼、硅化反应研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 08, 15 August 2017 (2017-08-15), pages 014 - 24 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217415A (zh) * 2023-02-13 2023-06-06 武汉大学 一种合成手性3-氨基-1-苯基丙醇和手性3-(甲氨基)-1-苯基丙醇的方法

Also Published As

Publication number Publication date
CN114716466B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Wilkins et al. Enantioselective main group catalysis: modern catalysts for organic transformations
Eitel et al. Asymmetric Michael additions of α-cyanoacetates by soft Lewis acid/hard Brønsted acid catalysis: stereodivergency with bi-vs. monometallic catalysts
CN112939750B (zh) 一种配体接力策略促进的镍氢催化烯烃迁移不对称官能团化的方法
CN111763135A (zh) 脱质子苯基桥连β-酮亚胺锂化合物在酯制备醇中的应用
Speed Applications of diazaphospholene hydrides in chemical catalysis
EP2855494A1 (en) Iron catalysts with unsymmetrical pnn'p ligands
CN113754689B (zh) 一种镍催化的烯烃不对称氢胺化方法
CN111760593A (zh) 脱质子苯基桥连β-酮亚胺锂化合物在硼氢化反应中的应用
CN114716466B (zh) 一种镍催化的不对称氢酰胺化制备手性α-氨基硼酸/硼酸酯的方法
Yang et al. Zwitterionic indenylammonium with carbon-centred reactivity towards reversible CO 2 binding and catalytic reduction
Zhu et al. Lanthanide-catalyzed regio-and enantioselective hydrosilylation of aryl-substituted terminal and internal alkenes
CN117303993A (zh) 一种镍催化的烯烃不对称氢芳基化方法和应用
Zhang et al. Chiral dinuclear phthalazine bridged bisoxazoline ligands: synthesis and application in enantioselective Cu-catalyzed conjugate addition of ZnEt2 to enones
CN112679290B (zh) 一种镍催化的烯烃不对称氢炔基化方法及在制备amg837中的应用
CN114308121B (zh) 膦氧催化剂及其制备方法和应用
CN114426560A (zh) 一种手性双膦配体及其铑配合物和制备方法及其应用
CN109666043B (zh) 一类吡啶骨架的手性单膦配体CF-Phos及其制备方法和应用
CN110845291B (zh) 一种可见光诱导催化还原炔烃为烯烃的方法
JP2000136193A (ja) 光学活性ビスホスフィノメタン並びにそれらのロジウム又は銅錯体を用いる不斉合成
GB2486631A (en) Phenol/quinone boronic acids/esters and method of preparation thereof
Wang et al. Synthesis of rare earth metal complexes incorporating amido and enolate mixed ligands: Characterization and reactivity
CN112142790B (zh) 一种手性钳形化合物及其钯或镍配合物及合成方法
CN113735883B (zh) 一种含氮杂环衍生n,o-双齿配位单核铜催化剂的制备方法及其用途
CN111018895B (zh) 一种四吡啶基卟啉锌-二十四核钌配合物及其制备和应用
WO2016009384A1 (fr) Procede de production de dihydrogene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant