CN114713964A - Magnetic field and current-assisted ultrasonic solid-phase connection method of aluminum and magnesium - Google Patents
Magnetic field and current-assisted ultrasonic solid-phase connection method of aluminum and magnesium Download PDFInfo
- Publication number
- CN114713964A CN114713964A CN202011530844.9A CN202011530844A CN114713964A CN 114713964 A CN114713964 A CN 114713964A CN 202011530844 A CN202011530844 A CN 202011530844A CN 114713964 A CN114713964 A CN 114713964A
- Authority
- CN
- China
- Prior art keywords
- magnesium
- aluminum
- magnetic field
- current
- based material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 38
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 35
- 239000011777 magnesium Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000007790 solid phase Substances 0.000 title claims abstract description 14
- 238000003466 welding Methods 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 30
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 230000009471 action Effects 0.000 claims abstract description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims 3
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 150000002739 metals Chemical class 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 239000007769 metal material Substances 0.000 abstract description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/10—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
- B23K20/106—Features related to sonotrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/26—Auxiliary equipment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
本发明涉及异种金属材料焊接技术领域,具体的说是一种能够有效提升铝镁异种金属焊接性能的磁场和电流辅助式铝镁超声波固相连接方法,其特征在于,待焊接的铝类材料与镁类材料装配固定后,在电流和磁场辅助下完成超声波滚焊连接为一体,其中所述电流由位于超声波滚焊模具同侧的正电极滚轮和负电极滚轮施加至待焊接材料上,所述磁场为恒定磁场,强度范围为2‑50mt,本发明通过电流和磁场作用影响界面原子的扩散或反应过程,最终实现异质界面组织调控,提升铝/镁异种金属接头焊接力学性能。The invention relates to the technical field of welding dissimilar metal materials, in particular to a magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method capable of effectively improving the welding performance of aluminum-magnesium dissimilar metals. After the magnesium-based material is assembled and fixed, the ultrasonic seam welding connection is completed with the assistance of current and magnetic field, wherein the current is applied to the material to be welded by the positive electrode roller and the negative electrode roller located on the same side of the ultrasonic seam welding mold. The magnetic field is a constant magnetic field with an intensity range of 2-50mt. The present invention affects the diffusion or reaction process of interface atoms through the action of current and magnetic field, and finally realizes the regulation of heterogeneous interface structure and improves the welding mechanical properties of aluminum/magnesium dissimilar metal joints.
Description
技术领域:Technical field:
本发明涉及异种金属材料焊接技术领域,具体的说是一种能够有效提升铝镁异种金属焊接性能的磁场和电流辅助式铝镁超声波固相连接方法。The invention relates to the technical field of dissimilar metal material welding, in particular to a magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method capable of effectively improving the welding performance of aluminum-magnesium dissimilar metals.
背景技术:Background technique:
随着全球性环境问题的日益突出,节能减排成为了目前世界各国关注的热点问题。据统计,汽车、列车、轮船等交通运输工具是全球温室气体排放的主要源头。以汽车为例,车辆整体重量每减少100kg,每百公里就可以降低0.6L的油耗和500g的CO2排放量。同时降低汽车自重对于汽车的操控性、加速性和制动性能均可得到显著提升。因此世界各国将交通工具的轻量化设计与制造列为汽车工业发展的重点方向,而采用轻质金属材料替代传统钢结构则成为了汽车轻量化的最有效途径之一。With the increasingly prominent global environmental problems, energy conservation and emission reduction has become a hot issue that countries all over the world are concerned about. According to statistics, vehicles, trains, ships and other means of transportation are the main sources of global greenhouse gas emissions. Taking a car as an example, every 100kg reduction in the overall weight of the vehicle can reduce fuel consumption by 0.6L and CO2 emissions by 500g per 100 kilometers. At the same time, reducing the weight of the car can significantly improve the handling, acceleration and braking performance of the car. Therefore, all countries in the world regard the lightweight design and manufacture of vehicles as the key direction of the development of the automobile industry, and the use of lightweight metal materials to replace the traditional steel structure has become one of the most effective ways to reduce the weight of automobiles.
由于铝的密度仅为钢的三分之一,并具有良好的耐蚀性能;而镁的密度为铝的三分之二,且具有密度小、比强度高、减震性能好等特性,是目前最轻的金属工程结构材料。因此采用铝、镁合金符合构件可以进一步实现汽车结构的轻量化,并使得铝、镁合金各自的优势得到充分利用。据美国能源部预测,到2035年汽车车身材料中铝/镁合金及复合材料的用量将占50%以上。然而由于镁、铝互溶度、熔点、线胀系数等方面存在着较大的差别,并且两者均易形成致密氧化膜。常规熔化焊接方法易在接头处形成裂纹、气孔等缺陷、同时生成大量脆性的Mg-Al金属间化合物,导致二者之间的焊接难以实现。此外,由于铝、镁钎焊扩散焊接头剪切强度较低且需要真空环境,因此无法满足规模化工业生产需要。Because the density of aluminum is only one-third of that of steel, and has good corrosion resistance; while the density of magnesium is two-thirds of that of aluminum, and it has the characteristics of low density, high specific strength, and good shock absorption performance. The lightest metal engineering structural material available. Therefore, the use of aluminum and magnesium alloy conforming components can further realize the lightweight of the automobile structure, and make full use of the respective advantages of aluminum and magnesium alloys. According to the forecast of the US Department of Energy, by 2035, the consumption of aluminum/magnesium alloys and composite materials in automobile body materials will account for more than 50%. However, due to the large differences in the mutual solubility, melting point and linear expansion coefficient of magnesium and aluminum, both of them are prone to form dense oxide films. The conventional fusion welding method is easy to form defects such as cracks and pores at the joints, and at the same time generate a large number of brittle Mg-Al intermetallic compounds, which makes the welding between the two difficult to achieve. In addition, due to the low shear strength of aluminum and magnesium brazed diffusion welded joints and the need for a vacuum environment, they cannot meet the needs of large-scale industrial production.
超声波焊接和搅拌摩擦焊等固相连接技术由于焊接过程温度较低,可以有效抑制铝、镁异种材料间的脆性金属间化合物的形成,进而显著提升铝/镁焊接接头机械连接强度,逐渐成为铝/镁焊接的研究热点。但由于搅拌摩擦焊方法对于材料规格及装配条件要求较高,且受施焊空间限制较大;此外超声波焊接方法由于收到压电陶瓷等功率器件性能的限制,目前超声输出功率一般难以超过10kW,且大功率超声设备价格加高,以上种种原因极大的限制上述两种方法的工业规模话生产应用。Due to the low temperature of the welding process, solid-phase joining technologies such as ultrasonic welding and friction stir welding can effectively inhibit the formation of brittle intermetallic compounds between dissimilar materials of aluminum and magnesium, thereby significantly improving the mechanical connection strength of aluminum/magnesium welded joints. / Research hotspots of magnesium welding. However, the friction stir welding method has high requirements on material specifications and assembly conditions, and is greatly limited by the welding space; in addition, the ultrasonic welding method is limited by the performance of power devices such as piezoelectric ceramics, and the current ultrasonic output power is generally difficult to exceed 10kW. , and the price of high-power ultrasonic equipment increases, the above reasons greatly limit the industrial-scale production and application of the above two methods.
发明内容:Invention content:
本发明针对现有技术中存在的缺点和不足,提出了一种能够有效提升铝镁异种金属焊接性能的磁场和电流辅助式铝镁超声波固相连接方法。Aiming at the shortcomings and deficiencies in the prior art, the present invention proposes a magnetic field and current-assisted ultrasonic solid-phase connection method for aluminum and magnesium, which can effectively improve the welding performance of aluminum and magnesium dissimilar metals.
本发明通过以下措施达到:The present invention achieves through the following measures:
一种磁场和电流辅助式铝镁超声波固相连接方法,其特征在于,待焊接的铝类材料与镁类材料装配固定后,在电流和磁场辅助下完成超声波滚焊连接为一体,其中所述电流由位于超声波滚焊模具同侧的正电极滚轮和负电极滚轮施加至待焊接材料上,所述磁场为恒定磁场,强度范围为2-50mt。A magnetic field and current assisted aluminum-magnesium ultrasonic solid-phase connection method, characterized in that, after the aluminum-based material to be welded and the magnesium-based material are assembled and fixed, ultrasonic seam welding is completed under the assistance of current and magnetic field. The current is applied to the material to be welded by the positive electrode roller and the negative electrode roller located on the same side of the ultrasonic seam welding die, and the magnetic field is a constant magnetic field with an intensity range of 2-50mt.
本发明中超声波能量场、电流作用下的电阻热场以及恒定磁场均由铝类材料侧作用至铝类材料与镁类材料的焊接界面上,所述铝类材料为铝或铝合金,镁类材料为镁或镁合金。In the present invention, the ultrasonic energy field, the resistance thermal field under the action of the current, and the constant magnetic field all act on the welding interface between the aluminum material and the magnesium material from the side of the aluminum material. The material is magnesium or magnesium alloy.
本发明还包括在镁类材料的待焊接表层设置镀层以有效抑制铝镁界面的直接反应,所述镀层采用镀锌层或镀锡层。The present invention also includes arranging a coating layer on the surface layer of the magnesium-based material to be welded to effectively suppress the direct reaction of the aluminum-magnesium interface, and the coating layer adopts a zinc-plated layer or a tin-plated layer.
本发明所述铝类材料与镁类材料的厚度不大于2mm。The thickness of the aluminum-based material and the magnesium-based material in the present invention is not more than 2 mm.
本发明在铝镁异种金属超声波固相连接的同时,采用正负电极导轮在铝侧施加电流使其产生内部焦耳热,在热作用下铝侧塑性变形能力得以增强,有利于超声波能量自上而下的传导,同时降低铝/镁焊接过程中对超声波能量的需求。此外通过在镁侧预制镀层(低熔点第三金属)可以有效抑制铝镁界面的直接反应,显著减少界面处金属间化合物的形成;在此基础上在超声波滚焊过程中施加横向磁场,通过电流和磁场作用影响界面原子的扩散或反应过程,最终实现异质界面组织调控,提升铝/镁异种金属接头焊接力学性能。In the present invention, while the aluminum and magnesium dissimilar metals are ultrasonically connected in solid phase, the positive and negative electrode guide wheels are used to apply current on the aluminum side to generate internal Joule heat, and the plastic deformation ability of the aluminum side is enhanced under the action of heat, which is beneficial to the ultrasonic energy from upward. while reducing the need for ultrasonic energy during aluminum/magnesium welding. In addition, the direct reaction of the aluminum-magnesium interface can be effectively suppressed by prefabricating the coating on the magnesium side (the third metal with low melting point), and the formation of intermetallic compounds at the interface can be significantly reduced; The interaction of the magnetic field and the interfacial atoms affects the diffusion or reaction process of the interface atoms, and finally realizes the regulation of the heterogeneous interface structure and improves the welding mechanical properties of the aluminum/magnesium dissimilar metal joint.
附图说明:Description of drawings:
附图1是本发明中一种实施方式示意图。FIG. 1 is a schematic diagram of an embodiment of the present invention.
附图2是本发明中铝/镁拉伸试验测试结果图。
附图标记:正电极滚轮1、超声波滚焊模具2、磁场3、负电极滚轮4、铝合金板5、镁合金板6、焊接平台7、镀层8。Reference numerals: positive electrode roller 1 , ultrasonic seam welding die 2 , magnetic field 3 ,
具体实施方式:Detailed ways:
本发明提出了一种磁场和电流辅助式铝镁超声波固相连接方法,在铝镁异种金属超声波固相连接的同时,采用正负电极导轮在铝侧施加电流使其产生内部电阻热,进而在热作用下铝侧塑性变形能力得以增强,有利于超声波能量自上而下的传导。此外通过在镁侧预制镀层(低熔点第三金属)可以有效抑制铝镁界面的直接反应,显著减少界面处金属间化合物的形成;在此基础上在超声波滚焊过程中施加横向磁场,通过电磁作用影响界面原子的扩散或反应过程,最终达到异质界面组织调控的目的;其中铝镁异种金属连接过程中超声波能量场、电流阻热场和磁场协同耦合,共同作用与铝镁界面;所述的铝侧材料设定温度范围为50-300℃;所述的预制镀层为锌、锡等低熔点金属;The invention proposes a magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method. During the ultrasonic solid-phase connection of aluminum-magnesium dissimilar metals, positive and negative electrode guide wheels are used to apply current on the aluminum side to generate internal resistance heat, thereby generating internal resistance heat. Under the action of heat, the plastic deformation ability of the aluminum side is enhanced, which is conducive to the conduction of ultrasonic energy from top to bottom. In addition, the direct reaction of the aluminum-magnesium interface can be effectively suppressed by prefabricating the coating on the magnesium side (the third metal with low melting point), and the formation of intermetallic compounds at the interface can be significantly reduced; The effect affects the diffusion or reaction process of the interface atoms, and finally achieves the purpose of regulating the structure of the heterogeneous interface; among them, the ultrasonic energy field, the current resistance thermal field and the magnetic field are cooperatively coupled during the connection process of the aluminum-magnesium dissimilar metals, and work together with the aluminum-magnesium interface; The set temperature range of the aluminum side material is 50-300 ℃; the prefabricated coating is zinc, tin and other low melting point metals;
所述的横向磁场为恒定磁场,其设定强度范围为2-50mt。The transverse magnetic field is a constant magnetic field, and its set strength range is 2-50mt.
所述的正负电极导轮为黄铜材质,且导轮宽度为20mm、导轮直径不大于50mm。The positive and negative electrode guide wheels are made of brass, the width of the guide wheels is 20mm, and the diameter of the guide wheels is not more than 50mm.
所述的铝侧材质为纯铝及铝合金,所述的铝、镁材料厚度不大于2mm。The aluminum side material is pure aluminum and aluminum alloy, and the thickness of the aluminum and magnesium materials is not more than 2mm.
实施例1Example 1
首先按照附图结构将铝合金板5和镁合金板6固定装配在焊接平台7上方;其中镁合金板表面镀层8通过电化学、冷喷涂等表面改型方法制备;随后将分别连接电流源正负端的正电极滚轮1和负电极滚轮3放置在铝合金板5上表面,超声波滚焊模具2置于正电极滚轮1和负电极滚轮3之间并沿图示方向滚动;焊接过程中对超声波滚焊模具2、正电极滚轮1和负电极滚轮3施加恒定压力以保证电流和超声波能量的有效传递;平性磁场3和电流作用区域与超声波能量作用区域重合,以实现多能场的耦合。通过以上技术特征可实现铝镁异种金属材料的高效高质连接,经拉伸试验测试,铝/镁焊接接头断裂在镁侧母材区域。First, the
本发明在铝镁异种金属超声波固相连接的同时,采用正负电极导轮在铝侧施加电流使其产生内部焦耳热,在热作用下铝侧塑性变形能力得以增强,有利于超声波能量自上而下的传导,同时降低铝/镁焊接过程中对超声波能量的需求。此外通过在镁侧预制镀层(低熔点第三金属)可以有效抑制铝镁界面的直接反应,显著减少界面处金属间化合物的形成;在此基础上在超声波滚焊过程中施加横向磁场,通过电流和磁场作用影响界面原子的扩散或反应过程,最终实现异质界面组织调控,提升铝/镁异种金属接头焊接力学性能。In the present invention, while the aluminum and magnesium dissimilar metals are ultrasonically connected in solid phase, the positive and negative electrode guide wheels are used to apply current on the aluminum side to generate internal Joule heat, and the plastic deformation ability of the aluminum side is enhanced under the action of heat, which is beneficial to the ultrasonic energy from upward. while reducing the need for ultrasonic energy during aluminum/magnesium welding. In addition, the direct reaction of the aluminum-magnesium interface can be effectively suppressed by prefabricating the coating on the magnesium side (the third metal with low melting point), and the formation of intermetallic compounds at the interface can be significantly reduced; The interaction of the magnetic field and the interfacial atoms affects the diffusion or reaction process of the interface atoms, and finally realizes the regulation of the heterogeneous interface structure and improves the welding mechanical properties of the aluminum/magnesium dissimilar metal joint.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011530844.9A CN114713964B (en) | 2020-12-22 | 2020-12-22 | Magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011530844.9A CN114713964B (en) | 2020-12-22 | 2020-12-22 | Magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114713964A true CN114713964A (en) | 2022-07-08 |
CN114713964B CN114713964B (en) | 2024-02-06 |
Family
ID=82230158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011530844.9A Active CN114713964B (en) | 2020-12-22 | 2020-12-22 | Magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114713964B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080041922A1 (en) * | 2006-07-13 | 2008-02-21 | Mariana G Forrest | Hybrid Resistance/Ultrasonic Welding System and Method |
KR20100071510A (en) * | 2008-12-19 | 2010-06-29 | 재단법인 포항산업과학연구원 | Ultrasonic welding method |
CN103600166A (en) * | 2013-12-02 | 2014-02-26 | 哈尔滨工业大学(威海) | Method and device for auxiliary heating type ultrasound rapid forming |
KR101466799B1 (en) * | 2013-12-18 | 2014-11-28 | 안동대학교 산학협력단 | Joining of HTS 2G coated conductor using ultrasonic welding method |
CN205393809U (en) * | 2015-12-09 | 2016-07-27 | 燕山大学 | Supplementary friction stir welding's of pulse current device |
CN205869704U (en) * | 2016-05-19 | 2017-01-11 | 贵州理工学院 | Electromagnetic oscillation assists friction stir welding device |
CN107342466A (en) * | 2017-06-05 | 2017-11-10 | 吉林省中赢高科技有限公司 | A kind of joint and its ultrasonic welding method of copper tip and aluminum conductor |
CN109365988A (en) * | 2018-12-14 | 2019-02-22 | 东莞市新玛博创超声波科技有限公司 | A kind of ultrasonic wave added welding method of the magnalium heterogeneous alloy of Sn-Zn alloy as intermediate reaction material layer |
US20200108468A1 (en) * | 2018-10-08 | 2020-04-09 | Edison Welding Institute, Inc. | Hybrid ultrasonic and resistance spot welding system |
CN111421221A (en) * | 2020-05-07 | 2020-07-17 | 铜陵学院 | Friction stir butt welding device and machining method thereof |
US20210129259A1 (en) * | 2018-05-24 | 2021-05-06 | Siemens Aktiengesellschaft | Additive manufacturing using forge welding |
-
2020
- 2020-12-22 CN CN202011530844.9A patent/CN114713964B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080041922A1 (en) * | 2006-07-13 | 2008-02-21 | Mariana G Forrest | Hybrid Resistance/Ultrasonic Welding System and Method |
KR20100071510A (en) * | 2008-12-19 | 2010-06-29 | 재단법인 포항산업과학연구원 | Ultrasonic welding method |
CN103600166A (en) * | 2013-12-02 | 2014-02-26 | 哈尔滨工业大学(威海) | Method and device for auxiliary heating type ultrasound rapid forming |
KR101466799B1 (en) * | 2013-12-18 | 2014-11-28 | 안동대학교 산학협력단 | Joining of HTS 2G coated conductor using ultrasonic welding method |
CN205393809U (en) * | 2015-12-09 | 2016-07-27 | 燕山大学 | Supplementary friction stir welding's of pulse current device |
CN205869704U (en) * | 2016-05-19 | 2017-01-11 | 贵州理工学院 | Electromagnetic oscillation assists friction stir welding device |
CN107342466A (en) * | 2017-06-05 | 2017-11-10 | 吉林省中赢高科技有限公司 | A kind of joint and its ultrasonic welding method of copper tip and aluminum conductor |
US20210129259A1 (en) * | 2018-05-24 | 2021-05-06 | Siemens Aktiengesellschaft | Additive manufacturing using forge welding |
US20200108468A1 (en) * | 2018-10-08 | 2020-04-09 | Edison Welding Institute, Inc. | Hybrid ultrasonic and resistance spot welding system |
CN109365988A (en) * | 2018-12-14 | 2019-02-22 | 东莞市新玛博创超声波科技有限公司 | A kind of ultrasonic wave added welding method of the magnalium heterogeneous alloy of Sn-Zn alloy as intermediate reaction material layer |
CN111421221A (en) * | 2020-05-07 | 2020-07-17 | 铜陵学院 | Friction stir butt welding device and machining method thereof |
Non-Patent Citations (3)
Title |
---|
刘积厚: "电弧预热辅助下的Mg/Al异种金属超声波滚焊工艺研究", 中国知网优秀硕士学位论文 工程科技Ⅰ辑, no. 02, pages 11 - 15 * |
崔庆波;李玉龙;杨瑾;王裕波;余啸;: "化学镀锡层对镁铝异种金属超声波焊接的影响", 材料科学与工艺, no. 02, pages 35 - 38 * |
李阳;朱政强;杨亚楠;: "冷喷涂Zn中间层对Mg/Al异种金属超声波焊接性能的影响", 热加工工艺, no. 07, pages 29 - 32 * |
Also Published As
Publication number | Publication date |
---|---|
CN114713964B (en) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107999947B (en) | A kind of steel-aluminum dissimilar material process belt auxiliary resistance spot welding method | |
CN101497123A (en) | Magnalium composite board and method for producing the same | |
CN104438323B (en) | A kind of preparation method of pair of physical field auxiliary one-sided metallic laminated composite plate | |
CN101934432B (en) | Coaxial composite welding method of laser spot welding and resistance spot welding | |
CN108941828B (en) | A kind of heterogenous metal brazing device and method that semisolid is assisted without brazing flux | |
CN108941966B (en) | A kind of welding method of graphene-strengthened steel-aluminum dissimilar material welding seam | |
CN101284339A (en) | A kind of welding wire and its application method for welding aluminum and aluminum alloy and steel | |
CN101695791A (en) | Method for welding magnesium alloy and steel | |
CN104801848B (en) | Method for adjusting and controlling brittle phase in titanium/aluminum dissimilar metal friction stir welding joint | |
CN102528243A (en) | Arc welding-brazing method for titanium-aluminum dissimilar alloy TIG (tungsten inert gas) arc preheating | |
CN103753005A (en) | High strength steel-aluminum alloy dissimilar metal connecting method | |
CN104668765B (en) | A kind of welding method for eliminating the hook-shaped defect of Magnesium Alloy in Friction Stir lap joint | |
CN109501867B (en) | Frame type body rear cabin structure and welding method | |
CN103406661B (en) | A kind of aluminium-steel is from spreading welding method | |
CN101920391A (en) | Electron beam welding method for dissimilar materials of nickel-aluminum bronze and TC4 titanium alloy | |
CN105478476A (en) | Method for rolling metal composite plate strip | |
CN113787734B (en) | Forming Process and Forming Die for Carbon Fiber Reinforced Aluminum Alloy Laminated Components | |
CN104439684A (en) | Self-piercing riveting method assisted by ultrasonic | |
CN103495796A (en) | Steel-magnesium dissimilar metal connection method | |
CN102284758B (en) | Magnesium alloy and aluminum alloy heterogeneous non-vacuum machinery forced rotation semi-solid brazing method | |
CN101913021A (en) | Electron beam superposition welding method of chromium bronze and duplex titanium alloy dissimilar materials | |
CN106563887B (en) | A kind of joint with different materials structure and attaching method thereof of four interface system of three-step approach | |
CN114713964B (en) | Magnetic field and current-assisted aluminum-magnesium ultrasonic solid-phase connection method | |
CN101913022A (en) | A method of electron beam welding TA15 titanium alloy and chrome bronze dissimilar materials | |
CN106563696A (en) | Manufacturing method for laminated composite metal board with slot holes in internal layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |