CN114710038A - 一种应用于模块电源原边自举驱动的供电电路 - Google Patents

一种应用于模块电源原边自举驱动的供电电路 Download PDF

Info

Publication number
CN114710038A
CN114710038A CN202210614151.0A CN202210614151A CN114710038A CN 114710038 A CN114710038 A CN 114710038A CN 202210614151 A CN202210614151 A CN 202210614151A CN 114710038 A CN114710038 A CN 114710038A
Authority
CN
China
Prior art keywords
circuit
power supply
power tube
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210614151.0A
Other languages
English (en)
Inventor
李鹏生
张自飞
丁维同
鲍宜壮
许鑫
王晓尉
陈凯
陈庆
吴赵风
宁慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
749 Nanjing Electronic Research Institute Co ltd
Original Assignee
749 Nanjing Electronic Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 749 Nanjing Electronic Research Institute Co ltd filed Critical 749 Nanjing Electronic Research Institute Co ltd
Priority to CN202210614151.0A priority Critical patent/CN114710038A/zh
Publication of CN114710038A publication Critical patent/CN114710038A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/08Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种应用于模块电源原边自举驱动的供电电路,包括:主电路、辅助源电路、自举电路,其中,主电路的功能是根据副边误差放大器信号将输入电压+Vin转换成稳定的母线电压VBUS;辅助源电路采用同步buck降压电路,用于输出稳定的辅助源电压;自举电路,能够根据功率管的导通关断对电容进行充电,用于将自举电容的电压升高到+Vin或者VBUS以上。本发明提供一种更为简洁的供电电路结构,元器件较少,减小PCB板面积,产品实现小型化的效果;同时本发明利用主功率电路、辅助源电路、自举电路组成电源原边自举驱动的供电电路不需要额外的控制,无需采样功率管栅极电压进行一系列逻辑判断,输出纹波更优。

Description

一种应用于模块电源原边自举驱动的供电电路
技术领域
本发明涉及电路设计领域,尤其涉及一种应用于模块电源原边自举驱动的供电电路。
背景技术
高功率密度、高可靠性DC/DC模块电源,被广泛应用在军事和工业生产中,但是模块电源高边功率管驱动供电电压不足极大影响模块工作时的效率及可靠性。
目前的处理方法是:
1、采用隔离电源给高边驱动芯片供电,但是这样会增加两路辅助源绕组,增加变压器体积,降低模块电源功率密度;
2、采用栅极电压检测电路,当栅极电压低于一定值时,关断功率管,将对应的下管导通一段时间以补充自举电容电荷,控制比较复杂,需要增加额外的检测电路,并且在自举电容补充电荷期间,电源输出纹波偏大,目前ADI公司芯片LTC3789以及瑞萨公司芯片ISL81601均采用此方案,都存在在自举电容补充电荷期间,电源输出纹波偏大的问题。
发明内容
针对上述背景技术中的问题,本发明提供一种应用于模块电源原边自举驱动的供电电路,包括:主电路、辅助源电路、自举电路,其中,
所述主电路的功能是根据副边误差放大器信号将输入电压+Vin转换成稳定的母线电压VBUS;
所述辅助源电路采用同步buck降压电路,用于输出稳定的辅助源电压;
所述自举电路,能够根据功率管的导通关断对电容进行充电,用于将自举电容的电压升高到+Vin或者VBUS以上。
作为本发明的一种优选方案,所述主电路采用buck-boost拓扑+全桥定频LLC拓扑,全桥定频LLC负责隔离变压,开关管的零电压导通,能够保证定频LLC具有超高的转换效率,buck-boost拓扑负责调压,根据输入电压及负载电流调节buck或者boost电路占空比,达到稳定输出电压目的。
作为本发明的一种优选方案,所述主电路具体包括:功率管Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10,电容C6、C7,电感L2、L3,变压器T1。
作为本发明的一种优选方案,功率管Q3、电感L2、功率管Q4依次串联,
功率管Q7、功率管Q8分别连接到电感L2的两端,并且功率管Q7、功率管Q8之间通过导线连接,
功率管Q5、功率管Q9、功率管Q10、功率管Q6依稀连接构成循环回路,功率管Q4通过导线接入到功率管Q5与功率管Q6之间,
所述电容C6的一端接入到所述功率管Q4与功率管Q5之间的线路上,
电感L3、变压器T1、电容C7依次连接,并且电感L3连接到功率管Q6与功率管Q10之间的线路上,电容C7连接到功率管Q5与功率管Q9之间的线路上。
作为本发明的一种优选方案,所述辅助源电路包括:MOS管Q1、Q2以及集成控制保护的专用集成芯片,电感L1,电容C3。
作为本发明的一种优选方案,MOS管Q1、MOS管Q2均连接到专用集成芯片上,MOS管Q1与MOS管Q2之间通过导线连接,电感L1的第一端连接到MOS管Q1与MOS管Q2间的电路上,所述电容C3的一端与所述电感L1的第二端连接。
作为本发明的一种优选方案,所述自举电路包括:二极管D1、D4、D2、D3,电容C1、C2、C4、C5,芯片U1、U2。
作为本发明的一种优选方案,电容C1、二极管D4、芯片U1依次串联,所述电容C1的第一端连接到所述电感L1的第一端,所述二极管D1的两端分别连接到电感L1的第二端、电容C1的第二端,所述电容C2的两端分别连接到芯片U1的BST、HS接口上;
二极管D2、二极管D3、芯片U2依次串联,所述二极管D2连接到电感L1的第二端,电容C4的第一端连接到二极管D2与二极管D3之间,电容C4的第二端连接到功率管Q5与功率管Q9之间,所述电容C5的两端分别连接到芯片U2的BST、HS接口上。
与现有技术相比,本发明提供一种应用于模块电源原边自举驱动的供电电路,具有以下有益效果:
1.本发明提供一种更为简洁的供电电路结构,元器件较少,减小PCB板面积,产品实现小型化的效果。
2.本发明利用主功率电路、辅助源电路、自举电路组成电源原边自举驱动的供电电路不需要额外的控制,无需采样功率管栅极电压进行一系列逻辑判断,输出纹波更优。
附图说明
图1为一种应用于模块电源原边自举驱动的供电电路的结构示意图。
图2为一种应用于模块电源原边自举驱动的供电电路的主电路示意图。
图3为一种应用于模块电源原边自举驱动的供电电路的辅助电路以及自举电路的电路图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
如图1-3所示,本发明提供一种应用于模块电源原边自举驱动的供电电路,包括:主电路、辅助源电路、自举电路,其中,
主电路的功能是根据副边误差放大器信号将输入电压+Vin转换成稳定的母线电压VBUS;主电路采用buck-boost拓扑+全桥定频LLC拓扑,全桥定频LLC负责隔离变压,开关管的零电压导通,能够保证定频LLC具有超高的转换效率,buck-boost拓扑负责调压,根据输入电压及负载电流调节buck或者boost电路占空比,达到稳定输出电压目的。
具体的,主电路具体包括:功率管Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10,电容C6、C7,电感L2、L3,变压器T1,功率管Q3、电感L2、功率管Q4依次串联,功率管Q7、功率管Q8分别连接到电感L2的两端,并且功率管Q7、功率管Q8之间通过导线连接,功率管Q5、功率管Q9、功率管Q10、功率管Q6依稀连接构成循环回路,功率管Q4通过导线接入到功率管Q5与功率管Q6之间,电容C6的一端接入到功率管Q4与功率管Q5之间的线路上,电感L3、变压器T1、电容C7依次连接,并且电感L3连接到功率管Q6与功率管Q10之间的线路上,电容C7连接到功率管Q5与功率管Q9之间的线路上。
辅助源电路采用同步buck降压电路,用于输出稳定的辅助源电压;
具体的,辅助源电路包括:MOS管Q1、Q2以及集成控制保护的专用集成芯片,电感L1,电容C3,MOS管Q1、MOS管Q2均连接到专用集成芯片上,MOS管Q1与MOS管Q2之间通过导线连接,电感L1的第一端连接到MOS管Q1与MOS管Q2间的电路上,电容C3的一端与电感L1的第二端连接。
自举电路,能够根据功率管的导通关断对电容进行充电,用于将自举电容的电压升高到+Vin或者VBUS以上;
具体的,自举电路包括:二极管D1、D4、D2、D3,电容C1、C2、C4、C5,芯片U1、U2,电容C1、二极管D4、芯片U1依次串联,电容C1的第一端连接到电感L1的第一端,二极管D1的两端分别连接到电感L1的第二端、电容C1的第二端,电容C2的两端分别连接到芯片U1的BST、HS接口上;二极管D2、二极管D3、芯片U2依次串联,二极管D2连接到电感L1的第二端,电容C4的第一端连接到二极管D2与二极管D3之间,电容C4的第二端连接到功率管Q5与功率管Q9之间,电容C5的两端分别连接到芯片U2的BST、HS接口上。
当电路工作于升压模式时,功率管Q7恒关断、功率管Q3恒导通,自举电容C2无法通过功率管Q3、Q7重复开关而获得能量,因此需要通过辅助源的工作而获得自举能量,原理如下:
当辅助源功率管Q2导通时,辅助源电压Vcc通过二极管D1给电容C1进行充电,当Q2关断而Q1导通时,二极管D1阴极电位为+Vin+Vcc,由于功率管Q3的源极电位为+Vin,因此电容C1可通过二极管D4对电容C2进行充电,以此给功率管栅极提供源源不断的电荷,二极管D4的作用是防止在Vcc通过D1给电容C1充电期间拉低电容C2的电位。
当电路工作于降压模式时,功率管Q8恒关断、功率管Q4恒导通,自举电容C5无法通过功率管Q4、Q8重复开关而获得能量,因此需要通过后级定频LLC的工作而获得自举能量,原理如下:
当主电路开始工作时,功率管Q5、Q9以接近50%的占空比进行互补工作,当功率管Q9导通时,辅助源电压Vcc通过二极管D2给电容C4进行充电,当Q9关断而Q5导通时,二极管D2阴极电位为VBUS+Vcc,由于功率管Q4的源极电位为VBUS,因此电容C4可通过二极管D3对电容C5进行充电,以此给功率管栅极提供源源不断的电荷,二极管D4的作用是防止在Vcc通过D2给电容C4充电期间拉低电容C5的电位。
在具体实施过程中,本发明的芯片U1、U2为专用半桥电路的功率管驱动芯片,当Lo、Ho为高电平时,对应的功率管处于导通状态,当Lo、Ho为低电平时,对应的功率管处于截止状态。
当输入电压+Vin低于输出电压乘以变压器匝比时,即输入电压+Vin低于VBUS电压时,buck-boost拓扑工作在boost升压模式,此时功率管Q7恒关断、功率管Q3恒导通,功率管Q4、Q8根据输出电压的闭环负反馈进行占空比调节,功率管Q3恒导通意味着芯片U1的Ho引脚持续输出高电平,电容C2储存的电荷为Ho引脚持续高电平提供能量,如不定期的补充电容C2的能量,功率管Q3在导通一段时间后将会关断,导致整个电源模块不工作。
为此我们采用自举辅助电路对电容C2进行充电,当辅助电源工作时,假设某一时刻功率管Q2导通,则电容C1的上端电位为零,辅助源输出电压Vcc通过二极管D1对电容C1进行充电,当功率管Q2关断、Q1导通时,电容C1上端电位为+Vin,则电容C1的下端电位为+Vin+Vcc,由于二极管的反向截止特性,电容C1的能量不能通过二极管D1传输到辅助电源输出端。而电容C2的右端电位是+Vin,因此由于电容C1的下端与电容C2的右端存在电位差,因此将有电荷通过二极管D4进行流动,为电容C2补充电能,电容C2的电荷为引脚Ho提供源源不断的电能,因此功率管Q3可以一直可靠的导通。
当输入电压+Vin高于输出电压乘以变压器匝比时,即输入电压+Vin高于于VBUS电压时,buck-boost拓扑工作在buck降压模式,此时功率管Q8恒关断、功率管Q4恒导通,功率管Q3、Q7根据输出电压的闭环负反馈进行占空比调节,功率管Q4恒导通意味着芯片U2的Ho引脚持续输出高电平,电容C5储存的电荷为Ho引脚持续高电平提供能量,如不定期的补充电容C5的能量,功率管Q4在导通一段时间后将会关断,导致电流全部从功率管Q4的体二极管流动,增加了模块电源的损耗、降低了效率以及可靠性。
为此我们采用自举辅助电路对电容C5进行充电,当主电路工作时,假设某一时刻功率管Q9导通,则电容C4的下端电位为零,辅助源输出电压Vcc通过二极管D2对电容C4进行充电,当功率管Q9关断、Q5导通时,电容C4下端电位为VBUS,则电容C4的上端电位为VBUS+Vcc,由于二极管的反向截止特性,电容C4的能量不能通过二极管D2传输到辅助电源输出端。而电容C5的左端电位是VBUS,因此由于电容C4的上端与电容C5的左端存在电位差,因此将有电荷通过二极管D3进行流动,为电容C5补充电能,电容C5的电荷为引脚Ho引脚提供源源不断的电能,因此功率管Q4可以一直可靠的导通。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在发明的权利要求范围当中。

Claims (8)

1.一种应用于模块电源原边自举驱动的供电电路,其特征在于,包括:主电路、辅助源电路、自举电路,其中,
所述主电路的功能是根据副边误差放大器信号将输入电压+Vin转换成稳定的母线电压VBUS;
所述辅助源电路采用同步buck降压电路,用于输出稳定的辅助源电压;
所述自举电路,能够根据功率管的导通关断对电容进行充电,用于将自举电容的电压升高到+Vin或者VBUS以上。
2.根据权利要求1所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,所述主电路采用buck-boost拓扑+全桥定频LLC拓扑,全桥定频LLC负责隔离变压,开关管的零电压导通,能够保证定频LLC具有超高的转换效率,buck-boost拓扑负责调压,根据输入电压及负载电流调节buck或者boost电路占空比,达到稳定输出电压目的。
3.根据权利要求2所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,所述主电路具体包括:功率管Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10,电容C6、C7,电感L2、L3,变压器T1。
4.根据权利要求3所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,功率管Q3、电感L2、功率管Q4依次串联,
功率管Q7、功率管Q8分别连接到电感L2的两端,并且功率管Q7、功率管Q8之间通过导线连接,
功率管Q5、功率管Q9、功率管Q10、功率管Q6依稀连接构成循环回路,功率管Q4通过导线接入到功率管Q5与功率管Q6之间,
所述电容C6的一端接入到所述功率管Q4与功率管Q5之间的线路上,
电感L3、变压器T1、电容C7依次连接,并且电感L3连接到功率管Q6与功率管Q10之间的线路上,电容C7连接到功率管Q5与功率管Q9之间的线路上。
5.根据权利要求1所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,所述辅助源电路包括:MOS管Q1、Q2以及集成控制保护的专用集成芯片,电感L1,电容C3。
6.根据权利要求5所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,MOS管Q1、MOS管Q2均连接到专用集成芯片上,MOS管Q1与MOS管Q2之间通过导线连接,电感L1的第一端连接到MOS管Q1与MOS管Q2间的电路上,所述电容C3的一端与所述电感L1的第二端连接。
7.根据权利要求6所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,所述自举电路包括:二极管D1、D4、D2、D3,电容C1、C2、C4、C5,芯片U1、U2。
8.根据权利要求7所述的一种应用于模块电源原边自举驱动的供电电路,其特征在于,电容C1、二极管D4、芯片U1依次串联,所述电容C1的第一端连接到所述电感L1的第一端,所述二极管D1的两端分别连接到电感L1的第二端、电容C1的第二端,所述电容C2的两端分别连接到芯片U1的BST、HS接口上;
二极管D2、二极管D3、芯片U2依次串联,所述二极管D2连接到电感L1的第二端,电容C4的第一端连接到二极管D2与二极管D3之间,电容C4的第二端连接到功率管Q5与功率管Q9之间,所述电容C5的两端分别连接到芯片U2的BST、HS接口上。
CN202210614151.0A 2022-05-30 2022-05-30 一种应用于模块电源原边自举驱动的供电电路 Pending CN114710038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210614151.0A CN114710038A (zh) 2022-05-30 2022-05-30 一种应用于模块电源原边自举驱动的供电电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210614151.0A CN114710038A (zh) 2022-05-30 2022-05-30 一种应用于模块电源原边自举驱动的供电电路

Publications (1)

Publication Number Publication Date
CN114710038A true CN114710038A (zh) 2022-07-05

Family

ID=82177337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210614151.0A Pending CN114710038A (zh) 2022-05-30 2022-05-30 一种应用于模块电源原边自举驱动的供电电路

Country Status (1)

Country Link
CN (1) CN114710038A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602883A (zh) * 2017-03-10 2017-04-26 绍兴光大芯业微电子有限公司 无辅助绕组的功率mos管开关电源集成供电电路
CN109792209A (zh) * 2016-09-06 2019-05-21 M2电力株式会社 Dc-dc变换器及包括其的两级功率变换器
CN109889047A (zh) * 2019-01-31 2019-06-14 南京航空航天大学 一种适用于宽输入宽输出电压范围的两级式dc-dc变换器
CN210693771U (zh) * 2019-07-23 2020-06-05 东莞保力电子有限公司 一种增压续流低压差Buck型开关电源装置
CN210839348U (zh) * 2019-11-29 2020-06-23 深圳市皓文电子有限公司 一种非隔离升降压变换器
US20210104950A1 (en) * 2019-10-08 2021-04-08 Sharp Kabushiki Kaisha Auxiliary power supply circuit, power supply apparatus, and power supply circuit
CN113765402A (zh) * 2021-09-27 2021-12-07 上海军陶科技股份有限公司 一种宽电压输入dc-dc变换器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792209A (zh) * 2016-09-06 2019-05-21 M2电力株式会社 Dc-dc变换器及包括其的两级功率变换器
CN106602883A (zh) * 2017-03-10 2017-04-26 绍兴光大芯业微电子有限公司 无辅助绕组的功率mos管开关电源集成供电电路
CN109889047A (zh) * 2019-01-31 2019-06-14 南京航空航天大学 一种适用于宽输入宽输出电压范围的两级式dc-dc变换器
CN210693771U (zh) * 2019-07-23 2020-06-05 东莞保力电子有限公司 一种增压续流低压差Buck型开关电源装置
US20210104950A1 (en) * 2019-10-08 2021-04-08 Sharp Kabushiki Kaisha Auxiliary power supply circuit, power supply apparatus, and power supply circuit
CN210839348U (zh) * 2019-11-29 2020-06-23 深圳市皓文电子有限公司 一种非隔离升降压变换器
CN113765402A (zh) * 2021-09-27 2021-12-07 上海军陶科技股份有限公司 一种宽电压输入dc-dc变换器

Similar Documents

Publication Publication Date Title
WO2019128071A1 (zh) 一种dc-dc变换器
CN110932557B (zh) 一种基于倍压整流电路的高增益准谐振dc-dc变换器
CN1193484C (zh) 用于开关变换器的快速瞬态响应的阶跃电感器
CN100438286C (zh) 双管双正激升压式单级功率因数校正电路
CN111682774A (zh) 单级隔离型双向直流变换器
CN102723869A (zh) 功率变换器
CN111224555B (zh) 一种llc谐振变换电路的宽范围输出控制方法
CN103391001A (zh) 用于光伏逆变器mppt环节的高增益dcdc变换器
CN111342693B (zh) 一种升降压型光伏并网逆变器
CN107134929B (zh) 双向直流变换器及双向直流变换控制方法
CN220915162U (zh) 功率变换器及电源装置
CN104578772A (zh) 一种升压电路
CN212572416U (zh) I型三电平变换器和不间断电源模块
CN212381122U (zh) 单级隔离型双向直流变换器
CN102790520A (zh) 一种新能源发电系统双向dc-dc变换器的双边缓启动控制方法
CN111130351B (zh) 一种低延时的自适应双向dcdc变换器及其控制方法
CN103746556A (zh) 基于耦合电感的直流模块用高升压比变换器
CN107659155B (zh) 双向直流变换器及双向直流变换控制方法
CN203775030U (zh) 一种基于耦合电感的直流模块用高升压比变换器
CN114710038A (zh) 一种应用于模块电源原边自举驱动的供电电路
CN215186466U (zh) 一种宽输出范围的双向升降压电路和测试电源
CN113285596B (zh) 一种升降压直流变换器及其控制方法
CN112421958B (zh) 一种高增益直流升压变换器
CN113726150A (zh) 一种具有升压和降压功能的双向变换器及方法
CN210111852U (zh) 一种开关电源降升压转换电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220705