CN114705653A - 一种可应用于含浊度样品的总磷在线监测补偿方法 - Google Patents

一种可应用于含浊度样品的总磷在线监测补偿方法 Download PDF

Info

Publication number
CN114705653A
CN114705653A CN202210302839.5A CN202210302839A CN114705653A CN 114705653 A CN114705653 A CN 114705653A CN 202210302839 A CN202210302839 A CN 202210302839A CN 114705653 A CN114705653 A CN 114705653A
Authority
CN
China
Prior art keywords
turbidity
total phosphorus
kaolin
standard
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210302839.5A
Other languages
English (en)
Inventor
朱文青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhuosheng Environmental Technology Co ltd
Original Assignee
Zhejiang Zhuosheng Environmental Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Zhuosheng Environmental Technology Co ltd filed Critical Zhejiang Zhuosheng Environmental Technology Co ltd
Priority to CN202210302839.5A priority Critical patent/CN114705653A/zh
Publication of CN114705653A publication Critical patent/CN114705653A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Abstract

本发明专利涉及一种在线监测补偿方法,尤其涉及一种可应用于含浊度样品的总磷在线监测补偿方法。按以下步骤进行:配制一种有效模拟实际浊度水样的干扰模型→总磷和浊度混标的配制。本发明提供的浊度补偿方法能有效检测不同粒径下含500NTU浊度内的总磷浓度,且误差均小于±10%,浊度加标回收均在90%‑110%之间,提升了在不同复杂水质下总磷监测的适应能力。

Description

一种可应用于含浊度样品的总磷在线监测补偿方法
技术领域
本发明专利涉及一种在线监测补偿方法,尤其涉及一种可应用于含浊度样品的总磷在线监测补偿方法。
背景技术
随着各方面的发展,对环境造成的污染越来越严重。水资源的污染会直接影响人类的生存环境和身体健康。对环境的保护越来越得到国家的重视,对于环境的保护要从预防和治理着手,其中水资源是其中重要的一方面。为了掌握水体的水质状况,需要对水体进行采样并分析。水质在线监测仪是可实现水体自动采样与分析的仪器,可安装在水体附近,并将采集的数据传输至环境监测站等部门进行监控。
总磷就是水体中磷元素的总含量.磷含量过多会引起藻类植物的过度生长,水体富营养化,发生水华或赤潮,打乱水体的平衡。近年来,随着国家加强环保力度,总磷也随之被列为主要污染物,各类环境监测水站都逐步安装在重要的河流、湖库上,但水质在线监测面临很多技术难点,其中浊度干扰是总磷在线监测最为困难的一点,特别是在应对黄河水质、暴雨后的河水等复杂工况。
现有技术方案:
针对含不同浊度的总磷水质,主要有以下几种技术方案:
1)采用自然沉降、大目数筛孔过滤等方式处理水样,取上清液进行水质总磷的分析;
2)采用平行样进行吸光度扣除:即测试两组水样,一组加入不与其发生反应的等量试剂,另一组加入完整的反应试剂,后者在700nm的吸光度减去前者700nm吸光度作为样品最终的吸光度,然后利用该吸光度带入标准曲线计算出浓度;
现有技术的缺点:
1)采用传统的700nm作为总磷测定的特征波长,其灵敏度相对较低;
2)对浊度液的实验干扰模型设定不符合实际水体浊度形态;(一般采用标准浊度液(六次甲基四胺+硫酸肼),总磷在线监测存在氧化剂,该标准浊度液易被氧化剂氧化,失去实验干扰意义)
3)对于高浊度水样通常采用自然沉降、过滤等手段去除浊度后进行总磷的监测,但自然水体的磷多数附着在水体颗粒物(浊度)中,进而影响了总磷数据的准确度;
4)传统方式采用平行样去补偿含浊度的总磷浓度,不适合总磷水质的在线监测。
发明内容
本发明主要是解决现有技术中存在的不足,提供一种有效检测不同粒径下含500NTU浊度内的总磷浓度,且误差均小于±10%,浊度加标回收均在90%-110%之间,提升了在不同复杂水质下总磷监测的适应能力的一种可应用于含浊度样品的总磷在线监测补偿方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种可应用于含浊度样品的总磷在线监测补偿方法,按以下步骤进行:
(1)、配制一种有效模拟实际浊度水样的干扰模型;
①选用白陶土模拟实际水样的浊度组分,一是白陶土具有吸附性,水体中的总磷易吸附于该颗粒物质上,二是白陶土具有不溶于水、酸和碱的特性,故而在后续的总磷和浊度液混标测试过程中不易被反应而失去干扰意义;
②总磷浊度干扰组分的配制:称取10g 200目、600目和1250目三种目数下的白陶土,作为浊度母液;
200目、600目和1250目分别表示颗粒物的不同粒径,目数越大,粒径越小;
③分别量取50mL总磷氧化剂对上述三种不同粒径的白陶土进行加热氧化处理,直至氧化剂挥发完全,白陶土呈黏糊状,待其冷却后加入800mL不含磷的蒸馏水;
④对上述三种悬浊液进行封盖静置3~7天,观察其上清液变化,待上清液完全清澈后,取少量上清液测试其总磷浓度;
⑤若上清液总磷浓度≤0.1mg/L,则将上清液倒去,底部白陶土和少量悬浊液加入蒸馏水定容至1000mL,移至广口瓶中存放,记为浊度母液;
⑥若上清液总磷浓度>0.1mg/L,重复②→③→④步骤;
⑦上述配制过程能有效的去除白陶土中存在的总磷物质;
(2)、总磷和浊度混标的配制:
选择890nm作为总磷监测的特征波长,并且使用同为红外波段的1050nm作为浊度补偿波长;
①配制已知浓度的总磷标准溶液:0.2mg/L和1.6mg/L;
②分别稀释步骤(1)中配制的不同目数浊度母液,形成:
200目(100NUT/200NTU/300NTU/400NTU/500NTU)、
600目(100NUT/200NTU/300NTU/400NTU/500NTU)和
1250目(100NUT/200NTU/300NTU/400NTU/500NTU);
③使用步骤(2)中②稀释的浊度液配制含磷溶液:0.2mg/L和1.6mg/L,即得到了总磷和浊度混标;
④测定①、②、③步骤配制的溶液,在显色前后分别检测其在890nm和1050nm的吸光度,记为I890显色前、I1050显色前、I890显色后和I1050显色后;
其吸光度算法为:A=log(I890显色前/I890显色后)-log(I1050显色前/I1050显色后);
⑤以标准溶液为参照,计算总磷和梯度浊度混标与之相对误差,即含总磷+梯度浊度混标的准确度;加标回收率,即梯度浊度液加入磷标液回收几何。
因总磷检测在200-1100nm波长段内均具有吸收,但红外波长段(860nm-1100nm)的吸收较少,由图1可知,890nm处总磷显色物质的吸收峰值比700nm的吸收峰值提高了20%,且在1050nm后趋于稳定,故而选定890nm作为总磷测定的特征波长,1050nm作为浊度补偿波长。
本发明的目的:
1)提供一种有效模拟现场含浊度水样的干扰模型,以验证总磷在线监测补偿方法的可靠性;
2)采用890nm作为总磷的特征吸收波长,提高总磷测定的灵敏度的同时降低了浊度带来的干扰;
3)采用同为红外波段的1050nm作为浊度补偿波长;
4)以上述干扰模型为实验对象,使用总磷在线监测仪测定其准确度和浊度加标回收率,能满足企业标准示值误差±10%和加标回收率90%-110%的技术要求;
5)最大可支持含500NTU浊度水样的总磷测定。
附图说明
图1为本发明的总磷显色物质在200-1100nm的吸收光谱图;
图2为本发明中200目下总磷+浊度梯度混标浓度值、示值误差和加标回收示意图;
图3为本发明中600目下总磷+浊度梯度混标浓度值、示值误差和加标回收示意图;
图4为本发明中1250目下总磷+浊度梯度混标浓度值、示值误差和加标回收示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1:200目:总磷和梯度浊度混标,相对误差和加标回收;
按照上述步骤(2)中的④中所描述的吸光度算法分别测定0.2mg/L(1号)、1.6mg/L(2号)、100NTU(200目)浊度液(3号)、0.2mg/L+100NTU(200目)总磷+浊度混标(4号)、1.6mg/L+100NTU(200目)总磷+浊度混标(5号)、200NTU(200目)浊度液(6号)、0.2mg/L+200NTU(200目)总磷+浊度混标(7号)、1.6mg/L/200NTU(200目)总磷+浊度混标(8号)、300NTU(200目)浊度液(9号)、0.2mg/L+300NTU(200目)总磷+浊度混标(10号)、1.6mg/L+300NTU(200目)总磷+浊度混标(11号)、400NTU(200目)浊度液(12号)、0.2mg/L+400NTU(200目)总磷+浊度混标(13号)、1.6mg/L+400NTU(200目)总磷+浊度混标(14号)、500NTU(200目)浊度液(15号)、0.2mg/L+500NTU(200目)总磷+浊度混标(16号)、1.6mg/L+500NTU(200目)总磷+浊度混标(17号);
根据吸光度和标准曲线去计算其相应的浓度值,而后与0.2mg/L(1号)、1.6mg/L(2号)标准溶液浓度值作相对误差;与浊度液浓度值作加标回收率,见图2;
实施例2:600目:总磷和梯度浊度混标,相对误差和加标回收;
按照上述步骤(2)中的④中所描述的吸光度算法分别测定0.2mg/L(1号)、1.6mg/L(2号)、100NTU(600目)浊度液(18号)、0.2mg/L+100NTU(600目)总磷+浊度混标(19号)、1.6mg/L+100NTU(600目)总磷+浊度混标(20号)、200NTU(600目)浊度液(21号)、0.2mg/L+200NTU(600目)总磷+浊度混标(22号)、1.6mg/L/200NTU(600目)总磷+浊度混标(23号)、300NTU(600目)浊度液(24号)、0.2mg/L+300NTU(600目)总磷+浊度混标(25号)、1.6mg/L+300NTU(600目)总磷+浊度混标(26号)、400NTU(600目)浊度液(27号)、0.2mg/L+400NTU(600目)总磷+浊度混标(28号)、1.6mg/L+400NTU(600目)总磷+浊度混标(29号)、500NTU(600目)浊度液(30号)、0.2mg/L+500NTU(600目)总磷+浊度混标(31号)、1.6mg/L+500NTU(600目)总磷+浊度混标(32号);
根据吸光度和标准曲线去计算其相应的浓度值,而后与0.2mg/L(1号)、1.6mg/L(2号)标准溶液浓度值作相对误差;与浊度液浓度值作加标回收率,见图3;
实施例3:1250目:总磷的梯度浊度混标,相对误差和加标回收;
按照上述步骤(2)中的④中所描述的吸光度算法分别测定0.2mg/L(1号)、1.6mg/L(2号)、100NTU(1250目)浊度液(33号)、0.2mg/L+100NTU(1250目)总磷+浊度混标(34号)、1.6mg/L+100NTU(1250目)总磷+浊度混标(35号)、200NTU(1250目)浊度液(36号)、0.2mg/L+200NTU(1250目)总磷+浊度混标(37号)、1.6mg/L/200NTU(1250目)总磷+浊度混标(38号)、300NTU(1250目)浊度液(39号)、0.2mg/L+300NTU(1250目)总磷+浊度混标(40号)、1.6mg/L+300NTU(1250目)总磷+浊度混标(41号)、400NTU(1250目)浊度液(42号)、0.2mg/L+400NTU(1250目)总磷+浊度混标(43号)、1.6mg/L+400NTU(1250目)总磷+浊度混标(44号)、500NTU(1250目)浊度液(45号)、0.2mg/L+500NTU(1250目)总磷+浊度混标(46号)、1.6mg/L+500NTU(1250目)总磷+浊度混标(47号);
根据吸光度和标准曲线去计算其相应的浓度值,而后与0.2mg/L(1号)、1.6mg/L(2号)标准溶液浓度值作相对误差;与浊度液浓度值作加标回收率,见图4;
本发明提供的浊度补偿方法能有效检测不同粒径下含500NTU浊度内的总磷浓度,且误差均小于±10%,浊度加标回收均在90%-110%之间,提升了在不同复杂水质下总磷监测的适应能力。

Claims (1)

1.一种可应用于含浊度样品的总磷在线监测补偿方法,其特征在于按以下步骤进行:
(1)、配制一种有效模拟实际浊度水样的干扰模型;
①选用白陶土模拟实际水样的浊度组分,一是白陶土具有吸附性,水体中的总磷易吸附于该颗粒物质上,二是白陶土具有不溶于水、酸和碱的特性,故而在后续的总磷和浊度液混标测试过程中不易被反应而失去干扰意义;
②总磷浊度干扰组分的配制:称取10g 200目、600目和1250目三种目数下的白陶土,作为浊度母液;
200目、600目和1250目分别表示颗粒物的不同粒径,目数越大,粒径越小;
③分别量取50mL总磷氧化剂对上述三种不同粒径的白陶土进行加热氧化处理,直至氧化剂挥发完全,白陶土呈黏糊状,待其冷却后加入800mL不含磷的蒸馏水;
④对上述三种悬浊液进行封盖静置3~7天,观察其上清液变化,待上清液完全清澈后,取少量上清液测试其总磷浓度;
⑤若上清液总磷浓度≤0.1mg/L,则将上清液倒去,底部白陶土和少量悬浊液加入蒸馏水定容至1000mL,移至广口瓶中存放,记为浊度母液;
⑥若上清液总磷浓度>0.1mg/L,重复②→③→④步骤;
⑦上述配制过程能有效的去除白陶土中存在的总磷物质;
(2)、总磷和浊度混标的配制:
选择890nm作为总磷监测的特征波长,并且使用同为红外波段的1050nm作为浊度补偿波长;
①配制已知浓度的总磷标准溶液:0.2mg/L和1.6mg/L;
②分别稀释步骤(1)中配制的不同目数浊度母液,形成:
200目(100NUT/200NTU/300NTU/400NTU/500NTU)、
600目(100NUT/200NTU/300NTU/400NTU/500NTU)和
1250目(100NUT/200NTU/300NTU/400NTU/500NTU);
③使用步骤(2)中②稀释的浊度液配制含磷溶液:0.2mg/L和1.6mg/L,即得到了总磷和浊度混标;
④测定①、②、③步骤配制的溶液,在显色前后分别检测其在890nm和1050nm的吸光度,记为I890显色前、I1050显色前、I890显色后和I1050显色后;
其吸光度算法为:A=log(I890显色前/I890显色后)-log(I1050显色前/I1050显色后);
⑤以标准溶液为参照,计算总磷和梯度浊度混标与之相对误差,即含总磷+梯度浊度混标的准确度;加标回收率,即梯度浊度液加入磷标液回收几何。
CN202210302839.5A 2022-03-24 2022-03-24 一种可应用于含浊度样品的总磷在线监测补偿方法 Pending CN114705653A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210302839.5A CN114705653A (zh) 2022-03-24 2022-03-24 一种可应用于含浊度样品的总磷在线监测补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210302839.5A CN114705653A (zh) 2022-03-24 2022-03-24 一种可应用于含浊度样品的总磷在线监测补偿方法

Publications (1)

Publication Number Publication Date
CN114705653A true CN114705653A (zh) 2022-07-05

Family

ID=82171371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210302839.5A Pending CN114705653A (zh) 2022-03-24 2022-03-24 一种可应用于含浊度样品的总磷在线监测补偿方法

Country Status (1)

Country Link
CN (1) CN114705653A (zh)

Similar Documents

Publication Publication Date Title
Tiessen et al. An improved method for the determination of carbon in soils and soil extracts by dry combustion
Yu et al. Determination of dissolved organic nitrogen using persulfate oxidation and conductimetric quantification of nitrate‐nitrogen
Guilizzoni et al. Plant pigment ratios from lakes sediments as indicators of recent acidification in alpine lakes
Hirayama et al. Spectrophotometric catalytic determination of an ultratrace amount of iron (III) in water based on the oxidation of N, N-dimethyl-p-phenylenediamine by hydrogen peroxide
CN109705869B (zh) 复合量子点比率荧光探针对银离子的灵敏选择性检测方法
CN103743735A (zh) 一种比色法检测、富集与分离水环境重金属Hg2+的方法
CN112098348B (zh) 应用于高浊度水体在线监测的总磷浊度补偿方法
CN110646495A (zh) 一种检测血液样品中维生素含量的卷积电流伏安法
CN113218902A (zh) 一种过氧化氢残留浓度在线自动监测方法及其装置
CN114705653A (zh) 一种可应用于含浊度样品的总磷在线监测补偿方法
Li et al. Intercomparison and coupling of magnesium-induced co-precipitation and long-path liquid-waveguide capillary cell techniques for trace analysis of phosphate in seawater
CN112179858A (zh) 基于浊度补偿技术的水质检测方法
Davison et al. Rapid colorimetric procedure for the determination of acid volatile sulphide in sediments
Ballinger et al. Application of silver diethyldithiocarbamate method to determination of arsenic
CN112326647A (zh) 一种基于三氧化钼的磷含量检测试剂及其制备方法和检测方法
Fernandez-de Cordova et al. Determination of Trace Amounts of Cobalt at sub-μg 1− 1Level by Solid Phase Spectrophotometry
CN111855645A (zh) 一种高压消解-电感耦合等离子体光谱仪联合测定土壤中磷的方法
CN113030080A (zh) 一种储藏过程中稻谷新鲜度的评价方法
Goldstein et al. Spectrophotometric analysis with the GeMSAEC fast analyzer. Determination of zinc using 4-(2-pyridylazo) resorcinol (PAR)
Heanes Determination of nitrate in soil and water by an adaptation of an Orange I method
CN110514609A (zh) 固体食品样品中铅金属元素的分析检测方法
CN110426390B (zh) 一种面粉中过氧化苯甲酰的检测方法
Tavallali et al. Design and Evaluation of a Mercury (II) Optode Based on Immobilization of 1-(2-Pyridylazo)-2-Naphthol on a Triacetylcellulose Membrane and Determination in Various Samples.
CN109900652B (zh) 一种食品中双乙酸钠的快速检测方法
緑川貴 et al. Theoretical Approaches to Determination of Copper Complexation of Strong Ligands in Natural Waters. I. Thermodynamic calculations of complexing abilities based on two different measurements: copper determination and copper titration.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 311300 Room 401, 4th Floor, Building 1, No. 36 Binhe Road, Qingshanhu Street, Lin'an District, Hangzhou City, Zhejiang Province

Applicant after: Zhejiang Zhuosheng Environmental Technology Co.,Ltd.

Address before: Room 604, block B, No. 958, Dayuan Road, Qingshanhu street, Lin'an City, Hangzhou City, Zhejiang Province, 311300

Applicant before: Zhejiang Zhuosheng Environmental Technology Co.,Ltd.