CN114699325A - 预防正畸牙釉质损伤的新型釉质粘结方法 - Google Patents

预防正畸牙釉质损伤的新型釉质粘结方法 Download PDF

Info

Publication number
CN114699325A
CN114699325A CN202210157161.6A CN202210157161A CN114699325A CN 114699325 A CN114699325 A CN 114699325A CN 202210157161 A CN202210157161 A CN 202210157161A CN 114699325 A CN114699325 A CN 114699325A
Authority
CN
China
Prior art keywords
enamel
amphiphilic
coating
dehydration
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210157161.6A
Other languages
English (en)
Other versions
CN114699325B (zh
Inventor
桑婷
彭诗芸
伍军
王慧慧
蔡灏
黄臻
程鑫燚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affiliated Stomatological Hospital Of Nanchang University (jiangxi Stomatological Hospital)
Original Assignee
Affiliated Stomatological Hospital Of Nanchang University (jiangxi Stomatological Hospital)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affiliated Stomatological Hospital Of Nanchang University (jiangxi Stomatological Hospital) filed Critical Affiliated Stomatological Hospital Of Nanchang University (jiangxi Stomatological Hospital)
Priority to CN202210157161.6A priority Critical patent/CN114699325B/zh
Publication of CN114699325A publication Critical patent/CN114699325A/zh
Application granted granted Critical
Publication of CN114699325B publication Critical patent/CN114699325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Cosmetics (AREA)

Abstract

本发明提供了一种预防正畸牙釉质损伤的新型釉质粘结方法,其包括:制备不同浓度的两亲性抗菌肽;牙釉质表面先用喷雾冲洗,风干,酸蚀,再用喷雾冲洗;75%乙醇脱水后,使用5 mg/mL两亲性抗菌肽涂层;经乙醇梯度浓度脱水后,使用5 mg/mL两亲性抗菌肽涂层,重复乙醇梯度浓度脱水后,再次使用5 mg/mL两亲性抗菌肽涂层;牙釉质表面直接使用10 mg/mL两亲性抗菌肽涂层;经乙醇梯度浓度脱水后,使用10 mg/mL两亲性抗菌肽涂层,重复乙醇梯度浓度脱水,再次使用10 mg/mL两亲性抗菌肽涂层;本发明的粘结方法不仅抗渗透、抗菌、防脱矿,还能减少粘结剂残留、不影响粘结强度,具备良好的稳定性。

Description

预防正畸牙釉质损伤的新型釉质粘结方法
技术领域
本发明属于牙釉质粘结技术领域,具体涉及一种预防正畸牙釉质损伤的新型釉质粘结方法。
背景技术
错颌畸形是口腔常见的三大疾病(龋病、牙周病、牙颌畸形)之一,固定正畸治疗是目前世界上应用最广泛的治疗错合畸形的方式。但是固定矫治器使用时,由于口腔环境的影响,不能很好地控制托槽周围卫生就容易造成治疗中出现大量菌斑堆积牙釉质脱矿[1],釉质脱矿白斑损伤(WSL)的发生就是长时间菌斑聚集在受影响的釉质表面的结果[2],研究人员尝试在粘结剂加入氟化物[3,4]或牙釉质表面光照处理、涂层等[5-8]多种方式,但仍存在抗菌性不佳,抗渗透性及稳定性较差,防脱矿效果差的问题。同时正畸固定矫治完成,进入被动保持阶段,托槽等固定装置需全部去除,此时易残留粘结剂,且去除残留的粘结剂时,对牙釉质也会造成一定的损伤[9,10]。因此,目前亟需一种牙釉质表面兼顾抗菌、防脱矿与减少粘结剂残留量的新型托槽粘结方法。
目前国内外对正畸治疗过程中牙釉质脱矿的预防措施的研究主要集中于抗菌托槽和粘结剂上,一些学者尝试将具有抗菌功能的氟[3,4]、洗必肽[11]、羧甲基壳聚糖银[12]、含锶强化生物活性玻璃陶瓷[13]、新型季铵盐单体等添加到粘结剂和正畸托槽中,获得具有抗菌功能的粘结剂和托槽。
银离子是一种具有广谱抗菌性和不易产生耐药性的无机抗菌剂。羧甲基壳聚糖是壳聚糖的一种衍生物,既具备壳聚糖的相关特性,又使壳聚糖的水溶性得以改善,是一种具备良好生物相容性、生物活性、广谱抗菌性及水溶性的有机抗菌剂。将羧甲基壳聚糖与银离子相结合可得到羧甲基壳聚糖银[12],使其同时具有有机抗菌剂和无机抗菌剂的优点,且对银离子有缓释作用。将羧甲基壳聚糖银添加到正畸釉质粘结剂中,安全无毒,提高了托槽的抗菌能力。
将羧甲基壳聚糖银添加到正畸釉质粘结剂中,所得粘结剂抗菌程度有限,在不同程度上影响了粘结强度,粘结剂残留指数高,无法减少粘结剂残留且粘接剂的抗渗透性和稳定性较差。
氟化物是临床常用的有效的防龋物质,氟化物的应用可以抑制釉质脱矿的发生并促进釉质的再矿化[14]。将氟化钠与水溶性的甲基丙烯酸羟乙酯混合,从而生成一种新型粘接材料,此新型粘接材料可以和水竞争渗入到牙釉质和牙本质中,防龋的同时满足临床所需要的粘结强度。
但氟化物与甲基丙烯酸羟乙酯混合形成的新型粘结材料抗菌程度有限,且粘结剂残留指数高,无法减少粘结剂残留。
对于各种抗菌粘结剂的研究结果证明,随着具有抗菌功能的氟、洗必泰、羧甲基壳聚糖银、含锶强化生物活性玻璃陶瓷、新型季铵盐单体等的加入,粘结剂抗菌能力有限,在不同程度上影响了粘结强度且无法减少粘结剂残留。
发明内容
针对现有技术中的不足,本发明的目的是提供一种预防正畸牙釉质损伤的新型釉质粘结方法。
为达到上述目的,本发明的解决方案是:
一种预防正畸牙釉质损伤的新型釉质粘结方法,其包括如下步骤:
(1)两亲性抗菌肽涂层的制备:在碳酸钠缓冲液中制备不同浓度的两亲性抗菌肽涂层;
(2)牙釉质表面的预处理:牙釉质表面先用空气-水喷雾冲洗,轻轻风干,然后用磷酸 (Gluma Etch,Kulzer GmbH,德国)酸蚀,再用空气-水喷雾冲洗,最后风干;
(3)牙釉质表面经乙醇脱水后,分别使用不同浓度的两亲性抗菌肽进行涂层。
优选地,步骤(1)中,两亲性抗菌肽为抗菌肽D-GL13K,抗菌肽D-GL13K的浓度分别为5mg/mL、10mg/mL。
优选地,步骤(2)中,冲洗的时间为15-22s,风干的时间为15-22s。
优选地,步骤(2)中,磷酸的浓度为35wt%。
优选地,步骤(3)中,分别使用不同浓度的两亲性抗菌肽进行涂层的过程为:
a.利用75%乙醇脱水后,使用5mg/mL两亲性抗菌肽涂层(5-EtOH-1coating);
b.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5mg/mL两亲性抗菌肽涂层,等待5min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5mg/mL两亲性抗菌肽涂层(5-De-2coatings);
c.牙釉质表面直接使用10mg/mL两亲性抗菌肽涂层(10-1coating);
d.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10mg/mL两亲性抗菌肽涂层,等待5min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10mg/mL 两亲性抗菌肽涂层(10-De-2coatings)。
(4)完成涂层后,牙釉质表面托槽粘结区域涂疏水性粘结剂Transbond XT预处理剂(3M 公司,美国),光固化10s,再使用Transbond XT粘结剂(3M公司,美国)粘结托槽,光照固化20s,完成托槽粘结。
由于采用上述方案,本发明的有益效果是:
本发明的预防正畸牙釉质损伤的新型釉质粘结方法不仅抗渗透、抗菌、防脱矿,还能减少粘结剂残留、不影响粘结强度,同时具备良好的稳定性,是一种非常值得在正畸临床中研究推广的粘结方法。
附图说明
图1为本发明的使用不同方式将牙釉质表面处理后使用D-GL13K涂层的示意图。
图2为本发明的实施例2中抗菌肽D-GL13K牙釉质涂层的亲疏水性能示意图。
图3为本发明的实施例3中抗菌肽D-GL13K牙釉质涂层抗渗透性的体视显微镜下图。
图4为本发明的实施例3中抗菌肽D-GL13K牙釉质涂层经超声震动后的抗渗透性图。
图5为本发明的实施例3中抗菌肽D-GL13K牙釉质涂层经唾液浸泡和超声震动后的水接触角图。
图6为本发明的实施例3中不同涂层方式染料渗透量的灰度分析图。
图7为本发明的实施例4中抗菌肽D-GL13K牙釉质涂层后托槽剪切粘结力图。
图8为本发明的实施例5中抗菌肽D-GL13K牙釉质涂层的抗菌性图。
图9为本发明的实施例6中抗菌肽D-GL13K牙釉质涂层的抗脱矿性能图。
具体实施方式
本发明提供了一种预防正畸牙釉质损伤的新型釉质粘结方法。
实施例1:
抗菌肽D-GL13K涂层的制备
1.抗菌肽D-GL13K溶液的制备
在pH=9.5的Na2CO3缓冲液中制备5mg/mL、10mg/mL浓度的抗菌肽D-GL13K(GKIIKLKASLKLL-NH2,纯度>98%,Bankpeptide生物技术有限公司,合肥,中国)。
2.牙釉质表面的处理方法
牙釉质表面先用空气-水喷雾冲洗20s,轻轻吹干20s,然后用35wt%磷酸(GlumaEtch, Kulzer GmbH,德国)酸蚀20s,再用空气-水喷雾冲洗20s,最后轻轻风干20s。
3.抗菌肽D-GL13K牙釉质涂层的开发
如图1所示,使用不同方式将牙釉质表面处理后涂层不同浓度D-GL13K,观察其疏水性。
a.利用75%乙醇脱水后,使用5mg/mL D-GL13K涂层(5-EtOH-1 coating);
b.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5mg/mL D-GL13K涂层,等待5min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5mg/mL D-GL13K 涂层(5-De-2 coatings);
c.牙釉质表面直接使用10mg/mL D-GL13K涂层(10-1coating);
d.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10mg/mL D-GL13K涂层,等待5min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10mg/mL D-GL13K涂层(10-De-2 coatings);
e.牙釉质表面未涂层(Etched Enamel)(作为对照组)。
实施例2:
抗菌肽D-GL13K涂层的亲疏水性能
通过测量水接触角(WCA),发现D-GL13K涂层在浓度超过5mg/mL时,牙釉质表现出明显的疏水性,其中10-De-2 coatings疏水性最强,平均WCA=117.5°。而5-EtOH-1coating、 5-De-1 coating、5-De-2 coatings、10-1 coating的接触角值相差不大,均表现出明显疏水性(见图2)。从临床操作的便捷性和经济性考虑,利用75%乙醇脱水后,使用5mg/mL D-GL13K 涂层运用可能更具可操作性。
实施例3:
抗菌肽D-GL13K牙釉质涂层的抗渗透性及稳定性
与涂层牙釉质相比,染料透过牙釉质表面进入对照组牙釉质的部位更深(见图3)。与非涂层界面相比,D-GL13K涂层界面显著降低了渗透染料的体积(p<0.05)(见图6)。新鲜人类唾液是一种消化水解介质,含有生物降解成分,包括蛋白水解酶,如酯酶等。D-GL13K涂层经新鲜唾液浸泡3天或在水中超声震动9min后,牙釉质仍维持疏水性(见图4和图5)。 D-GL13K涂层牙釉质经超声震动后表面接触角减小,但仍然具有疏水性,说明机械降解会去除一部分表面的D-GL13K涂层,但仍会保留一部分渗透进釉柱的D-GL13K。同时,D-GL13K 涂层牙釉质在超声震动后仍然具有抗渗透性,进一步说明肽涂层在机械降解下的稳定性。而唾液浸泡实验中接触角的减小量明显小于超声振动实验,说明机械刺激对涂层的影响要大于唾液水解酶降解的影响。
实施例4:
抗菌肽D-GL13K牙釉质涂层对托槽粘结的影响
粘结强度是评价粘结系统粘结性能的最重要指标。采用剪切粘结强度(SBS)、粘接残余指数(ARI)和扫描电镜(SEM)检测涂层的粘接性能。SBS利用抗剪切强度(MPa)表示,抗剪切强度(MPa)=抗剪切力(N)/托槽底板面积(mm2),采用Instron测试测量抗剪切性能力,结果如图7。正畸粘结剂的釉质粘结强度应在8Mpa至9Mpa左右,经过Instron测试,不同涂层的粘结强度均在这个范围内。未涂层的对照组与涂层实验组间粘结强度差异虽然没有统计学意义,但是D-GL13K涂层的实验组粘结强度要稍大,这样临床应用托槽粘结,脱落率将会降低,可以提高正畸治疗的效率。
对于一个良好的正畸粘结系统,不仅粘结强度必须足够高,还需要在拆除固定矫治器时对牙齿不造成损坏。观察粘结剂在牙釉质表面上的残余量,是通过粘结剂残余指数(ARI) 评估的。ARI越小,说明牙釉质表面残余粘结剂的量越少。发现D-GL13K涂层牙釉质,结合疏水性粘结剂粘结托槽,Instron测试剥脱托槽后,牙釉质表面残余粘结剂明显减少(见表1)。减少牙釉质表面粘结剂的残余量,可以从根本上减少由于去除正畸固定矫治器对牙釉质造成的损伤。
表1各组ARI评分频次分布表
Figure RE-GDA0003636408490000051
实施例5:
抗菌肽D-GL13K牙釉质涂层的抗菌性及减少脱矿作用
D-GL13K是具有高含量β-折叠(>32%)构象的分子肽,它固定化自组装后,能够将亲水性界面转化为高疏水性界面,不仅对抵抗水解降解至关重要,而且对抵抗修复体边缘的细菌也至关重要。虽然材料疏水性与抗菌性没有必然的联系,但是一些特定结构的疏水性材料与其的抗菌性明显相关。D-GL13K其抗菌效力与它形成的高疏水性结构相关。为研究D-GL13K在牙釉质表面的抗菌性,采用口腔中公认的致龋菌变形链球菌做抗菌实验。菌落形成单位(CFU)表示单位体积内活菌数。6h细菌培养结果(见图8)表明,D-GL13K涂层组细菌存活量明显小于对照组,说明该涂层具有抗菌功能。
采用OCT检测细菌培养4天后的牙釉质表面脱矿情况(见图9)。OCT是一种高分辨率、非创伤性成像技术,能灵敏地反映折射率的变化,可以无损地提供样品结构的特征,是一种有效的研究牙齿脱矿的工具。本实验中酸蚀未涂层组光透射量明显大于D-GL13K涂层组,说明该涂层可以有效减少牙釉质脱矿,但是不同浓度D-GL13K以不同方式涂层的最终抗牙釉质脱矿效果差别没有统计学意义,因此从临床操作和经济适用考虑,建议临床使用5-EtOH-1 coating方式涂层。
参考文献(如专利/论文/标准)
1.Chapman JA,Roberts WE,Eckert GJ,Kula KS,Gonzalez-Cabezas C.Riskfactors for incidence and severity of white spot lesions during treatmentwith fixed orthodontic appliances.Am J Orthod Dentofacial Orthop. 2010;138(2):188-94.
2.Brown MD,Campbell PM,Schneiderman ED,Buschang PH.A practice-basedevaluation of the prevalence and predisposing etiology of white spotlesions.Angle Orthod.2016;86(2):181-6.
3.Emerenciano NG,Botazzo Delbem AC,Pessan JP,Nunes GP,Souza Neto FN,de Camargo ER,et al.In situ effect of fluoride toothpaste supplemented withnano-sized sodium trimetaphosphate on enamel demineralization prevention andbiofilm composition.Arch Oral Biol.2018;96:223-9.
4.Sardana D,Zhang J,Ekambaram M,Yang Y,McGrath CP,YiuCKY.Effectiveness of professional fluorides against enamel white spot lesionsduring fixed orthodontic treatment:A systematic review and meta-analysis.JDent.2019;82:1-10.
5.Benson PE,Alexander-Abt J,Cotter S,Dyer FMV,Fenesha F,Patel A,etal.Resin-modified glass ionomer cement vs composite for orthodontic bonding:Amulticenter,single-blind,randomized controlled trial.Am J Orthod DentofacialOrthop.2019;155(1):10-8.
6.Khan AR,Fida M,Gul M.Decalcification and bond failure rate in resinmodified glass ionomer cement versus conventional composite for orthodonticbonding:A systematic review&meta-analysis.Int Orthod. 2020;18(1):32-40.
7 Perdigao J,Munoz MA,Sezinando A,Luque-Martinez IV,Staichak R,ReisA,et al.Immediate adhesive properties to dentin and enamel of a universaladhesive associated with a hydrophobic resin coat.Oper Dent. 2014;39(5):489-99.
8.Chen X,Hirt H,Li Y,Gorr SU,Aparicio C.Antimicrobial GL13K peptidecoatings killed and ruptured the wall of Streptococcus gordonii and preventedformation and growth of biofilms.PLoS One.2014;9(11):e111579.
9.Yaseen SN,Taqa AA,Al-Khatib AR.The effect of incorporation NanoCinnamon powder on the shear bond of the orthodontic composite(an in vitrostudy).J Oral Biol Craniofac Res.2020;10(2):128-34.
10.Daneshkazemi P,Sadeghian S,Khodaei M.Shear bond strength oforthodontic brackets on intact and demineralized enamel after application ofresin infiltrant,fluoride varnish and casein phosphopeptide-amorphous calciumphosphate remineralizing agents:in-vitro study.Int Orthod.2021;19(2):259-68.
11.
Figure RE-GDA0003636408490000061
F,Krasse B.Streptococcus mutans and lactobacilli frequencyin orthodontic patients;the effect of chlorhexidine treatments.EuropeanJournal of Orthodontics.
12.Men JX,Yang DS,Zhao G.Antibacterial Properties and Bond Strengthof Experimental silver carboxymethyl chitosan-containing OrthodonticCements.Studies of Trace Elements and Health.2018,35(02):6-8.
13.Wang YL,Chang HH,Chiang YC,Lin CH,Lin CP.Strontium ion cansignificantly decrease enamel demineralization and prevent the enamel surfacehardness loss in acidic environment.J Formos Med Assoc. 2019;118(1Pt 1):39-49.
14.Su L,Bai YX,Li S.Setting characteristics and shear bond strengthof a new acrylic-based cement as a potential orthodontic bondingagent.Beijing Journal of Stomatology.2010;18(6);315-318.
最后应说明的是:以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种预防正畸牙釉质损伤的新型釉质粘结方法,其特征在于:其包括如下步骤:
(1)两亲性抗菌肽涂层的制备:在碳酸钠缓冲液中制备不同浓度的两亲性抗菌肽;
(2)牙釉质表面的预处理:牙釉质表面先用空气-水喷雾冲洗,轻轻风干,然后用磷酸酸蚀,再用空气-水喷雾冲洗,最后风干;
(3)牙釉质表面经乙醇脱水后,分别使用不同浓度的两亲性抗菌肽进行涂层。
2.根据权利要求1所述的预防正畸牙釉质损伤的新型釉质粘结方法,其特征在于:步骤(1)中,所述两亲性抗菌肽为抗菌肽D-GL13K,抗菌肽D-GL13K的浓度分别为5 mg/mL、10 mg/mL。
3.根据权利要求1所述的预防正畸牙釉质损伤的新型釉质粘结方法,其特征在于:步骤(2)中,所述冲洗的时间为15-22 s,风干的时间为15-22 s。
4.根据权利要求1所述的预防正畸牙釉质损伤的新型釉质粘结方法,其特征在于:步骤(2)中,所述磷酸的浓度为35 wt%。
5.根据权利要求1所述的预防正畸牙釉质损伤的新型釉质粘结方法,其特征在于:步骤(3)中,所述分别使用不同浓度的两亲性抗菌肽进行涂层的过程为:
a.利用75% 乙醇脱水后,使用5 mg/mL 两亲性抗菌肽涂层(5-EtOH-1 coating);
b.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5 mg/mL 两亲性抗菌肽涂层,等待5 min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用5 mg/mL 两亲性抗菌肽涂层(5-De-2 coatings);
c.牙釉质表面直接使用10 mg/mL 两亲性抗菌肽涂层(10-1 coating);
d.经乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10 mg/mL 两亲性抗菌肽涂层,等待5 min,再次使用乙醇梯度(50%、70%、80%、95%和100%)脱水后,使用10mg/mL两亲性抗菌肽涂层(10-De-2 coatings)。
CN202210157161.6A 2022-02-21 2022-02-21 预防正畸牙釉质损伤的新型釉质粘结方法 Active CN114699325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210157161.6A CN114699325B (zh) 2022-02-21 2022-02-21 预防正畸牙釉质损伤的新型釉质粘结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210157161.6A CN114699325B (zh) 2022-02-21 2022-02-21 预防正畸牙釉质损伤的新型釉质粘结方法

Publications (2)

Publication Number Publication Date
CN114699325A true CN114699325A (zh) 2022-07-05
CN114699325B CN114699325B (zh) 2023-12-29

Family

ID=82167628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210157161.6A Active CN114699325B (zh) 2022-02-21 2022-02-21 预防正畸牙釉质损伤的新型釉质粘结方法

Country Status (1)

Country Link
CN (1) CN114699325B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106361579A (zh) * 2016-11-10 2017-02-01 李雨阳 一种牙齿表面自清洁抗粘附涂层的制作方法
US20170367933A1 (en) * 2016-06-24 2017-12-28 Regents Of The University Of Minnesota Hydrophobic dental surfaces
US20180051061A1 (en) * 2016-08-18 2018-02-22 Board Of Regents Of The University Of Nebraska Anti-Microbial Peptides and Coatings
CN111773439A (zh) * 2020-05-21 2020-10-16 陕西师范大学 一种可有效固定阳离子抗菌剂且抗细菌生物膜的生物友好型抗菌涂层
AU2020102985A4 (en) * 2020-10-23 2020-12-24 Sichuan University Dual-effect anti-caries polypeptide with functions of resisting to bacteria and promoting remineralization, polypeptide derivative and salt thereof, and application
CN113694255A (zh) * 2021-09-02 2021-11-26 南昌大学附属口腔医院(江西省口腔医院) 一种医用植入物表面有机-无机抗菌复合涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170367933A1 (en) * 2016-06-24 2017-12-28 Regents Of The University Of Minnesota Hydrophobic dental surfaces
US20180051061A1 (en) * 2016-08-18 2018-02-22 Board Of Regents Of The University Of Nebraska Anti-Microbial Peptides and Coatings
CN106361579A (zh) * 2016-11-10 2017-02-01 李雨阳 一种牙齿表面自清洁抗粘附涂层的制作方法
CN111773439A (zh) * 2020-05-21 2020-10-16 陕西师范大学 一种可有效固定阳离子抗菌剂且抗细菌生物膜的生物友好型抗菌涂层
AU2020102985A4 (en) * 2020-10-23 2020-12-24 Sichuan University Dual-effect anti-caries polypeptide with functions of resisting to bacteria and promoting remineralization, polypeptide derivative and salt thereof, and application
CN113694255A (zh) * 2021-09-02 2021-11-26 南昌大学附属口腔医院(江西省口腔医院) 一种医用植入物表面有机-无机抗菌复合涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DINA G. MOUSSA ETC.: "hydrophobic and antimicrobial dentin:A peptide-based 2-tier proactive system for dental resin composite restorations", ACTA BIOMATERIALIA, vol. 88, pages 251 - 265 *

Also Published As

Publication number Publication date
CN114699325B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
Bapat et al. The use of nanoparticles as biomaterials in dentistry
Khoroushi et al. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer
EP3027164B1 (en) Formulations and materials with cationic polymers
Alhilou et al. Physicochemical and antibacterial characterization of a novel fluorapatite coating
Dorozhkin Dental applications of calcium orthophosphates (CaPO4)
Dorozhkin Calcium orthophosphates (CaPo4) and dentistry
Fang et al. Biocompatibility and antibacterial properties of zinc-ion implantation on titanium
WO2010143075A2 (en) Dental uses of silver hydrosol
JPH04250164A (ja) 誘導組織再生へのガラスイオノマーセメントの使用
US8932060B2 (en) Dental treatment method
Tarim et al. Biocompatibility of Optibond and XR-Bond adhesive systems in nonhuman primate teeth.
CN114699325B (zh) 预防正畸牙釉质损伤的新型釉质粘结方法
Yang et al. Nanotechnology in dental therapy and oral tissue regeneration
Wittrig et al. Fibroblastic growth and attachment on hydroxyapatite-coated titanium surfaces following the use of various detoxification modalities. Part I: Noncontaminated hydroxyapatite
Talal et al. Enamel etching and dental adhesives
Dai et al. An epigallocatechin gallate–amorphous calcium phosphate nanocomposite for caries prevention and demineralized enamel restoration
Shetty et al. Applications of chitosan in dentistry
Ibrahim et al. Biomimetic enamel remineralization using chitosan hydrogel (an in vitro study)
JPH09103478A (ja) 医科用または歯科用硬化性材料
Tan et al. A novel rapidly mineralized biphasic calcium phosphate with high acid-resistance stability for long-term treatment of dentin hypersensitivity
Toledano et al. Hydrophilic Nonwoven Nanofibers Membrane for Promoting Bone Regeneration
Butera et al. THE EFFECT OF SIX DIFFERENT PREVENTIVE TREATMENTS ON THE SHEAR BOND STRENGTHS OF ORTHODONTIC BRACKETS: AN IN VITRO STUDY.
EP2392315B1 (en) Conditioning composition for treatment of dental implant surfaces
EP2392313B1 (en) Conditioning composition for treatment of mineralised dental and dental implant surfaces
Keskin et al. Bond strength of Ion-releasing Restorative Materials to Sound and Caries-affected Dentin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant