CN114699095A - 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法 - Google Patents

表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法 Download PDF

Info

Publication number
CN114699095A
CN114699095A CN202111209231.XA CN202111209231A CN114699095A CN 114699095 A CN114699095 A CN 114699095A CN 202111209231 A CN202111209231 A CN 202111209231A CN 114699095 A CN114699095 A CN 114699095A
Authority
CN
China
Prior art keywords
grid
micropore
hollow
fiber
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111209231.XA
Other languages
English (en)
Inventor
任宏宇
陈龙
石攀
王梓舟
黄康胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Building Materials Optical Core Technology Co ltd
Original Assignee
China Building Materials Optical Core Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Building Materials Optical Core Technology Co ltd filed Critical China Building Materials Optical Core Technology Co ltd
Priority to CN202111209231.XA priority Critical patent/CN114699095A/zh
Publication of CN114699095A publication Critical patent/CN114699095A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法,属于X射线诊断成像设备领域。本发明采用的技术方案是:由多块高铅当量的玻璃微孔阵列单元拼接而成,玻璃微孔阵列单元上均布微孔通道,玻璃微孔阵列单元为厚度3mm、边长d的正六边形,d为10~20mm,玻璃微孔阵列单元上、下表面磁控溅射钨,形成有100~200nm厚度的金属钨镀层,微孔通道内原子层沉积二氧化铪,形成20nm的二氧化铪薄膜。本发明制得的滤线栅格光纤面板,相比采用铅玻璃直接制作微孔阵列作为滤线栅中空单元块,具有更好防散射性能,能够更好的提高图像对比度和分辨率,有利于消除摩尔纹现象对图像质量的影响。

Description

表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法
技术领域
本发明涉及一种表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法,属于X射线诊断成像设备领域。
背景技术
在X射线成像中广泛使用防散射滤线栅(grid)来增强图像质量。从点源发射的X射线穿过患者或物体,然后在合适的X射线检测器中加以检测。X射线成像通过X射线检测器上的位置检测X射线的强度而工作。具有较小光强度的较暗区域对应于物体中的较高密度或较大厚度区域,而具有较大光强度的较亮区域则对应于物体中的较低密度或较小厚度区域。这种方法依赖于穿过物体或被吸收的X射线。但是,X射线也可能在患者或物体中经历散射过程,主要是康普顿散射。这些散射后的X射线生成图像噪声,降低了图像的质量。为了减少这部分散射X射线的影响,采用在滤线栅表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的方法来达到更好的防散射性能。传统的防散射滤线栅防散射性能差,一般采用铅条和铝条交叉叠在一起制作而成,或者在碳钎维基板上切割凹槽再进行灌铅后封装而成。
防散射滤线栅性能的主要度量之一是定量改善因子(QIF,quantum improvementfactor),其中QIF=Tp2/Tt。Tp为滤线栅的一次辐射透过率,Tt是总辐射透过率。当QIF≥1时,表示滤线栅能够改善图像质量,而QIF<1时,表示滤线栅实际上对图像质量有损害。
防散射滤线栅的首要设计度量是线频率、线厚度和滤线栅高度,通常将它们称作栅格比。通常以线/cm为单位表示的线频率给出在给定距离中吸收材料带的数量。线厚度正好是吸收铅条的厚度,它通常用微米为单位表示。栅格比是滤线栅高度与空隙距离(一对滤线栅线之间的低吸收材料的量)之比。在制造滤线栅时所使用的材料以及滤线栅覆盖物的类型和厚度也会影响滤线栅性能,滤线栅覆盖物是用于包裹滤线栅以提供机械支撑的非活性薄片。在设计防散射滤线栅时,由于制造精度的局限性,用非常薄的铅条制造滤线栅存在限制,所以滤线栅线总是比需要的厚,从而影响成像效果。另外一种利用细锯来在石墨衬底中开槽并用铅填充这些槽来制作滤线栅同样也受到制造精度的限制。
其中,磁控溅射是近年来实现工业应用过程中,利用率较多的一种物理气相沉积技术,磁控溅射镀膜是指在真空条件下,利用获得功能的粒子轰击靶材料表面,使靶材表面原子获得足够的能量而逃逸的过程。被溅射的靶材沉积到基材表面,就称作溅射镀膜。
在现有方法中,通常采用原子层沉积(ALD)工艺制造二氧化铪材料层。ALD工艺中工艺气体采用脉冲式充入到反应腔中并且每次反应都形成一层单原子材料层,重复多次形成由多层单原子材料层叠加而成的结构。
目前,尚未涉及到一种采用高铅当量玻璃微孔阵列技术并在表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的制造方法来制作大面积聚焦式X射线防散射滤线栅。
中国专利CN201811244832.2公布了一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法。该涂层在基材表面由底部到顶部依次包括红外反射层、吸收层和减反射层,所述红外反射层为金属钨W或金属钼Mo ,所述吸收层为二硼化铪HfB2和二氧化铪HfO2的复合陶瓷,所述复合陶瓷中二硼化铪HfB2和二氧化铪HfO2均为非晶态,所述二硼化铪HfB2和二氧化铪HfO2的复合陶瓷吸收层是由直流磁控溅射二硼化铪HfB2所得,二氧化铪HfO=由二硼化铪HfB2部分氧化得到,所述减反射层为氧化铝Al2O3
发明内容
本发明提供一种表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法,在滤线栅格表面磁控溅射钨、微孔通道内原子层沉积二氧化铪,提高滤线栅的防散射性能、提高成像对比度、降低图像噪声。
为实现上述目的,本发明采用的技术方案是:
表面溅射钨、微孔内沉积二氧化铪的滤线栅格,由多块高铅当量的玻璃微孔阵列单元拼接而成,玻璃微孔阵列单元上均布微孔通道,玻璃微孔阵列单元为厚度3mm、边长d的正六边形,d为10~20mm,玻璃微孔阵列单元上、下表面磁控溅射钨,形成有100~200nm厚度的金属钨镀层,微孔通道内原子层沉积二氧化铪,形成20nm的二氧化铪薄膜。
微孔通道的中心线与整块玻璃微孔阵列单元间形成不同的微孔角度α, 其中处于整块滤线栅格中心位置处的微孔通道都与X射线保持平行,即微孔角度α为90°,从中心处微孔通道向外逐块璃微孔阵列单元上的微孔通道与整块光纤面板间微孔角度α为
Figure RE-429043DEST_PATH_IMAGE001
Figure RE-533134DEST_PATH_IMAGE002
…、
Figure RE-312871DEST_PATH_IMAGE003
Figure RE-708081DEST_PATH_IMAGE004
,n为整数且n≥1。
制造表面溅射钨、微孔内沉积二氧化铪的滤线栅格的方法,包括以下步骤:
(1)制备Φ27.5~28.5mm、壁厚2mm的芯铅玻璃管,然后采用光纤拉制机拉制成外径为Φ2.62±0.01mm、长度为820mm的空芯纤维单丝;
(2)选用铅玻璃棒采用光纤拉制机拉制成外径为Φ0.45±0.008mm、长度为820mm的实芯丝;
(3)将37根空芯纤维单丝和54根实芯丝在排成复丝棒,其中实芯丝作为空芯丝的间隙丝,将排棒完成的空芯纤维单丝与实芯丝捆绑固定,形成一个复丝棒整体;
(4)采用光纤拉制机拉制此复丝棒成为对边长为1.22±0.01mm光纤复丝,然后将光纤复丝断成多段一定长度的复丝;
(5)取m根复丝在正六边形的排板模具中排出对边根数为17的六边形纤维阵列板,并将两端捆绑固定成纤维阵列板装入专业模具中并放入真空炉中熔板,熔板温度在480~510℃,形成六边形空芯阵列板,空芯阵列板上有均布的纤维通道;
(6)将六边形空芯阵列板的纤维通道内填充上可溶性填充材料并进行固化,然后按相同厚度不同微孔角度进行切割,最后磨抛制得出表面光滑的滤线栅中空块单元;
(7)将滤线栅中空单元块通过超声波清洗掉纤维通道内的可溶性填充材料,最终制得结构均匀的滤线栅中空块,纤维通道形成微孔通道;
(8)将不同微孔角度的滤线栅中空块按指定位置进行排列拼接在一个平面上,并进行粘合后形成一个大面积聚焦式滤线栅格光纤面板。
(9)在滤线栅格微孔通道内沉积HfO2,二氧化铪HfO2为非晶态,先将滤线栅格清洗吹干,将滤线栅加热到200℃,向沉积室中引入HfCl4,以制备所需厚度的氧化铪薄膜,用氮气清洗沉积室,并向沉积室中引入水蒸汽,沉积时间为4h,沉积完毕后退火,从而得到在滤线栅格微孔通道内沉积20nm的二氧化铪薄膜。
(10)将滤线栅格的侧面和微孔通道进行遮挡,将遮挡后的滤线栅格通过导轨送入磁控溅射腔室,开启磁控溅射腔室的真空泵抽真空,真空度为1.0~9.0×10-3Pa,确保该磁控溅射装置封闭,磁控溅射腔室开始工作,溅射电流为2~10A,时间为1~5h,同时开启加热,使温度恒定在100~400℃,以此将靶材钨溅射到滤线栅格的上、下表面,当磁控溅射腔室完成镀膜,等待0.2~2h冷却后开炉,得到在上、下表面分别镀有100~200nm厚度的金属钨的滤线栅格;
(11)通过上述步骤最终得到在表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的表面溅射钨、微孔内沉积二氧化铪的滤线栅格。
作为制造方法的优选,步骤(1)中,拉制前先采用冷加工设备对铅玻璃管进行内外径加工,使空芯铅玻璃管的外径达到Φ27.5~28.5mm,壁厚2mm,并对内外壁进行抛光,使表面粗糙度达到10纳米级。
作为制造方法的优选,步骤(3)中,复丝棒用生料带和铝箔捆绑固定,步骤(5)中,对边根数为17的六边形纤维阵列板采用铜丝将两端捆绑固定。
作为制造方法的优选,步骤(6)磨抛制得出表面光滑的滤线栅中空块单元放入精雕机中进行轮廓修正,制得尺寸及精度一致的滤线栅中空单元块。
作为制造方法的优选,步骤(8)中滤线栅中空块通过紫外固化胶进行粘合,形成一个大面积聚焦式滤线栅格光纤面板。
作为制造方法的优选,步骤(9)中:所述铪源为HfCl4,氧源为H2O,采用HfCl4和H2O作为反应前驱体,所述向沉积室中引入HfCl4,可根据实际需要多次重复引入。
作为制造方法的优选,步骤(10)中将滤线栅格的侧面和微孔通道遮挡后送入磁控溅射腔室进行溅射镀层。
本发明所提供的工艺方法,所制得的滤线栅格光纤面板,栅格结构稳固、排列规整、通道内壁超光滑、微孔阵列通道一致性高且面积较大,在此空芯阵列基底上用制作的滤线栅具备高对比度、高分辨率的优势,而在滤线栅格表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的制造方法,相比采用铅玻璃直接制作微孔阵列作为滤线栅中空单元块,具有更好防散射性能,能够更好的提高图像对比度和分辨率,有利于消除摩尔纹现象对图像质量的影响。此外,由于X射线并不是垂直打在滤线栅面板上的每一个点,距离滤线栅中心位置越远的地方一次辐射透过率Tp越低;而采用本发明制作出的大面积聚焦式滤线栅能够大幅度的提高一次辐射透过率Tp且降低散射辐射透过率Ts。
根据金属钨的物理特性,在滤线栅格表面镀钨的制造方法可以有效屏蔽X射线在滤线栅格表面非微孔通道部分的入射,减少对微孔通道内X射线的干扰,以此达到更好的准直效果,提高三维聚焦玻璃基滤线栅的图像对比度和分辨率。
由于二氧化铪薄膜的光学特性,在微孔通道内沉积二氧化铪可以尽可能地降低光学系统中由于不同介质之间折射率差异引起的反射现象,改变入射杂散光原有的反射过程,而有效地降低界面处的反射率,从而提高图像质量和清晰度,提高三维聚焦玻璃基滤线栅的防散射性能,尽可能消除摩尔纹现象对图像质量的影响。
通过调整每一块光纤中空块的微孔角度来提高一次辐射透过率Tp且降低散射辐射透过率Ts能够大幅度地提高成像对比度和诊断效果。
附图说明
图1是本发明玻璃微孔阵列单元,
图2是大面积聚焦式滤线栅格光纤面板整体结构图,
图3是本发明大面积聚焦式滤线栅格光纤面板在X射线照射下的光线角度图。
附图标记:1、滤线栅格,2、微孔通道,3、X射线源,4、X射线。
具体实施方式
下面对本发明的具体内容进行进一步的说明:
本发明是一种在表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法。
表面溅射钨、微孔内沉积二氧化铪的滤线栅格是由多块高铅当量的玻璃微孔阵列单元拼接而成,并在上下表面上磁控溅射钨、在微孔通道内原子层沉积二氧化铪的结构。
根据金属钨的物理特性,在滤线栅格表面镀钨的制造方法可以有效屏蔽X射线在滤线栅格表面非微孔通道部分的入射,减少对微孔通道内X射线的干扰,以此达到更好的准直效果,提高三维聚焦玻璃基滤线栅的图像对比度和分辨率。
由于二氧化铪薄膜的光学特性,在微孔通道内沉积二氧化铪可以尽可能地降低光学系统中由于不同介质之间折射率差异引起的反射现象,改变入射杂散光原有的反射过程,而有效地降低界面处的反射率,从而提高图像质量和清晰度,提高三维聚焦玻璃基滤线栅的防散射性能,尽可能消除摩尔纹现象对图像质量的影响。
如图1所示,玻璃微孔阵列单元为厚度3mm、边长d的正六边形,d为10~20mm,每一个玻璃微孔阵列单元上均布微孔通道,微孔通道的中心线与整块光纤面板间形成不同的微孔角度α,处于整块光纤面板中央位置的微孔角度α最大为90°,向整块面板一周延伸,每个玻璃微孔阵列单元上的微孔通道的微孔角度α逐渐变小。
具体的,处于整块光纤面板中央位置的微孔角度α最大为90°时,该玻璃微孔阵列单元上的微孔通道都与X射线源保持平行,即微孔角度α为90°,向外延伸至第n块玻璃微孔阵列单元时,微孔通道的中心线与整块光纤面板间α为
Figure RE-RE-DEST_PATH_IMAGE006
Figure RE-955593DEST_PATH_IMAGE006
,n为整数且n≥1。即由中央位置玻璃微孔阵列单元向外逐一延伸时,每块玻璃微孔阵列单元上的微孔通道的中心线与X射线源间α为
Figure RE-RE-DEST_PATH_IMAGE008
Figure RE-685783DEST_PATH_IMAGE008
Figure RE-RE-DEST_PATH_IMAGE010
Figure RE-731099DEST_PATH_IMAGE010
、…、
Figure RE-RE-DEST_PATH_IMAGE012
Figure RE-706402DEST_PATH_IMAGE012
Figure RE-255195DEST_PATH_IMAGE006
Figure RE-608816DEST_PATH_IMAGE006
,n为整数且n≥1。
本发明结合滤线栅格产品微米级精度,通过调整光纤块上的微孔通道角度,使得每一个滤线栅光纤面板栅格单元的中心位置处的微孔通道都与X射线源保持平行,从而提高成像对比度和降低图像噪声。
本发明在滤线栅格的上下表面磁控溅射钨、微孔通道内沉积原子层二氧化铪的方法,包括如下步骤:
(1)先采用冷加工设备对铅玻璃管进行内外径加工,制备Φ27.5~28.5mm、壁厚2mm的芯铅玻璃管,并对内外壁进行抛光,使表面粗糙度达到10纳米级。然后采用光纤拉制机拉制成外径为Φ2.62±0.01mm、长度为820mm的空芯纤维单丝;
(2)选用铅玻璃棒采用光纤拉制机拉制成外径为Φ0.45±0.008mm、长度为820mm的实芯丝;
(3)将37根空芯纤维单丝和54根实芯丝在排成复丝棒,其中实芯丝作为空芯丝的间隙丝,将排棒完成的空芯纤维单丝与实芯丝用生料带和铝箔捆绑固定,形成一个复丝棒整体;
(4)采用光纤拉制机拉制此复丝棒成为对边长为1.22±0.01mm光纤复丝,然后将光纤复丝断成多段一定长度的复丝;
(5)取m根复丝在正六边形的排板模具中排出对边根数为17的六边形纤维阵列板,并将两端采用铜丝捆绑固定成纤维阵列板,装入专业模具中并放入真空炉中熔板,熔板温度在480~510℃,形成六边形空芯阵列板,空芯阵列板上有均布的纤维通道;
(6)将六边形空芯阵列板的纤维通道内填充上可溶性填充材料并进行固化,然后按相同厚度不同微孔角度进行切割,最后磨抛制得出表面光滑的滤线栅中空块单元。磨抛是将切割后的六边形空芯阵列板放入精雕机中进行轮廓修正,制得尺寸及精度一致的表面光滑的滤线栅中空单元块,。
(7)将滤线栅中空单元块通过超声波清洗掉纤维通道内的可溶性填充材料,最终制得结构均匀的滤线栅中空块,纤维通道形成微孔通道;
(8)将不同微孔角度的滤线栅中空块按指定位置进行排列拼接在一个平面上,并通过紫外固化胶进行粘合,形成一个大面积聚焦式滤线栅格光纤面板。
(9)在滤线栅格微孔通道内沉积HfO2,其中铪源为HfCl4,氧源为H2O,二氧化铪HfO2为非晶态,先将滤线栅格清洗吹干,采用HfCl4和H2O作为反应前驱体,将滤线栅加热到200℃,向沉积室中引入HfCl4,可以按需要重复引入HfCl4,以制备所需厚度的氧化铪薄膜,用氮气清洗沉积室,并向沉积室中引入水蒸汽,沉积时间为4h,沉积完毕后退火,从而得到在滤线栅格微孔通道内沉积20nm的二氧化铪薄膜。
(10)将滤线栅格的侧面和微孔通道进行遮挡,将遮挡后的滤线栅格通过导轨送入磁控溅射腔室,开启磁控溅射腔室的真空泵抽真空,真空度为1.0~9.0×10-3Pa,确保该磁控溅射装置封闭,磁控溅射腔室开始工作,溅射电流为2~10A,时间为1~5h,同时开启加热,使温度恒定在100~400℃,以此将靶材钨溅射到滤线栅格的上、下表面,当磁控溅射腔室完成镀膜,等待0.2~2h冷却后开炉,得到在上、下表面分别镀有100~200nm厚度的金属钨的滤线栅格。
(11)通过上述步骤最终得到一种表面溅射钨、微孔内沉积二氧化铪的滤线栅格在表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的光纤面板。
本发明表面溅射钨、微孔内沉积二氧化铪的滤线栅格在上下表面磁控溅射钨、微孔通道内原子层沉积二氧化铪,采用复合含铅玻璃微孔阵列制造工艺所制得滤线栅栅格单元规整,结构稳定且微孔通道一致性较高,而在滤线栅格表面磁控溅射钨、微孔通道内原子层沉积二氧化铪相比采用铅玻璃直接制作微孔阵列作为滤线栅中空单元块,具有更好防散射性能,能够更好的提高图像对比度和分辨率,有利于消除摩尔纹现象,提升图像质量。
本发明表面溅射钨、微孔内沉积二氧化铪的滤线栅格表面磁控溅射钨、微孔通道内原子层沉积二氧化铪,在防X射线散射性能和提高X射线准直性能方面有着突出的优点。

Claims (9)

1.一种表面溅射钨、微孔内沉积二氧化铪的滤线栅格,由多块高铅当量的玻璃微孔阵列单元拼接而成,玻璃微孔阵列单元上均布微孔通道,其特征是,玻璃微孔阵列单元为厚度3mm、边长d的正六边形,d为10~20mm,玻璃微孔阵列单元上、下表面磁控溅射钨,形成有100~200nm厚度的金属钨镀层,微孔通道内原子层沉积二氧化铪,形成20nm的二氧化铪薄膜。
2.根据权利要求1所述的表面溅射钨、微孔内沉积二氧化铪的滤线栅格,其特征是,微孔通道的中心线与整块玻璃微孔阵列单元间形成不同的微孔角度α, 其中处于整块滤线栅格中心位置处的微孔通道都与X射线保持平行,即微孔角度α为90°,从中心处微孔通道向外逐块璃微孔阵列单元上的微孔通道与整块光纤面板间微孔角度α为
Figure 327949DEST_PATH_IMAGE002
Figure 947149DEST_PATH_IMAGE004
…、
Figure 620707DEST_PATH_IMAGE006
Figure 350766DEST_PATH_IMAGE008
,n为整数且n≥1。
3.一种权利要求1所述的表面溅射钨、微孔内沉积二氧化铪的滤线栅格的制造方法,其特征是,包括以下步骤:
a)制备Φ27.5~28.5mm、壁厚2mm的芯铅玻璃管,然后采用光纤拉制机拉制成外径为Φ2.62±0.01mm、长度为820mm的空芯纤维单丝;
b)选用铅玻璃棒采用光纤拉制机拉制成外径为Φ0.45±0.008mm、长度为820mm的实芯丝;
c)将37根空芯纤维单丝和54根实芯丝在排成复丝棒,其中实芯丝作为空芯丝的间隙丝,将排棒完成的空芯纤维单丝与实芯丝捆绑固定,形成一个复丝棒整体;
d)采用光纤拉制机拉制此复丝棒成为对边长为1.22±0.01mm光纤复丝,然后将光纤复丝断成多段一定长度的复丝;
e)取m根复丝在正六边形的排板模具中排出对边根数为17的六边形纤维阵列板,并将两端捆绑固定成纤维阵列板装入专业模具中并放入真空炉中熔板,熔板温度在480~510℃,形成六边形空芯阵列板,空芯阵列板上有均布的纤维通道;
f)将六边形空芯阵列板的纤维通道内填充上可溶性填充材料并进行固化,然后按相同厚度不同微孔角度进行切割,最后磨抛制得出表面光滑的滤线栅中空块单元;
g)将滤线栅中空单元块通过超声波清洗掉纤维通道内的可溶性填充材料,最终制得结构均匀的滤线栅中空块,纤维通道形成微孔通道;
h)将不同微孔角度的滤线栅中空块按指定位置进行排列拼接在一个平面上,并进行粘合后形成一个大面积聚焦式滤线栅格光纤面板。
i)在滤线栅格微孔通道内沉积HfO2,二氧化铪HfO2为非晶态,先将滤线栅格清洗吹干,将滤线栅加热到200℃,向沉积室中引入HfCl4,以制备所需厚度的氧化铪薄膜,用氮气清洗沉积室,并向沉积室中引入水蒸汽,沉积时间为4h,沉积完毕后退火,从而得到在滤线栅格微孔通道内沉积20nm的二氧化铪薄膜。
j)将滤线栅格的侧面和微孔通道进行遮挡,将遮挡后的滤线栅格通过导轨送入磁控溅射腔室,开启磁控溅射腔室的真空泵抽真空,真空度为1.0~9.0×10-3Pa,确保该磁控溅射装置封闭,磁控溅射腔室开始工作,溅射电流为2~10A,时间为1~5h,同时开启加热,使温度恒定在100~400℃,以此将靶材钨溅射到滤线栅格的上、下表面,当磁控溅射腔室完成镀膜,等待0.2~2h冷却后开炉,得到在上、下表面分别镀有100~200nm厚度的金属钨的滤线栅格;
k)通过上述步骤最终得到在表面磁控溅射钨、微孔通道内原子层沉积二氧化铪的表面溅射钨、微孔内沉积二氧化铪的滤线栅格。
4.根据权利要求3所述的制造方法,其特征是,步骤(1)中,拉制前先采用冷加工设备对铅玻璃管进行内外径加工,使空芯铅玻璃管的外径达到Φ27.5~28.5mm,壁厚2mm,并对内外壁进行抛光,使表面粗糙度达到10纳米级。
5.根据权利要求3所述的制造方法,其特征是,步骤(3)中,复丝棒用生料带和铝箔捆绑固定,步骤(5)中,对边根数为17的六边形纤维阵列板采用铜丝将两端捆绑固定。
6.根据权利要求3所述的制造方法,其特征是,步骤(6)磨抛制得出表面光滑的滤线栅中空块单元放入精雕机中进行轮廓修正,制得尺寸及精度一致的滤线栅中空单元块。
7.根据权利要求3所述的制造方法,其特征是,步骤(8)中滤线栅中空块通过紫外固化胶进行粘合,形成一个大面积聚焦式滤线栅格光纤面板。
8.根据权利要求3所述的制造方法,其特征在于:步骤9中:所述铪源为HfCl4,氧源为H2O,采用HfCl4和H2O作为反应前驱体,所述向沉积室中引入HfCl4,可根据实际需要多次重复引入。
9.根据权利要求3所述的制造方法,其特征在于,步骤10中将滤线栅格的侧面和微孔通道遮挡后送入磁控溅射腔室进行溅射镀层。
CN202111209231.XA 2022-01-29 2022-01-29 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法 Pending CN114699095A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111209231.XA CN114699095A (zh) 2022-01-29 2022-01-29 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111209231.XA CN114699095A (zh) 2022-01-29 2022-01-29 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法

Publications (1)

Publication Number Publication Date
CN114699095A true CN114699095A (zh) 2022-07-05

Family

ID=82167719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111209231.XA Pending CN114699095A (zh) 2022-01-29 2022-01-29 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法

Country Status (1)

Country Link
CN (1) CN114699095A (zh)

Similar Documents

Publication Publication Date Title
US5581592A (en) Anti-scatter X-ray grid device for medical diagnostic radiography
JP6172889B2 (ja) 光学用部材の製造方法
JP4540746B2 (ja) 光学薄膜蒸着装置及び光学薄膜の製造方法
CN108165926B (zh) 直流磁控技术制备周期厚度横向二维梯度分布的Mo/Si多层膜的方法
EP0731472B1 (en) Anti-scatter x-ray grid device for medical diagnostic radiography and method for fabricating the grid
CN108538425B (zh) 一种多层膜x射线波带片的制备方法
US5557650A (en) Method for fabricating an anti-scatter X-ray grid device for medical diagnostic radiography
Saitoh et al. Characterization of sliced multilayer zone plates for hard x rays
CN106548821A (zh) 具有高反射率内壁的微孔光学元件及其制备方法
CN111235527B (zh) 制作光学薄膜的方法、膜系结构、镀膜方法、激光反射镜
CN114699095A (zh) 表面溅射钨、微孔内沉积二氧化铪的滤线栅格及制造方法
CN112378933B (zh) 三维聚焦玻璃基防散射滤线栅及其制造方法
CN112820439B (zh) 一种用于x射线与软x射线波段的滤片及其制备方法
JP7055494B1 (ja) 光学製品の製造方法
CN112397215B (zh) 高分辨率x-射线防散射滤线栅格及其制造方法
Koyama et al. Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2
CN109741851B (zh) 一种调控x射线毛细管传输特性的方法
Farnum et al. Neutron damage to diagnostic mirrors
JP2004145066A (ja) 光学部品およびその製造方法
JP2002328220A (ja) 電波透過性波長選択膜およびその製法
CN109903877B (zh) 一种x射线衍射光学聚焦元件的制造方法
KR101425259B1 (ko) 선형적 두께 기울기를 갖는 다층박막거울 제작 장치 및 그에 따른 다층박막거울
CN116313212A (zh) X射线膜型波带片及其制备方法
CN115508922A (zh) 一种利用离子束加工x射线复合折射透镜的方法
JP2009109193A (ja) 軟x線光学素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination