CN114674748A - A highly integrated photoacoustic gas sensor based on optical path optimization - Google Patents
A highly integrated photoacoustic gas sensor based on optical path optimization Download PDFInfo
- Publication number
- CN114674748A CN114674748A CN202210342975.7A CN202210342975A CN114674748A CN 114674748 A CN114674748 A CN 114674748A CN 202210342975 A CN202210342975 A CN 202210342975A CN 114674748 A CN114674748 A CN 114674748A
- Authority
- CN
- China
- Prior art keywords
- optical path
- radiation source
- gas sensor
- path optimization
- highly integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 238000005457 optimization Methods 0.000 title claims abstract description 22
- 230000005855 radiation Effects 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 230000031700 light absorption Effects 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims description 10
- 239000002808 molecular sieve Substances 0.000 claims description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 24
- 230000010354 integration Effects 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 64
- 239000000243 solution Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010895 photoacoustic effect Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
- G01N2021/1704—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于光路优化的高集成光声气体传感器,包括基板、与基板形成密封气室的壳体以及设置于气室内的辐射源,所述气室内的基板上垂直设置有插接板,所述辐射源设置于所述插接板上;所述气室内远离辐射源的壳体内侧壁上设置吸光结构,所述气室的壳体内侧壁上设有数个弧面反射结构,所述弧面反射结构分布于气室的壳体内侧壁的上下各个位置,所述辐射源发出的光经过数个弧面反射结构反射后到达吸光结构;所述气室侧面开设气孔,所述气孔上覆盖防水透气膜;所述气室内位于基板上设置有传声器、ASIC芯片以及控制元件。本发明所公开的光声气体传感器实现了微型化和集成化目的,同时也能提高检测精度、检测灵敏度和检测极限。
The invention discloses a highly integrated photoacoustic gas sensor based on optical path optimization, comprising a base plate, a casing forming a sealed air chamber with the base plate, and a radiation source arranged in the air chamber. The radiation source is arranged on the plug-in board; a light absorbing structure is arranged on the inner side wall of the housing away from the radiation source in the gas chamber, and several arc reflection structures are arranged on the inner side wall of the housing of the gas chamber. The arc reflection structure is distributed at the upper and lower positions of the inner side wall of the air chamber, and the light emitted by the radiation source reaches the light absorption structure after being reflected by several arc reflection structures; The air hole is covered with a waterproof and breathable film; a microphone, an ASIC chip and a control element are arranged on the substrate in the air chamber. The photoacoustic gas sensor disclosed in the invention achieves the purpose of miniaturization and integration, and can also improve detection accuracy, detection sensitivity and detection limit.
Description
技术领域technical field
本发明涉及光声测量领域,特别涉及一种基于光路优化的高集成光声气体传感器。The invention relates to the field of photoacoustic measurement, in particular to a highly integrated photoacoustic gas sensor based on optical path optimization.
背景技术Background technique
随着社会的不断发展,人们在生产生活中接触到的气体种类愈发繁杂,气体浓度检测对生产生活有着日益重要的影响。传统气体检测方法包括电化学法、电气法、光学法等。其中,基于光学法的气体传感器具有灵敏度高、选择性好等众多优点。With the continuous development of society, the types of gases that people come into contact with in production and life are becoming more and more complex, and gas concentration detection has an increasingly important impact on production and life. Traditional gas detection methods include electrochemical methods, electrical methods, optical methods, etc. Among them, the gas sensor based on optical method has many advantages such as high sensitivity and good selectivity.
光声效应指的是气体吸收调制光后产生声压的现象,其基本理论为由光到热再到声,产生光声信号的过程。一种气体会对某一特定波长的光具有很强的吸收峰,不同种类气体会对不同波长的光具有强吸收峰。气体吸收调制光后发生跃迁,跃迁到激发态的分子以某些形式将这部分能量释放,释放的能量转化为热能。基于光声效应的气体浓度传感器常包括辐射源、气室、密闭光声池、传声器四个结构。在密闭的光声池内,气体吸收调制光源所产生的光信号会产生相同频率的热信号,根据理想气体状态方程,相应会产生相同频率的压力信号,即光声信号。光声信号会随气体浓度增加而增加,因而可根据光声信号的大小检测气体的浓度。The photoacoustic effect refers to the phenomenon that gas absorbs modulated light and generates sound pressure. Its basic theory is the process of generating photoacoustic signals from light to heat to sound. A gas has a strong absorption peak for light of a certain wavelength, and different types of gases have strong absorption peaks for light of different wavelengths. After the gas absorbs the modulated light, a transition occurs, and the molecules that transition to the excited state release this part of the energy in some form, and the released energy is converted into heat energy. Gas concentration sensors based on photoacoustic effect often include four structures: radiation source, gas chamber, closed photoacoustic cell, and microphone. In a closed photoacoustic cell, the light signal generated by the gas absorption modulated light source will generate a heat signal of the same frequency. According to the ideal gas state equation, a pressure signal of the same frequency, that is, a photoacoustic signal, will be generated accordingly. The photoacoustic signal will increase with the increase of gas concentration, so the gas concentration can be detected according to the size of the photoacoustic signal.
传统光声气体传感器尺寸往往较大,以使光具有足够长的光程被气体分子吸收,以保证其检测精度、灵敏度、检测极限等指标。同时,密闭光声池体积往往较大且封装要求较高,使得光声传感器难以微型化。此外,在传统光声气体传感器中辐射源及传声器通常需要经过独立封装后再二次封装到传感器中,这也导致其集成化程度不高、使用复杂、成本较高。The size of traditional photoacoustic gas sensors is often large, so that the light has a long enough optical path to be absorbed by gas molecules to ensure its detection accuracy, sensitivity, detection limit and other indicators. At the same time, closed photoacoustic cells are often bulky and require high packaging, making it difficult to miniaturize photoacoustic sensors. In addition, in the traditional photoacoustic gas sensor, the radiation source and the microphone usually need to be packaged independently and then repackaged into the sensor, which also leads to a low degree of integration, complicated use and high cost.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种基于光路优化的高集成光声气体传感器,以实现微型化、集成化的光声气体传感器,并且兼顾到检测精度、检测灵敏度和检测极限等指标。In order to solve the above technical problems, the present invention provides a highly integrated photoacoustic gas sensor based on optical path optimization, so as to realize a miniaturized and integrated photoacoustic gas sensor, and take into account indicators such as detection accuracy, detection sensitivity and detection limit.
为达到上述目的,本发明的技术方案如下:For achieving the above object, technical scheme of the present invention is as follows:
一种基于光路优化的高集成光声气体传感器,包括基板、与基板形成密封气室的壳体以及设置于气室内的辐射源,所述气室内的基板上垂直设置有插接板,所述辐射源设置于所述插接板上;所述气室内远离辐射源的壳体内侧壁上设置吸光结构,所述气室的壳体内侧壁上设有数个弧面反射结构,所述弧面反射结构分布于气室的壳体内侧壁的上下各个位置,所述辐射源发出的光经过数个弧面反射结构反射后到达吸光结构;所述气室侧面开设气孔,所述气孔上覆盖防水透气膜;所述气室内位于基板上设置有传声器、ASIC芯片以及控制元件。A highly integrated photoacoustic gas sensor based on optical path optimization, comprising a substrate, a casing forming a sealed air chamber with the substrate, and a radiation source arranged in the air chamber, a plug board is vertically arranged on the substrate in the air chamber, and the The radiation source is arranged on the plug-in board; a light absorbing structure is arranged on the inner side wall of the housing away from the radiation source in the gas chamber, and a plurality of arc reflection structures are arranged on the inner side wall of the casing of the gas chamber. The reflective structures are distributed at the upper and lower positions of the inner side wall of the air chamber, and the light emitted by the radiation source is reflected by several arc reflection structures to reach the light absorbing structure; the air chamber is provided with air holes on the side, and the air holes are covered with waterproof A breathable membrane; a microphone, an ASIC chip and a control element are arranged on the substrate in the air chamber.
在其中一个技术方案中,所述辐射源为MEMS光源,采用QFN形式封装,且位于MEMS光源外侧设置有聚光镜,用于聚光,以获得近准直出射的光,以满足光路设计的需要。In one of the technical solutions, the radiation source is a MEMS light source, which is packaged in the form of QFN, and a condenser is provided outside the MEMS light source for condensing light to obtain near-collimated light to meet the needs of optical path design.
在另一技术方案中,所述辐射源为激光芯片。In another technical solution, the radiation source is a laser chip.
进一步的技术方案中,所述辐射源外侧安装有透光的绝热外壳,防止由于辐射源自身发热产生的热信号对光声信号形成干扰。In a further technical solution, a light-transmitting heat-insulating casing is installed on the outside of the radiation source to prevent the photoacoustic signal from being disturbed by the heat signal generated by the self-heating of the radiation source.
进一步的技术方案中,所述传声器外侧安装有遮光外壳,可以屏蔽光对传声器产生的干扰。In a further technical solution, a light-shielding casing is installed on the outside of the microphone, which can shield the interference of light to the microphone.
上述方案中,所述传声器和辐射源采用裸芯片形式封装。In the above solution, the microphone and the radiation source are packaged in the form of bare chips.
上述方案中,所述基板和插接板为PCB板。In the above solution, the substrate and the plug-in board are PCB boards.
上述方案中,所述气室的壳体为金属材质或塑料材质且内壁镀膜。In the above solution, the housing of the gas chamber is made of metal material or plastic material, and the inner wall is coated with film.
进一步的技术方案中,所述防水透气膜为具有筛选分子功能的分子筛膜,可以起到隔绝水汽等干扰气体的作用,并可以使得待检测气体进入;还可以实现不同种类气体的选择进入。In a further technical solution, the waterproof and breathable membrane is a molecular sieve membrane with the function of screening molecules, which can play the role of isolating interfering gases such as water vapor, and can allow the gas to be detected to enter; it can also realize the selective entry of different types of gases.
上述方案中,所述气孔和吸光结构位于气室壳体的同一内侧壁上,可以减小对光反射的影响。In the above solution, the air hole and the light absorbing structure are located on the same inner side wall of the air chamber shell, which can reduce the influence on the light reflection.
通过上述技术方案,本发明提供的一种基于光路优化的新型光声气体传感器具有如下有益效果:Through the above technical solutions, a novel photoacoustic gas sensor based on optical path optimization provided by the present invention has the following beneficial effects:
1、本发明气室的壳体内侧壁上设有数个弧面反射结构,弧面反射结构分布于气室的壳体内侧壁的上下各个位置,设置于插接板上的辐射源发出的光经过数个弧面反射结构的反射,可以使得光具有足够长的光程被气体分子吸收,有利于检测到浓度很低的待测气体。1. There are several arc surface reflection structures on the inner side wall of the housing of the gas chamber of the present invention, and the arc reflection structures are distributed on the upper and lower positions of the inner side wall of the housing of the gas chamber, and the light emitted by the radiation source arranged on the plug board is After several arc reflection structures, the light can have a long enough optical path to be absorbed by the gas molecules, which is conducive to the detection of the gas to be tested with a very low concentration.
2、本发明省略了传统的密闭光声池,将气室与密闭光声池合并,大大降低了尺寸,避免了密闭光声池的复杂封装。2. The present invention omits the traditional airtight photoacoustic cell, combines the air chamber with the airtight photoacoustic cell, greatly reduces the size, and avoids the complex packaging of the airtight photoacoustic cell.
3、本发明将辐射源、传声器采用裸芯片形式封装,最后与气室整体进行封装,相比于传统各部件独立封装构成复杂系统的形式,本发明所提出的封装方式极大地提高了传感器的集成化、微型化程度,降低了工艺要求。3. The present invention encapsulates the radiation source and the microphone in the form of bare chips, and finally encapsulates them as a whole with the air chamber. Compared with the traditional form in which each component is individually packaged to form a complex system, the packaging method proposed by the present invention greatly improves the sensor performance. The degree of integration and miniaturization reduces process requirements.
4.本发明采用在气室的壳体内侧壁上设置弧面反射结构,并将辐射源设置于垂直于基板的插接板上,使得光线在壳体的内侧壁之间进行反射,相比于将辐射源设置于基板上,让光线在基板和顶板之间进行反射的情况,本发明只需要对壳体内侧壁进行处理,节省了单独对基板的处理工序,大量的节省了成本及加工复杂度。4. In the present invention, a curved surface reflection structure is arranged on the inner side wall of the housing of the air chamber, and the radiation source is arranged on a plug-in board perpendicular to the base plate, so that the light is reflected between the inner side walls of the housing, compared with In the case of arranging the radiation source on the base plate and allowing the light to be reflected between the base plate and the top plate, the present invention only needs to process the inner side wall of the casing, which saves a separate processing procedure for the base plate, and greatly saves cost and processing. the complexity.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are required in the description of the embodiments or the prior art.
图1为本发明实施例1所公开的一种基于光路优化的高集成光声气体传感器侧视图;1 is a side view of a highly integrated photoacoustic gas sensor based on optical path optimization disclosed in Embodiment 1 of the present invention;
图2为本发明实施例1所公开的一种基于光路优化的高集成光声气体传感器俯视图;2 is a top view of a highly integrated photoacoustic gas sensor based on optical path optimization disclosed in Embodiment 1 of the present invention;
图3为本发明实施例2所公开的一种基于光路优化的高集成光声气体传感器侧视图;3 is a side view of a highly integrated photoacoustic gas sensor based on optical path optimization disclosed in
图4为本发明实施例2所公开的一种基于光路优化的高集成光声气体传感器俯视图。4 is a top view of a highly integrated photoacoustic gas sensor based on optical path optimization disclosed in
图中,1、基板;2、插接板;3、气室;4、气孔;5、防水透气膜;6、MEMS光源;7、聚光镜;8、绝热外壳;9、传声器;10、ASIC芯片;11、控制元件;12、弧面反射结构;13、准直光;14、吸光结构;15、激光芯片;16、壳体;17、遮光外壳。In the figure, 1, substrate; 2, plug-in board; 3, air chamber; 4, air hole; 5, waterproof and breathable membrane; 6, MEMS light source; 7, condenser lens; 8, thermal insulation shell; 9, microphone; 10, ASIC chip ; 11, control element; 12, arc reflection structure; 13, collimated light; 14, light absorption structure; 15, laser chip; 16, shell;
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
实施例1Example 1
本发明提供了一种基于光路优化的高集成光声气体传感器,如图1所示,包括基板1、与基板1形成密封气室3的壳体16以及设置于气室3内的辐射源。本实施例中,壳体16为长方体结构,也可以为正方体、半球体等结构。基板1起到承载内部元器件及提供内部元器件间电路连接的作用。气室3侧面壳体16上开设气孔4,用于联通外部气体环境,使气室3内充满待测气体;气孔4上覆盖防水透气膜5,且气室3的壳体16与基板1采用如粘接等气密方式连接,因此在气室3内形成了声密闭结构。防水透气膜5可以选用如聚合物等材料,其特点在于,允许气室3内气体与外界进行交换的同时,还能提供声学的密闭,保留压力的变化。The present invention provides a highly integrated photoacoustic gas sensor based on optical path optimization, as shown in FIG. In this embodiment, the
气室3内位于基板1上设置有传声器9、ASIC芯片10以及控制元件11。ASIC芯片10用于对传声器9信号进行控制、前置放大等,控制元件11用于控制辐射源及传声器9。传声器9的选择并不局限于常见的硅基麦克风,硅基电容式麦克风及其他形式的压力传感器等可以起到检测声压信号并将其转换为电信号的元件都是可以选择的,亦即本发明所提供的技术方案适用于任何传声元件。且传声器9可以采用裸芯片形式封装,可以起到简化系统、提升集成度的效果。传声器外侧安装有不影响耦合声音的遮光外壳,可以屏蔽光对传声器产生的干扰。A
气室3内的基板1上垂直设置有插接板2,插接板2设置于靠近气室3一侧的位置,辐射源设置于插接板2上,本实施例中,辐射源为MEMS光源6,采用QFN形式封装,因MEMS光源6发散角较大,在MEMS光源6外侧的QFN封装管壳上制作聚光镜7,用于聚光,以获得近准直出射的光,以满足光路设计的需要。辐射源外侧安装有透光的绝热外壳8,防止由于辐射源自身发热产生的热信号对光声信号形成干扰。A
如图2所示,气室3的两个相对的壳体16内侧壁上设有数个弧面反射结构12,弧面反射结构12分布于气室3的壳体16内侧壁的上下各个位置,设置于插接板2上的辐射源发出的光,在整个气室3内的两个壳体16内侧壁之间经过数个弧面反射结构12,按照设计的光路进行多次反射,可以使得光具有足够长的光程被气体分子吸收,有利于检测到浓度很低的待测气体。本发明的气室3的壳体16可以为金属材质,机加工可得到内侧壁上带弧面反射结构12的气室3,然后再进行抛光处理可获得光滑的反射面,对于反射率不太高的金属材质,可以在其表面镀膜(金、铜、铝等)进一步增加反射率;或者壳体16也可以为塑料材质,采用注塑工艺一体形成内侧壁具有弧面反射结构12的气室3,成型后的内侧壁也可得到光滑的反射面,此时需要在内壁进行镀膜(金、铜、铝等),以提高反射率。As shown in FIG. 2 , a plurality of
气室3内远离辐射源的壳体16内侧壁上设置吸光结构14,吸光结构14可以为吸光涂层,如黑胶等具有黑色、表面粗糙特性的物质;辐射源发出的光经过数个弧面反射结构12反射后到达吸光结构14,并最终被吸光结构14所吸收,设计吸光结构14的目的则是在于防止光在气室3内多次反射不能及时被吸收,影响下一次出光后的检测。A light-absorbing
本实施例中,基板1和插接板2为PCB板,如FR4、有机聚合物、铝基板等。In this embodiment, the substrate 1 and the
本实施例中,传声器9和辐射源采用裸芯片形式封装,省略了各个器件的独立封装,将各器件置于气室3内,整体封装,极大地提升了集成化、微型化程度。In this embodiment, the
本实施例中,气孔4和吸光结构14位于气室3壳体16的同一内侧壁上,可以减小对光反射的影响。In this embodiment, the
特别的,防水透气膜可以使用具有筛选分子功能的分子筛膜,如沸石等制成的分子筛膜,其特点是分子孔径大于膜物质孔径的气体不能通过分子筛膜,可以起到隔绝水汽等干扰气体的作用,并可以与外界气体环境联通,使得待检测气体可以进入。另外,通过分子筛孔径的控制,还可以实现不同种类气体的选择进入。In particular, the waterproof and breathable membrane can use a molecular sieve membrane with the function of screening molecules, such as a molecular sieve membrane made of zeolite. function, and can communicate with the external gas environment, so that the gas to be detected can enter. In addition, through the control of the pore size of the molecular sieve, the selective entry of different types of gases can also be realized.
实施例2Example 2
与实施例1相比,本实施例的不同之处在于,辐射源选用激光芯片15,例如可以集成的垂直腔面发射激光器(vcsel),如图3和图4所示,因激光芯片15本身可获得准直光13,并不需要聚光镜7设计。Compared with Embodiment 1, the difference of this embodiment is that the
另外,对于辐射源的选择是多样的,光路设计的形式也是多样的,并不限制于本发明所举例说明壳体16形状。只要是将可以发射准直光13的辐射源采用本发明提出的三维立体形式封装,并设计侧壁间多次反射结构进行光路优化的设计,均属于本发明的保护范围。In addition, there are various choices for radiation sources and various forms of optical path design, which are not limited to the shape of the
本发明的光声气体传感器的检测原理如下:The detection principle of the photoacoustic gas sensor of the present invention is as follows:
当气室3内没有检测气体时,辐射源所产生的光信号在气室3内不会被吸收,因此就不会产生相应的热信号,无声压信号产生。当气室3中存在检测气体时,检测气体会吸收部分光线,因此,气室3内会产生对应的声压信号,被传声器9检测并输出。根据光声理论,在本实施例中,随着外部环境中检测气体浓度增加,光声信号增加;根据输出光声信号的大小便可反推检测气体浓度。When there is no detection gas in the
光路优化设计多次反射的有益效果则是,集成光声传感器由于壳体16尺寸常常较小且未经过光路优化,导致无法检测较低目标气体浓度。而本发明所设计的光路优化结构使得检测气体与光因光的多次反射得以充分接触吸收,因而最终产生的声信号将较为明显。The beneficial effect of multiple reflections by optimizing the optical path is that the integrated photoacoustic sensor cannot detect the lower target gas concentration because the size of the
显见,未经光路优化设计的光声气体传感器,受到检测精度、检测极限与检测灵敏度的限制导致其难以做到微型化、集成化;反之小尺寸的光声气体传感器其检测精度、灵敏度、极限等指标并不理想。得益于气室3的设计与辐射源三维立体形式的封装,本发明中光在气室3侧壁间多次反射起到了光路优化的效果,在小的尺寸内,其平均光程却不输于大尺寸传统光声传感器。在实现微型化、集成化的同时,兼顾到检测极限、检测灵敏度、检测精度等指标。同时,相比于辐射源放置于基板1,通过在基板1上进行电镀等形式获得基板1、气室3间的反射结构,本发明省去了基板1处理工序,大量的节省了成本及加工复杂度。同时气室3采用如注塑工艺制造,兼顾到成本的降低。在相同性能指标下,尺寸是以往传统光声传感器的20%~40%左右。Obviously, the photoacoustic gas sensor without optimized design of the optical path is limited by the detection accuracy, detection limit and detection sensitivity, which makes it difficult to miniaturize and integrate; such indicators are not ideal. Thanks to the design of the
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210342975.7A CN114674748A (en) | 2022-04-02 | 2022-04-02 | A highly integrated photoacoustic gas sensor based on optical path optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210342975.7A CN114674748A (en) | 2022-04-02 | 2022-04-02 | A highly integrated photoacoustic gas sensor based on optical path optimization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114674748A true CN114674748A (en) | 2022-06-28 |
Family
ID=82076191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210342975.7A Pending CN114674748A (en) | 2022-04-02 | 2022-04-02 | A highly integrated photoacoustic gas sensor based on optical path optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114674748A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403530A (en) * | 2015-10-26 | 2016-03-16 | 长沙开元仪器股份有限公司 | Gas concentration detection apparatus and method thereof |
CN106404705A (en) * | 2016-12-15 | 2017-02-15 | 电子科技大学 | High-precision infrared multi-gas detection device |
CN111504910A (en) * | 2020-04-23 | 2020-08-07 | 山东大学 | High signal-to-noise ratio photoacoustic cell based on photoacoustic effect and photoacoustic signal detection device |
CN112816419A (en) * | 2021-01-04 | 2021-05-18 | 中国电子科技集团公司第二十六研究所 | Resonant gas sensor |
CN113795747A (en) * | 2019-04-17 | 2021-12-14 | 盛思锐股份公司 | Photoacoustic gas sensor device |
-
2022
- 2022-04-02 CN CN202210342975.7A patent/CN114674748A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403530A (en) * | 2015-10-26 | 2016-03-16 | 长沙开元仪器股份有限公司 | Gas concentration detection apparatus and method thereof |
CN106404705A (en) * | 2016-12-15 | 2017-02-15 | 电子科技大学 | High-precision infrared multi-gas detection device |
CN113795747A (en) * | 2019-04-17 | 2021-12-14 | 盛思锐股份公司 | Photoacoustic gas sensor device |
CN111504910A (en) * | 2020-04-23 | 2020-08-07 | 山东大学 | High signal-to-noise ratio photoacoustic cell based on photoacoustic effect and photoacoustic signal detection device |
CN112816419A (en) * | 2021-01-04 | 2021-05-18 | 中国电子科技集团公司第二十六研究所 | Resonant gas sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5868615B2 (en) | Integrated IR source and acoustic detector for photoacoustic gas sensors | |
US20200080972A1 (en) | Photoacoustic gas sensor | |
US10880629B2 (en) | Device for detecting acoustic waves | |
US12203843B2 (en) | Two-dimensional multi-point-reflection long- optical-path gas sensor probe and gas sensor | |
CN103674883B (en) | A kind of miniature middle infrared-gas concentration monitoring method and device | |
CN104280358A (en) | Micro infrared gas sensor | |
CN104280357A (en) | Infrared gas sensor | |
TWM399313U (en) | Proximity sensor package structure | |
CN110132877A (en) | An Integrated Infrared Gas Sensor Based on MEMS | |
CN203658252U (en) | Miniature far-infrared gas concentration monitoring device | |
CN218098856U (en) | Miniature low-loss infrared gas sensor | |
CN117748287A (en) | Integrally packaged laser and gas detection device | |
CN114674748A (en) | A highly integrated photoacoustic gas sensor based on optical path optimization | |
CN209979482U (en) | Gas sensor for infrared spectroscopic analysis | |
CN103528983A (en) | Gas detection device and gas detection method | |
CN204287035U (en) | Miniature infrared gas sensor | |
CN203658255U (en) | Miniature mid-infrared gas concentration monitoring device | |
CN114720379B (en) | A photoacoustic gas detection system based on optical path optimization | |
JP2012215396A (en) | Infrared gas sensor | |
CN114720379A (en) | Photoacoustic gas detection system based on light path optimization | |
CN204116223U (en) | Infrared gas sensor | |
CN214668563U (en) | Intrinsic safety type small infrared gas sensor | |
CN106895293B (en) | Light source assembly and gas sensor with the light source assembly | |
CN108074947B (en) | I/O modules and electronic devices | |
TW201719154A (en) | Optical sensing module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |