CN114672742B - 一种纳米晶合金磁芯及其制备方法 - Google Patents

一种纳米晶合金磁芯及其制备方法 Download PDF

Info

Publication number
CN114672742B
CN114672742B CN202210196990.5A CN202210196990A CN114672742B CN 114672742 B CN114672742 B CN 114672742B CN 202210196990 A CN202210196990 A CN 202210196990A CN 114672742 B CN114672742 B CN 114672742B
Authority
CN
China
Prior art keywords
magnetic core
magnetic field
nanocrystalline alloy
alloy magnetic
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210196990.5A
Other languages
English (en)
Other versions
CN114672742A (zh
Inventor
宓建峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Veaye Printer Accessories Co ltd
Original Assignee
Ningbo Veaye Printer Accessories Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Veaye Printer Accessories Co ltd filed Critical Ningbo Veaye Printer Accessories Co ltd
Priority to CN202210196990.5A priority Critical patent/CN114672742B/zh
Publication of CN114672742A publication Critical patent/CN114672742A/zh
Application granted granted Critical
Publication of CN114672742B publication Critical patent/CN114672742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种纳米晶合金磁芯,其特征在于,包括如下按重量百分比计的各成分制成:Cu 0.6‑1.0%、Si 8.0‑10.0%、B 5.5‑8.0%、Sr 0.1‑0.3%、Ir 0.05‑0.15%、Bi 0.03‑0.10%、Ni 0.8‑1.5%、Te 0.1‑0.3%、稀土元素0.01‑0.04%、余量为Fe。本发明还公开了所述纳米晶合金磁芯的制备方法。本发明公开的纳米晶合金磁芯磁导率高,矫顽力较低,损耗小。

Description

一种纳米晶合金磁芯及其制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种纳米晶合金磁芯及其制备方法。
背景技术
近年来,随着国内外能源危机日益紧张、环境污染问题日益严重,对用电设备节能降耗的要求越来越高,这就要求作为电设备主要配件之一的磁芯具有高饱和磁感应强度、低的高频损耗、高的磁导率和良好的高频频率特性等优异高频综合性能。
目前,常见的磁芯材料有硅钢、铁氧体、非晶态合金、纳米晶态合金等。硅钢虽然材料廉价,磁通密度高,但对于高频的用途,它们存在表现出高频损耗的问题。铁氧体材料具有饱和磁通密度低和温度特性差的问题,因此它们不适于高功率的用途。非晶态合金或多或少存在相对价格高,饱和感应低,尺寸大的缺陷。纳米晶合金具有与钴族非晶合金相同的良好的软磁特性和与铁族非晶合金相同的高饱和磁通密度,是磁芯材料的首选。然而,现有的纳米晶合金磁芯还或多或少存在有效磁导率低,矫顽力较大,净高比小、易造成空间浪费,损耗大的缺陷。
为了解决上述问题,中国发明专利CN109754974B公开了一种纳米晶合金磁芯及其制备方法。该申请提供的纳米晶合金磁芯,将淬态合金材料经多场耦合热处理得到所述纳米晶合金磁芯;所述淬态合金材料包括具有FeaSibBdNbeCuf(M)g化学式的化合物中的至少一种。该纳米晶合金磁芯具有高的弛豫频率和低的高频损耗。并且该申请提供一种利用热场、磁场和应力场多场耦合和实时调控纳米晶磁芯的高频特性,从而提高纳米晶合金磁芯弛豫频率和降低高频损耗。然而,该纳米晶合金磁芯磁导率有待进一步提高,矫顽力有待进一步降低。
可见,本领域仍然需要一种磁导率高,矫顽力较低,损耗小的纳米晶合金磁芯及其制备方法。
发明内容
本发明的主要目的在于解决市面上的纳米晶合金磁芯或多或少存在有效磁导率低,矫顽力较大,损耗大的技术问题。
为达到以上目的,本发明提供一种纳米晶合金磁芯,其特征在于,包括如下按重量百分比计的各成分制成:Cu 0.6-1.0%、Si 8.0-10.0%、B 5.5-8.0%、Sr 0.1-0.3%、Ir 0.05-0.15%、Bi 0.03-0.10%、Ni 0.8-1.5%、Te 0.1-0.3%、稀土元素0.01-0.04%、余量为Fe。
优选的,所述稀土元素为Gd、Ce按质量比(2-3):1混合形成。
本发明的另一个目的,在于提供一种所述纳米晶合金磁芯的制备方法,其特征在于,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
优选的,步骤S1中所述熔炼具体为:起始熔炼功率为30-40KW,以1-3KW/min的速率升至135-145KW,至各成分完全熔化。
优选的,步骤S1中所述精炼具体包括:加入精炼剂进行精炼3-5min,并采用通氮气旋转法进行除气,最后扒渣。
优选的,所述精炼剂、熔液的质量比为(0.2-0.6):100。
优选的,所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.1-0.3份、六氟硅酸钾1-3份、二氧化硅1-2份、氯化钠3-5份。
优选的,步骤S1中所述快速冷却的冷却速率为100-110℃/s。
优选的,步骤S2中所述晶化退火处理具体为:在470-500℃下保温2-4小时,再以0.5-1℃/min的升温速率升温至550-560℃,保温1-3小时。
优选的,步骤S2中所述热处理具体为:以4-6℃/min的升温速率升温至460-500℃,保温0.5-1小时;再以1-3℃/min的升温速率升温至570-600℃,保温1-2小时;接着以2-4℃/min的降温速率降温至380-420℃,保温0.8-1.5小时;后在复合磁场下进行磁场热处理。
优选的,所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为8-12mT,纵向磁场的强度为1-3mT。
优选的,所述磁场热处理温度为580-620℃,时间为1-2.5h。
优选的,所述磁场热处理是在氧浓度为0-5ppm的气氛中进行的。
由于上述技术方案的运用,本发明具有以下有益效果:
(1)本发明公开的纳米晶合金磁芯的制备方法,对设备依赖性小,工艺简单,操作方便,耗能低,净高比可控,制备效率和成品合格率高,适合连续规模化生产。
(2)本发明公开的纳米晶合金磁芯,通过各成分重量和含量配比的合理选取,使得各成分能更好地发挥协效作用,各成分之间相互配合共同作用,使得制成的纳米晶合金磁芯磁导率高,矫顽力较低,损耗小。
(3)本发明公开的纳米晶合金磁芯,在熔炼过程中添加了精炼剂,所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.1-0.3份、六氟硅酸钾1-3份、二氧化硅1-2份、氯化钠3-5份;能较好地降低有害杂质成分硫、磷对产品性能的影响,有效提高合金质量。
(4)本发明公开的纳米晶合金磁芯,制备步骤S2中通过晶化退火处理和热处理工艺条件的合理选取,使得制成的纳米晶合金磁芯产品具有较高的磁导率,较低的矫顽力和损耗。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
一种纳米晶合金磁芯,包括如下按重量百分比计的各成分制成:Cu 0.6%、Si8.0%、B 5.5%、Sr 0.1%、Ir 0.05%、Bi 0.03%、Ni 0.8%、Te 0.1%、稀土元素0.01%、余量为Fe;所述稀土元素为Gd、Ce按质量比2:1混合形成。
一种所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
步骤S1中所述熔炼具体为:起始熔炼功率为30KW,以1KW/min的速率升至135KW,至各成分完全熔化;骤S1中所述精炼具体包括:加入精炼剂进行精炼3min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂、熔液的质量比为0.2:100;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.1份、六氟硅酸钾1份、二氧化硅1份、氯化钠3份。
步骤S1中所述快速冷却的冷却速率为100℃/s;步骤S2中所述晶化退火处理具体为:在470℃下保温2小时,再以0.5℃/min的升温速率升温至550℃,保温1小时。
步骤S2中所述热处理具体为:以4℃/min的升温速率升温至460℃,保温0.5小时;再以1℃/min的升温速率升温至570℃,保温1小时;接着以2℃/min的降温速率降温至380℃,保温0.8小时;后在复合磁场下进行磁场热处理。
所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为8mT,纵向磁场的强度为1mT;所述磁场热处理温度为580℃,时间为1h;所述磁场热处理是在氧浓度为0ppm的气氛中进行的。
实施例2
一种纳米晶合金磁芯,包括如下按重量百分比计的各成分制成:Cu 0.7%、Si8.5%、B 6%、Sr 0.15%、Ir 0.08%、Bi 0.05%、Ni 1%、Te 0.15%、稀土元素0.02%、余量为Fe;所述稀土元素为Gd、Ce按质量比2.2:1混合形成。
一种所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
步骤S1中所述熔炼具体为:起始熔炼功率为32KW,以1.5KW/min的速率升至137KW,至各成分完全熔化;步骤S1中所述精炼具体包括:加入精炼剂进行精炼3.5min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂、熔液的质量比为0.3:100;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.15份、六氟硅酸钾1.5份、二氧化硅1.2份、氯化钠3.5份;步骤S1中所述快速冷却的冷却速率为103℃/s。
步骤S2中所述晶化退火处理具体为:在480℃下保温2.5小时,再以0.7℃/min的升温速率升温至553℃,保温1.5小时。
步骤S2中所述热处理具体为:以4.5℃/min的升温速率升温至470℃,保温0.7小时;再以1.5℃/min的升温速率升温至580℃,保温1.2小时;接着以2.5℃/min的降温速率降温至390℃,保温0.9小时;后在复合磁场下进行磁场热处理;所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为9mT,纵向磁场的强度为1.5mT;所述磁场热处理温度为590℃,时间为1.5h;所述磁场热处理是在氧浓度为1.5ppm的气氛中进行的。
实施例3
一种纳米晶合金磁芯,包括如下按重量百分比计的各成分制成:Cu 0.8%、Si 9%、B6.5%、Sr 0.2%、Ir 0.1%、Bi 0.06%、Ni 1.2%、Te 0.2%、稀土元素0.025%、余量为Fe;所述稀土元素为Gd、Ce按质量比2.5:1混合形成。
一种所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
步骤S1中所述熔炼具体为:起始熔炼功率为35KW,以2KW/min的速率升至140KW,至各成分完全熔化;步骤S1中所述精炼具体包括:加入精炼剂进行精炼4min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂、熔液的质量比为0.45:100;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.2份、六氟硅酸钾2份、二氧化硅1.5份、氯化钠4份;步骤S1中所述快速冷却的冷却速率为105℃/s。
步骤S2中所述晶化退火处理具体为:在485℃下保温3小时,再以0.8℃/min的升温速率升温至555℃,保温2小时;步骤S2中所述热处理具体为:以5℃/min的升温速率升温至480℃,保温0.8小时;再以2℃/min的升温速率升温至585℃,保温1.5小时;接着以3℃/min的降温速率降温至400℃,保温1.2小时;后在复合磁场下进行磁场热处理;所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为10mT,纵向磁场的强度为2mT;所述磁场热处理温度为600℃,时间为1.8h;所述磁场热处理是在氧浓度为3ppm的气氛中进行的。
实施例4
一种纳米晶合金磁芯,包括如下按重量百分比计的各成分制成:Cu 0.9%、Si9.5%、B 7.5%、Sr 0.25%、Ir 0.13%、Bi 0.08%、Ni 1.3%、Te 0.25%、稀土元素0.035%、余量为Fe;所述稀土元素为Gd、Ce按质量比2.8:1混合形成。
一种所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
步骤S1中所述熔炼具体为:起始熔炼功率为38KW,以2.5KW/min的速率升至142KW,至各成分完全熔化;步骤S1中所述精炼具体包括:加入精炼剂进行精炼4.5min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂、熔液的质量比为0.55:100;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.25份、六氟硅酸钾2.5份、二氧化硅1.8份、氯化钠4.5份;步骤S1中所述快速冷却的冷却速率为108℃/s。
步骤S2中所述晶化退火处理具体为:在495℃下保温3.5小时,再以0.9℃/min的升温速率升温至558℃,保温2.5小时;步骤S2中所述热处理具体为:以5.5℃/min的升温速率升温至493℃,保温0.9小时;再以2.5℃/min的升温速率升温至595℃,保温1.8小时;接着以3.5℃/min的降温速率降温至410℃,保温1.3小时;后在复合磁场下进行磁场热处理;所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为11mT,纵向磁场的强度为2.5mT;所述磁场热处理温度为610℃,时间为2.2h;所述磁场热处理是在氧浓度为4ppm的气氛中进行的。
实施例5
一种纳米晶合金磁芯,包括如下按重量百分比计的各成分制成:Cu 1.0%、Si10.0%、B 8.0%、Sr 0.3%、Ir 0.15%、Bi 0.10%、Ni 1.5%、Te 0.3%、稀土元素0.04%、余量为Fe;所述稀土元素为Gd、Ce按质量比3:1混合形成。
一种所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯。
步骤S1中所述熔炼具体为:起始熔炼功率为40KW,以3KW/min的速率升至145KW,至各成分完全熔化;步骤S1中所述精炼具体包括:加入精炼剂进行精炼5min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂、熔液的质量比为0.6:100;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.3份、六氟硅酸钾3份、二氧化硅2份、氯化钠5份;步骤S1中所述快速冷却的冷却速率为110℃/s。
步骤S2中所述晶化退火处理具体为:在500℃下保温4小时,再以1℃/min的升温速率升温至560℃,保温3小时;步骤S2中所述热处理具体为:以6℃/min的升温速率升温至500℃,保温1小时;再以3℃/min的升温速率升温至600℃,保温2小时;接着以4℃/min的降温速率降温至420℃,保温1.5小时;后在复合磁场下进行磁场热处理;所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为12mT,纵向磁场的强度为3mT;所述磁场热处理温度为620℃,时间为2.5h;所述磁场热处理是在氧浓度为5ppm的气氛中进行的。
对比例1
一种纳米晶合金磁芯,其配方和制备方法与实施例1基本相同,不同的是没有添加Ir和Te。
对比例2
一种纳米晶合金磁芯,其配方和制备方法与实施例1基本相同,不同的是没有添加Sr和Bi。
对各例制成的纳米晶合金磁芯进行相关性能测试,测试结果见表1,测试方法如下:磁芯的饱和磁感应强度Bs采用振动样品磁强仪(VSM)进行测定,损耗测量采用MATS-2010SA测量装置在0.88T,50Hz时检测P0.87/50,初始磁导率μ0(H=0.08A/m时)采用伏安法测量并计算。
从表1中数据可知,本发明各实施例的纳米晶合金磁芯具有优异的软磁性能,较高的磁导率,较低的矫顽力和磁滞损耗;Ir、Te、Sr和Bi的加入对改善上述性能均有益。
表1 各实施例和对比例纳米晶合金磁芯检测结果
项目 Bs P<sub>0.88/50</sub> μ<sub>0</sub> Hc
单位 T W/kg Gs/Oe A/m
实施例1 1.673 0.032 15.1万 1.4
实施例2 1.681 0.027 15.4万 1.3
实施例3 1.695 0.025 15.5万 1.1
实施例4 1.703 0.022 15.7万 0.9
实施例5 1.722 0.020 15.9万 0.8
对比例1 1.620 0.039 14.8万 1.7
对比例2 1.646 0.041 14.4万 1.9
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (6)

1.一种纳米晶合金磁芯,其特征在于,包括如下按重量百分比计的各成分制成:Cu0.6-1.0%、Si 8.0-10.0%、B 5.5-8.0%、Sr 0.1-0.3%、Ir 0.05-0.15%、Bi 0.03-0.10%、Ni0.8-1.5%、Te 0.1-0.3%、稀土元素0.01-0.04%、余量为Fe;
所述纳米晶合金磁芯的制备方法,包括如下步骤:
步骤S1、按照重量百分比将各成分混合,置于中频熔炼炉内进行熔炼得到熔液后,精炼,接着将合金溶液喷敷在快速旋转的铜锟上快速冷却甩带制得非晶合金薄带,再卷绕制成非晶合金磁芯;步骤S1中所述精炼具体包括:加入精炼剂进行精炼3-5min,并采用通氮气旋转法进行除气,最后扒渣;所述精炼剂包括如下按重量份计的各组分制成:氧化锶0.1-0.3份、六氟硅酸钾1-3份、二氧化硅1-2份、氯化钠3-5份;
步骤S2、将经过步骤S1制成的非晶合金磁芯在真空环境下进行晶化退火处理,接着继续进行热处理,制成纳米晶合金磁芯;所述热处理具体为:以4-6℃/min的升温速率升温至460-500℃,保温0.5-1小时;再以1-3℃/min的升温速率升温至570-600℃,保温1-2小时;接着以2-4℃/min的降温速率降温至380-420℃,保温0.8-1.5小时;后在复合磁场下进行磁场热处理。
2.根据权利要求1所述纳米晶合金磁芯,其特征在于,所述稀土元素为Gd、Ce按质量比(2-3):1混合形成。
3.根据权利要求1所述纳米晶合金磁芯的制备方法,其特征在于,步骤S1中所述熔炼具体为:起始熔炼功率为30-40KW,以1-3KW/min的速率升至135-145KW,至各成分完全熔化。
4.根据权利要求1所述纳米晶合金磁芯的制备方法,其特征在于,所述精炼剂、熔液的质量比为(0.2-0.6):100。
5.根据权利要求1所述纳米晶合金磁芯的制备方法,其特征在于,步骤S1中所述快速冷却的冷却速率为100-110℃/s;步骤S2中所述晶化退火处理具体为:在470-500℃下保温2-4小时,再以0.5-1℃/min的升温速率升温至550-560℃,保温1-3小时。
6.根据权利要求1所述纳米晶合金磁芯的制备方法,其特征在于,所述复合磁场包括横向磁场和纵向磁场;所述的横向磁场的强度为8-12mT,纵向磁场的强度为1-3mT;所述磁场热处理温度为580-620℃,时间为1-2.5h;所述磁场热处理是在氧浓度为0-5ppm的气氛中进行的。
CN202210196990.5A 2022-03-02 2022-03-02 一种纳米晶合金磁芯及其制备方法 Active CN114672742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210196990.5A CN114672742B (zh) 2022-03-02 2022-03-02 一种纳米晶合金磁芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210196990.5A CN114672742B (zh) 2022-03-02 2022-03-02 一种纳米晶合金磁芯及其制备方法

Publications (2)

Publication Number Publication Date
CN114672742A CN114672742A (zh) 2022-06-28
CN114672742B true CN114672742B (zh) 2023-02-28

Family

ID=82073066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210196990.5A Active CN114672742B (zh) 2022-03-02 2022-03-02 一种纳米晶合金磁芯及其制备方法

Country Status (1)

Country Link
CN (1) CN114672742B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117238625B (zh) * 2023-10-10 2024-03-15 扬州国光新材料有限公司 一种粉末冶金高密度磁芯及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172862A (zh) * 1996-07-15 1998-02-11 阿尔卑斯电气株式会社 铁基软磁性合金的制造方法
CN102543347A (zh) * 2011-12-31 2012-07-04 中国科学院宁波材料技术与工程研究所 一种铁基纳米晶软磁合金及其制备方法
CN104485192A (zh) * 2014-12-24 2015-04-01 江苏奥玛德新材料科技有限公司 一种铁基非晶纳米晶软磁合金及其制备方法
CN105861958A (zh) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 一种低成本的高导磁铁基非晶纳米晶软磁合金及其制备方法
CN107464649A (zh) * 2017-08-03 2017-12-12 江苏奥玛德新材料科技有限公司 一种具有线性磁滞回线的磁芯
CN112962024A (zh) * 2021-01-29 2021-06-15 中国科学院宁波材料技术与工程研究所 一种类Finemet型Fe基纳米晶软磁合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172862A (zh) * 1996-07-15 1998-02-11 阿尔卑斯电气株式会社 铁基软磁性合金的制造方法
CN102543347A (zh) * 2011-12-31 2012-07-04 中国科学院宁波材料技术与工程研究所 一种铁基纳米晶软磁合金及其制备方法
CN104485192A (zh) * 2014-12-24 2015-04-01 江苏奥玛德新材料科技有限公司 一种铁基非晶纳米晶软磁合金及其制备方法
CN105861958A (zh) * 2016-05-26 2016-08-17 江苏奥玛德新材料科技有限公司 一种低成本的高导磁铁基非晶纳米晶软磁合金及其制备方法
CN107464649A (zh) * 2017-08-03 2017-12-12 江苏奥玛德新材料科技有限公司 一种具有线性磁滞回线的磁芯
CN112962024A (zh) * 2021-01-29 2021-06-15 中国科学院宁波材料技术与工程研究所 一种类Finemet型Fe基纳米晶软磁合金及其制备方法

Also Published As

Publication number Publication date
CN114672742A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN103834858B (zh) 一种低铁损无取向硅钢的制造方法
CN103725995B (zh) 一种取向高硅电工钢的制备方法
CN105047348A (zh) 一种非晶纳米晶软磁合金的电流互感器铁芯及其制备方法
CN109504924B (zh) 一种铁基非晶合金带材及其制备方法
CN111101057B (zh) 一种超低温磁屏蔽用软磁合金带材及制备方法
CN105861959B (zh) 智能电表用低角差纳米晶软磁合金磁芯及其制备方法
CN106319398A (zh) 一种稀土掺杂的铁基非晶厚带及其制备方法
CN114672742B (zh) 一种纳米晶合金磁芯及其制备方法
CN111139404A (zh) 一种高强度软磁合金及其制作方法
CN111910054B (zh) 一种高性能铁基非晶纳米晶带材的热处理方法
CN102049515A (zh) 铁硅铝软磁粉末及其制造方法
CN110079749B (zh) 一种铁基纳米晶-非晶软磁软磁合金及其制备方法与应用
CN103820741B (zh) 一种用于节能电机的导磁合金材料及其制备方法
CN109778083B (zh) 高饱和磁感应强度铁基非晶合金及其制备方法
CN114694908A (zh) 一种耐低温纳米晶软磁合金铁芯、制造方法及应用
JPS6323262B2 (zh)
CN106636982A (zh) 一种铁基非晶合金及其制备方法
CN104805382A (zh) 一种非晶纳米晶合金薄带及其制备方法
CN103469069B (zh) 下屈服强度≥810MPa的奥氏体低磁导率钢及生产方法
CN115161556A (zh) 一种铁镍软磁合金及其制备方法
CN102509603B (zh) 铁基非晶态软磁材料及其制备方法
US20230203613A1 (en) Low-Cost Non-Oriented Electrical Steel Plate With Extremely Low Aluminum Content and Manufacturing Method Therefor
CN108950434B (zh) 一种激磁功率小的铁基非晶带材及其制备方法
CN110468353B (zh) 一种高饱和磁感应强度铁基非晶合金及制备方法
CN114574784B (zh) 高Fe含量的铁基非晶合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant