CN114660932A - 一种含有减速伞的导弹敏捷转弯最优控制方法 - Google Patents

一种含有减速伞的导弹敏捷转弯最优控制方法 Download PDF

Info

Publication number
CN114660932A
CN114660932A CN202210067545.9A CN202210067545A CN114660932A CN 114660932 A CN114660932 A CN 114660932A CN 202210067545 A CN202210067545 A CN 202210067545A CN 114660932 A CN114660932 A CN 114660932A
Authority
CN
China
Prior art keywords
missile
parachute
optimal control
equation
drogue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210067545.9A
Other languages
English (en)
Other versions
CN114660932B (zh
Inventor
于剑桥
牛康
陈曦
杨迪
李梓源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210067545.9A priority Critical patent/CN114660932B/zh
Publication of CN114660932A publication Critical patent/CN114660932A/zh
Application granted granted Critical
Publication of CN114660932B publication Critical patent/CN114660932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明提供了一种含有减速伞的导弹敏捷转弯最优控制方法,在进行大角度机动转弯的过程中,完成对每个阶段每个执行结构的最优控制率设计。首先,针对整个过程中各个通道的最优控制问题,采用最优控制原理对各伞控力、气动控制力等执行机构的控制率进行求解,进而得到整个飞行过程的最优控制率。本发明提供的一种含有减速伞的导弹敏捷转弯最优控制方法,通过将减速伞在减速方面的优点和导弹高速飞行相结合,提出的新的伞‑弹控制系统;伞‑弹飞行过程中,该发明通过动态规划的设计方法,设计不同阶段下的最优控制律,根据对应的仿真结果可以看出该方法的有效性。

Description

一种含有减速伞的导弹敏捷转弯最优控制方法
技术领域
本发明属于导弹大角度机动转弯控制领域。涉及一种具有减速伞的导弹敏捷转弯最优控制方法。
背景技术
导弹大角度机动转弯控制是导弹敏捷转弯领域内的一类重要问题,被广泛应用于控制、攻防对抗等领域。
随着军事科技的快速发展,导弹大角度机动转弯又叫做导弹敏捷转弯,被广泛应用于战略战术武器中,尤其应用于空空导弹、地空导弹等武器系统中。众所周知,传统导弹在进行大角度机动转弯过程中,导弹离开发射架时迅速进入初制导阶段,而此时导弹的速度指向与导弹视线之间往往具有很大的夹角。因此,在导弹的初制导的作用下,夹角会变得越来越小,直到导弹的指向与目标之间的夹角为零。所以,传统的大角度机动转弯往往仅考虑如何能完成大角度机动转弯,不会考虑如何让在保证完成大角度机动转弯的约束。因此,在此情况下本专利提出一种带有减速伞的导弹敏捷转弯最优控制方法。
该方法首先将导弹敏捷转弯过程分为减速段、大角度机动段以及末制导段。在进入减速段的过程中,减速伞迅速张开,在减速伞的作用下导弹速度迅速降低完成导弹极短时间减速,同时在空气舵的作用下导弹完成大角度机动转弯,大角度机动完成之后,导弹迅速进入末制导段,从而完成对目标的打击。
减速转弯段开始转弯时刻为减速段的起始时刻t0,减速伞迅速张开,在减速伞的作用下导弹速度迅速降低;同时在空气舵的作用下导弹完成大角度机动转弯,转弯角度范围为90°~180°。
因此,综合以上问题,目前缺少一种含有减速伞的导弹敏捷转弯最优控制方法。
发明内容
有鉴于此,本发明提供了一种含有减速伞的导弹敏捷转弯最优控制方法,在进行大角度机动转弯的过程中,完成对每个阶段每个执行结构的最优控制率设计。
为达到上述目的,本发明的技术方案包括如下步骤:
步骤1:将减速伞加入导弹动力学模型中,对传统铅垂面上导弹运动学方程改进,得到铅垂面上伞-导弹动力学方程为:
Figure BDA0003480772320000021
其中,P发动机推力,m为导弹质量,Gr导弹重力,V为导弹飞行速度、V 为导弹飞行加速度,θ为导弹弹道倾角,α为导弹攻角,
Figure BDA0003480772320000022
为导弹俯仰角,
Figure BDA0003480772320000023
Figure BDA0003480772320000024
的一阶导,Δδ为导弹舵偏,
Figure BDA0003480772320000025
为导弹俯仰角速率,Jz为导弹转动惯量,Y为导弹升力,x,y为铅垂面位置,
Figure BDA0003480772320000026
为x的一阶导,
Figure BDA0003480772320000027
为y的一阶导,Faero为导弹气动阻力,Fum为减速伞作用力,
Figure BDA0003480772320000028
为导弹攻角产生的俯仰力矩,
Figure BDA0003480772320000029
为导弹俯仰阻尼力矩,
Figure BDA00034807723200000210
为导弹舵偏产生的俯仰力矩,
Figure BDA00034807723200000211
为减速伞产生的俯仰力矩,Δum 为减速伞偏角。
其次,方程中的各个气动力与气动力矩的表达式为:
Figure BDA0003480772320000031
其中,S为导弹参考面积,q为导弹动压,cx为导弹阻力因数,cum为减速伞阻力因数,sum为减速伞面积,lum为减速伞重心与导弹之间的参考长度,cy为导弹升力因数,L为导弹参考长度,
Figure BDA0003480772320000032
为导弹攻角产生的俯仰力矩因数,
Figure BDA0003480772320000033
为导弹俯仰阻尼因数,
Figure BDA0003480772320000034
为导弹舵偏产生的俯仰力矩因数,ρ大气密度,
Figure BDA0003480772320000035
减速伞产生的俯仰阻尼因数。
步骤2:定义指代向量
Figure BDA0003480772320000036
即指代向量中指代量x1~x6分别用于指代
Figure BDA0003480772320000037
所述铅垂面上伞-弹动力学方程转化为:
Figure BDA0003480772320000038
将状态方程转换到状态空间下,得到:
Figure BDA0003480772320000039
其中
Figure BDA0003480772320000041
Figure BDA0003480772320000042
其中f1~f6为矩阵F(x)中的元素,g11,g21,g31,g41,g51,g61,g21,g22,g32, g42,g52,g62分别为矩阵G(x)中的元素,u为控制向量:
Figure BDA0003480772320000043
其中,u1,u2分别为减速伞控制量,舵偏控制量。
步骤3:减速转弯段控制率设计,具体过程如下:
步骤3.1:在进行减速伞控制率设计的过程中,采用最优控制动态规划方法,设计过程中考虑的约束条件为,导弹以最小的转弯半径r完成大角度机动转弯;建立最优性能指标函数J*如下:
Figure BDA0003480772320000044
其中t0为起始时刻,t1为末端时刻。
步骤3.2:根据J*建立哈密顿函数H如下:
Figure BDA0003480772320000045
其中λT的表达式为:
Figure BDA0003480772320000051
步骤3.3:根据步骤3.1和步骤3.2得到哈密顿函数方程为:
Figure BDA0003480772320000052
步骤3.4:此阶段过程中,考虑在减速力与控制力不受约束时,则得到此阶段最优控制的取值条件为:
Figure BDA0003480772320000053
其中,fi为F(x)中的元素,i为1~6,
Figure BDA0003480772320000054
Figure BDA0003480772320000055
表达式为:
Figure BDA0003480772320000056
Figure BDA0003480772320000057
Figure BDA0003480772320000058
步骤3.5:根据步骤3.4中的方程可以得到最优控制下的表达式为:
Figure BDA0003480772320000059
Figure BDA00034807723200000511
为最优的减速伞控制率,
Figure BDA00034807723200000510
为最优的舵偏控制量。
步骤3.6:将步骤3.5中的方程带入步骤3.2最优性能指标函数得到如下方程:
Figure BDA0003480772320000061
Figure BDA0003480772320000062
为;
Figure BDA0003480772320000063
其中
Figure BDA0003480772320000064
得到:
Figure BDA0003480772320000065
由于J*中不包含x2,x4,x5,x6,则:
Figure BDA0003480772320000066
步骤3.7:将步骤3.6中的方程进行求解得到:
Figure BDA0003480772320000067
进一步:
Figure BDA0003480772320000068
其中ξγ为两个设定比例因子。
步骤3.8:将步骤3.7与步骤3.5结合可以得到减速转弯段段最优控制输入为:
Figure BDA0003480772320000069
进一步地,含有减速伞的导弹,其飞行过程中导弹的减速伞张开时间忽略不计。
进一步地,含有减速伞的导弹,其减速伞的伞绳一直处于拉紧状态,即伞绳与导弹的连接为刚体连接。
进一步地,含有减速伞的导弹,其伞绳脱离导弹时,伞绳与导弹的脱离时间忽略不计。
进一步地,含有减速伞的导弹,其减速伞作用力,默认作用于导弹的x轴上。
有益效果:
本发明提供的一种含有减速伞的导弹敏捷转弯最优控制方法,通过将减速伞在减速方面的优点和导弹高速飞行相结合,提出的新的伞-弹控制系统;
本发明提供的一种含有减速伞的导弹敏捷转弯最优控制方法,是一种的新形势的导弹大角度机动转弯方法,该方法可以普遍适用于对转弯半径要求比较严格的飞行环境。
本发明提供的一种含有减速伞的导弹敏捷转弯最优控制方法,伞-弹飞行过程中,该发明通过动态规划的设计方法,设计不同阶段下的最优控制律,根据对应的仿真结果可以看出该方法的有效性。
附图说明
图1为本发明的一种新的大角度机动转弯过程,该过程主要包含开伞减速段以及伞控大角度机动转弯段;
图2为本发明导弹在纵向平面的受力分析示意图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种本发明主要利用最优控制中的动态规划方法解决伞-弹系统大角度机动敏捷转弯所遇到的最优控制问题。首先,针对整个过程中各个通道的最优控制问题,采用最优控制原理对各伞控力、气动控制力等执行机构的控制率进行求解,进而得到整个飞行过程的最优控制率。
图1为本发明的一种新的大角度机动转弯过程,该过程主要包含开伞减速段以及伞控大角度机动转弯段。
本发明一种具有减速伞的导弹敏捷转弯最优控制方法,具体步骤如下:
步骤1:首先由于将减速伞加入导弹动力学模型中,考虑减速伞的作用,首先对传统的导弹动力学模型进行改进,建立新型的伞-弹敏捷转弯控制系统,在建立伞-弹敏捷转弯控制系统之前,本发明首先做如下假设:
1)飞行过程中导弹的减速伞可以迅速张开,同时忽略张开时间;
2)减速伞的伞绳一直处于拉紧状态,即可将伞绳与导弹的来连接视作为刚体连接;
3)伞绳迅速脱离导弹时,伞绳与导弹的脱离时间忽略不计;
4)减速伞作用力,默认作用于导弹的x轴上。
图2为本发明导弹在纵向平面的受力分析示意图。
正在以上假设的基础上,对传统铅垂面上导弹运动学方程改进,得到铅垂面上伞-导弹动力学方程为:
Figure BDA0003480772320000081
其中,P发动机推力,m为导弹质量,Gr导弹重力,V为导弹飞行速度、
Figure BDA0003480772320000082
为导弹飞行加速度,θ为导弹弹道倾角,α为导弹攻角,
Figure BDA0003480772320000083
为导弹俯仰角,
Figure BDA0003480772320000084
Figure BDA0003480772320000085
的一阶导,Δδ为导弹舵偏,
Figure BDA0003480772320000091
为导弹俯仰角速率,Jz为导弹转动惯量,Y为导弹升力,x,y为铅垂面位置,
Figure BDA0003480772320000092
为x的一阶导,
Figure BDA00034807723200000914
为y的一阶导,Faero为导弹气动阻力,Fum为减速伞作用力,
Figure BDA0003480772320000093
为导弹攻角产生的俯仰力矩,
Figure BDA0003480772320000094
为导弹俯仰阻尼力矩,
Figure BDA0003480772320000095
为导弹舵偏产生的俯仰力矩,
Figure BDA0003480772320000096
为减速伞产生的俯仰力矩,Δum为减速伞偏角;
其次,方程中的各个气动力与气动力矩的表达式为:
Figure BDA0003480772320000097
其中,S为导弹参考面积,q为导弹动压,cx为导弹阻力因数,cum为减速伞阻力因数,sum为减速伞面积,lum为减速伞重心与导弹之间的参考长度,cy为导弹升力因数,L为导弹参考长度,
Figure BDA0003480772320000098
为导弹攻角产生的俯仰力矩因数,
Figure BDA0003480772320000099
为导弹俯仰阻尼因数,
Figure BDA00034807723200000910
为导弹舵偏产生的俯仰力矩因数,ρ大气密度,
Figure BDA00034807723200000911
减速伞产生的俯仰阻尼因数;
步骤2:定义指代向量
Figure BDA00034807723200000912
即指代向量中指代量x1~x6分别用于指代
Figure BDA00034807723200000913
所述铅垂面上伞-弹动力学方程转化为:
Figure BDA0003480772320000101
将状态方程转换到状态空间下,得到:
Figure BDA0003480772320000102
其中
Figure BDA0003480772320000103
Figure BDA0003480772320000104
其中f1~f6为矩阵F(x)中的元素,g11,g21,g31,g41,g51,g61,g21,g22,g32, g42,g52,g62分别为矩阵G(x)中的元素,u为控制向量:
Figure BDA0003480772320000105
其中,u1,u2分别为减速伞控制量,舵偏控制量。
定义指代向量
Figure BDA0003480772320000106
即指代向量中指代量x1~x6分别用于指代
Figure BDA0003480772320000111
所述铅垂面上伞-弹动力学方程转化为:
Figure BDA0003480772320000112
将状态方程转换到状态空间下,得到:
Figure BDA0003480772320000113
其中
Figure BDA0003480772320000114
Figure BDA0003480772320000115
其中f1~f6为矩阵F(x)中的元素,g11,g21,g31,g41,g51,g61,g21,g22,g32, g42,g52,g62分别为矩阵G(x)中的元素,u为控制向量:
Figure BDA0003480772320000116
其中,u1,u2分别为减速伞控制量,舵偏控制量;
步骤3:减速转弯段控制率设计,具体过程如下:
步骤3.1:在进行减速伞控制率设计的过程中,采用最优控制动态规划方法,设计过程中考虑的约束条件为,导弹以最小的转弯半径r完成大角度机动转弯;建立最优性能指标函数J*如下:
Figure BDA0003480772320000121
其中t0为起始时刻,t1为末端时刻;
步骤3.2:根据J*建立哈密顿函数H如下:
Figure BDA0003480772320000122
其中λT的表达式为:
Figure BDA0003480772320000123
步骤3.3:根据步骤3.1和步骤3.2得到哈密顿函数方程为:
Figure BDA0003480772320000124
步骤3.4:此阶段过程中,考虑在减速力与控制力不受约束时,则得到此阶段最优控制的取值条件为:
Figure BDA0003480772320000125
其中,fi为F(x)中的元素,i为1~6,
Figure BDA0003480772320000126
Figure BDA0003480772320000127
表达式为:
Figure BDA0003480772320000128
Figure BDA0003480772320000129
Figure BDA0003480772320000131
步骤3.5:根据步骤3.4中的方程可以得到最优控制下的表达式为:
Figure BDA0003480772320000132
Figure BDA0003480772320000133
为最优的减速伞控制率,
Figure BDA0003480772320000134
为最优的舵偏控制量;
步骤3.6:将步骤3.5中的方程带入步骤3.2最优性能指标函数得到如下方程:
Figure BDA0003480772320000135
Figure BDA00034807723200001311
为;
Figure BDA0003480772320000136
其中
Figure BDA0003480772320000137
得到:
Figure BDA0003480772320000138
由于J*中不包含x2,x4,x5,x6,则:
Figure BDA0003480772320000139
步骤3.7:将步骤3.6中的方程进行求解得到:
Figure BDA00034807723200001310
进一步:
Figure BDA0003480772320000141
其中ξγ为两个设定比例因子;
步骤3.8:将步骤3.7与步骤3.5结合可以得到减速转弯段段最优控制输入为:
Figure BDA0003480772320000142
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种含有减速伞的导弹敏捷转弯最优控制方法,其特征在于,包括如下步骤:
步骤1:将减速伞加入导弹动力学模型中,对传统铅垂面上导弹运动学方程改进,得到铅垂面上伞-导弹动力学方程为:
Figure FDA0003480772310000011
其中,P发动机推力,m为导弹质量,Gr导弹重力,V为导弹飞行速度、
Figure FDA0003480772310000012
为导弹飞行加速度,θ为导弹弹道倾角,α为导弹攻角,
Figure FDA0003480772310000013
为导弹俯仰角,
Figure FDA0003480772310000014
Figure FDA0003480772310000015
的一阶导,Δδ为导弹舵偏,
Figure FDA0003480772310000016
为导弹俯仰角速率,Jz为导弹转动惯量,Y为导弹升力,x,y为铅垂面位置,
Figure FDA0003480772310000017
为x的一阶导,
Figure FDA0003480772310000018
为y的一阶导,Faero为导弹气动阻力,Fum为减速伞作用力,
Figure FDA0003480772310000019
为导弹攻角产生的俯仰力矩,
Figure FDA00034807723100000110
为导弹俯仰阻尼力矩,
Figure FDA00034807723100000111
为导弹舵偏产生的俯仰力矩,
Figure FDA00034807723100000112
为减速伞产生的俯仰力矩,Δum为减速伞偏角;
其次,方程中的各个气动力与气动力矩的表达式为:
Figure FDA0003480772310000021
其中,S为导弹参考面积,q为导弹动压,cx为导弹阻力因数,cum为减速伞阻力因数,sum为减速伞面积,lum为减速伞重心与导弹之间的参考长度,cy为导弹升力因数,L为导弹参考长度,
Figure FDA0003480772310000022
为导弹攻角产生的俯仰力矩因数,
Figure FDA0003480772310000023
为导弹俯仰阻尼因数,
Figure FDA0003480772310000024
为导弹舵偏产生的俯仰力矩因数,ρ大气密度,
Figure FDA0003480772310000025
减速伞产生的俯仰阻尼因数;
步骤2:定义指代向量
Figure FDA0003480772310000026
即指代向量中指代量x1~x6分别用于指代
Figure FDA0003480772310000027
所述铅垂面上伞-弹动力学方程转化为:
Figure FDA0003480772310000028
将状态方程转换到状态空间下,得到:
Figure FDA0003480772310000029
其中
Figure FDA0003480772310000031
Figure FDA0003480772310000032
其中f1~f6为矩阵F(x)中的元素,g11,g21,g31,g41,g51,g61,g21,g22,g32,g42,g52,g62分别为矩阵G(x)中的元素,u为控制向量:
Figure FDA0003480772310000033
其中,u1,u2分别为减速伞控制量,舵偏控制量;
步骤3:减速转弯段控制率设计,具体过程如下:
步骤3.1:在进行减速伞控制率设计的过程中,采用最优控制动态规划方法,设计过程中考虑的约束条件为,导弹以最小的转弯半径r完成大角度机动转弯;建立最优性能指标函数J*如下:
Figure FDA0003480772310000034
其中t0为起始时刻,t1为末端时刻;
步骤3.2:根据J*建立哈密顿函数H如下:
Figure FDA0003480772310000035
其中λT的表达式为:
Figure FDA0003480772310000041
步骤3.3:根据步骤3.1和步骤3.2得到哈密顿函数方程为:
Figure FDA0003480772310000042
步骤3.4:此阶段过程中,考虑在减速力与控制力不受约束时,则得到此阶段最优控制的取值条件为:
Figure FDA0003480772310000043
其中,fi为F(x)中的元素,i为1~6,
Figure FDA0003480772310000044
Figure FDA0003480772310000045
表达式为:
Figure FDA0003480772310000046
Figure FDA0003480772310000047
Figure FDA0003480772310000048
步骤3.5:根据步骤3.4中的方程可以得到最优控制下的表达式为:
Figure FDA0003480772310000049
Figure FDA00034807723100000410
为最优的减速伞控制率,
Figure FDA00034807723100000411
为最优的舵偏控制量;
步骤3.6:将步骤3.5中的方程带入步骤3.2最优性能指标函数得到如下方程:
Figure FDA0003480772310000051
Figure FDA0003480772310000052
为;
Figure FDA0003480772310000053
其中
Figure FDA0003480772310000054
得到:
Figure FDA0003480772310000055
由于J*中不包含x2,x4,x5,x6,则:
Figure FDA0003480772310000056
步骤3.7:将步骤3.6中的方程进行求解得到:
Figure FDA0003480772310000057
进一步:
Figure FDA0003480772310000058
其中ξγ为两个设定比例因子;
步骤3.8:将步骤3.7与步骤3.5结合可以得到减速转弯段段最优控制输入为:
Figure FDA0003480772310000059
2.如权利要求1所述的一种含有减速伞的导弹敏捷转弯最优控制方法,其特征在于,所述含有减速伞的导弹,其飞行过程中导弹的减速伞张开时间忽略不计。
3.如权利要求1所述的一种含有减速伞的导弹敏捷转弯最优控制方法,其特征在于,所述含有减速伞的导弹,其减速伞的伞绳一直处于拉紧状态,即伞绳与导弹的连接为刚体连接。
4.如权利要求1所述的一种含有减速伞的导弹敏捷转弯最优控制方法,其特征在于,所述含有减速伞的导弹,其伞绳脱离导弹时,伞绳与导弹的脱离时间忽略不计。
5.如权利要求1所述的一种含有减速伞的导弹敏捷转弯最优控制方法,其特征在于,所述含有减速伞的导弹,其减速伞作用力,默认作用于导弹的x轴上。
CN202210067545.9A 2022-01-20 2022-01-20 一种含有减速伞的导弹敏捷转弯最优控制方法 Active CN114660932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210067545.9A CN114660932B (zh) 2022-01-20 2022-01-20 一种含有减速伞的导弹敏捷转弯最优控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210067545.9A CN114660932B (zh) 2022-01-20 2022-01-20 一种含有减速伞的导弹敏捷转弯最优控制方法

Publications (2)

Publication Number Publication Date
CN114660932A true CN114660932A (zh) 2022-06-24
CN114660932B CN114660932B (zh) 2023-09-12

Family

ID=82026363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210067545.9A Active CN114660932B (zh) 2022-01-20 2022-01-20 一种含有减速伞的导弹敏捷转弯最优控制方法

Country Status (1)

Country Link
CN (1) CN114660932B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004130076A (ru) * 2004-10-11 2006-03-27 Федеральное государственное унитарное предпри тие "Государственный ракетный центр "КБ им. акад. В.П. Макеева" (RU) Способ старта ракеты с самолета
CN107966156A (zh) * 2017-11-24 2018-04-27 北京宇航系统工程研究所 一种适用于运载火箭垂直回收段的制导律设计方法
CN109101035A (zh) * 2018-09-13 2018-12-28 西北工业大学 一种用于高空滑翔uuv纵平面弹道控制的方法
CN110966898A (zh) * 2019-12-06 2020-04-07 上海机电工程研究所 考核飞行试验结束后导弹弹体回收系统
CN112084571A (zh) * 2020-07-16 2020-12-15 北京航空航天大学 带减速伞空投巡航飞行器运动建模与解耦方法
US20210080233A1 (en) * 2019-09-03 2021-03-18 Harkind Dynamics, LLC Intelligent munition
CN112733421A (zh) * 2020-12-01 2021-04-30 南京航空航天大学 一种针对有人无人机协同对地作战的任务规划方法
CN113341710A (zh) * 2021-05-21 2021-09-03 北京理工大学 一种飞行器敏捷转弯复合控制律及其建立方法和应用
CN113624076A (zh) * 2020-05-06 2021-11-09 北京恒星箭翔科技有限公司 一种带有减速装置的全向反斜面导弹

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2004130076A (ru) * 2004-10-11 2006-03-27 Федеральное государственное унитарное предпри тие "Государственный ракетный центр "КБ им. акад. В.П. Макеева" (RU) Способ старта ракеты с самолета
CN107966156A (zh) * 2017-11-24 2018-04-27 北京宇航系统工程研究所 一种适用于运载火箭垂直回收段的制导律设计方法
CN109101035A (zh) * 2018-09-13 2018-12-28 西北工业大学 一种用于高空滑翔uuv纵平面弹道控制的方法
US20210080233A1 (en) * 2019-09-03 2021-03-18 Harkind Dynamics, LLC Intelligent munition
CN110966898A (zh) * 2019-12-06 2020-04-07 上海机电工程研究所 考核飞行试验结束后导弹弹体回收系统
CN113624076A (zh) * 2020-05-06 2021-11-09 北京恒星箭翔科技有限公司 一种带有减速装置的全向反斜面导弹
CN112084571A (zh) * 2020-07-16 2020-12-15 北京航空航天大学 带减速伞空投巡航飞行器运动建模与解耦方法
CN112733421A (zh) * 2020-12-01 2021-04-30 南京航空航天大学 一种针对有人无人机协同对地作战的任务规划方法
CN113341710A (zh) * 2021-05-21 2021-09-03 北京理工大学 一种飞行器敏捷转弯复合控制律及其建立方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田应元: "一种带减速伞的弹体三维弹道数值仿真模型", 《舰船科学技术》 *

Also Published As

Publication number Publication date
CN114660932B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN111306998B (zh) 一种参数摄动自适应的制导火箭弹垂直攻击制导方法
CN109506517B (zh) 一种带约束的中制导弹道优化方法
CN114200826A (zh) 一种超音速大机动靶标持续大过载机动高度稳定控制方法
CN111176315B (zh) 一种基于l1自适应控制的变体巡飞弹控制方法
CN114330115A (zh) 一种基于粒子群搜索的神经网络空战机动决策方法
Vasile et al. A multi-disciplinary approach to design long range guided projectiles
Wang et al. Field-of-view constrained three-dimensional impact angle control guidance for speed-varying missiles
Bryson et al. Control surface design analysis and actuation requirements development for munitions
CN114660932A (zh) 一种含有减速伞的导弹敏捷转弯最优控制方法
CN114486159A (zh) 内埋武器机弹分离相容性前缘锯齿扰流板控制及验证方法
CN114610057A (zh) 一种高马赫飞行器机动突防策略设计方法
CN116331510A (zh) 基于固体火箭发动机助推飞行器的速度约束分离方法
CN113739635B (zh) 一种实现导弹大扇面角发射的制导方法
Kim et al. Guidance and control system design for impact angle control of guided bombs
Gruenwald et al. A gain-scheduled approach for the control of a high-speed guided projectile
Bryson et al. Linear parameter varying model predictive control of a high-speed projectile
CN113359819A (zh) 一种带有碰撞角约束和加速度限制的最优制导律
Schumacher et al. Guided Munition Adaptive Trim Actuation System for Aerial Gunnery
Kumar et al. Variable gain predictive PN guidance for interception of high speed re-entry targets
Gaudet et al. A Comparison of Partially and Fully Integrated Guidance and Flight Control Optimized with Reinforcement Meta-Learning
Sethunathan et al. Aerodynamic Configuration design of a missile
Bryson Analysis of Steady-State Aerodynamic Performance and Control Surface Effectiveness of a High-Speed Projectile
Liu et al. Trajectory Optimization Design for High Safety of Sea Based Weapon Rudder Debris
CN112034870B (zh) 一种应用于滑翔制导炮弹的鲁棒姿态自动驾驶方法
Cao et al. Helicopter manoeuvre gaming simulation and mathematical inverse solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant