CN114660026B - 非甾体抗炎药dcf检测膜材料及其制备方法与应用 - Google Patents

非甾体抗炎药dcf检测膜材料及其制备方法与应用 Download PDF

Info

Publication number
CN114660026B
CN114660026B CN202210181114.5A CN202210181114A CN114660026B CN 114660026 B CN114660026 B CN 114660026B CN 202210181114 A CN202210181114 A CN 202210181114A CN 114660026 B CN114660026 B CN 114660026B
Authority
CN
China
Prior art keywords
dcf
solution
mmms
mil
steroidal anti
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210181114.5A
Other languages
English (en)
Other versions
CN114660026A (zh
Inventor
牛和林
程乐乐
廉笑
朱良武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210181114.5A priority Critical patent/CN114660026B/zh
Publication of CN114660026A publication Critical patent/CN114660026A/zh
Application granted granted Critical
Publication of CN114660026B publication Critical patent/CN114660026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Abstract

本发明公开了非甾体抗炎药DCF检测膜材料及其制备方法与应用,包括以下步骤:配置0.2M‑0.3M的1,3,5‑苯三甲酸(BTC)乙醇溶液和0.2M‑0.3M的Ln(NO3)3·6H2O乙醇溶液,然后混合均匀,最后超声30‑60分钟,离心,洗涤,得到Ln‑MIL‑78;使用聚丙烯腈配置质量分数8%‑12%的纺丝前溶液;将Ln‑MIL‑78添加到纺丝前溶液中搅拌,直到Ln‑MIL‑78均匀分散在溶液中得到纺丝溶液;将制备的纺丝溶液用于静电纺丝,得到非甾体抗炎药DCF检测膜材料MMMs;无论是在存在大量干扰物质的情况下,还是在复杂的生物内源性环境中,传感平台仍能以优异的准确度对DCF进行特异性响应。这种发光传感平台不仅具有操作简单、可视性好等优点,而且在20个循环后仍能保持对分析物的良好响应,表现出优异的可回收性和重现性。

Description

非甾体抗炎药DCF检测膜材料及其制备方法与应用
技术领域
本发明属于分析化学领域,具体是一种非甾体抗炎药DCF检测膜材料及其制备方法与应用,制备了一种基于发光Ln-MIL-78和静电纺丝技术的混合基质膜(MMMs),并将其开发为用于快速检测血清中双氯芬酸(DCF)的传感平台。
背景技术
双氯芬酸(DCF)是一种合成的非甾体抗炎药(NSAID),对人体具有镇痛、抗炎和解热作用。它主要通过肝脏代谢消除,因此对肝脏有明显的副作用。长期或大量服用DCF会导致严重的肝肾损害,甚至危及生命。因此,确定血清中DCF的浓度非常重要。目前,DCF的检测方法包括高效薄层色谱法(HPTLC)、高压液相色谱法(HPLC)、电泳分析和荧光传感。在这些方法中,众所周知,发光分析因其仪器简单、灵敏度高、线性范围宽而成为一种越来越流行的技术。此外,由于发光的重现性好、简单和快速方法,发光传感材料有很大的潜力发展成为即时检测(POST)的检测设备。因此,设计合适的荧光材料和装置用于在生物环境中快速灵敏地检测DCF是当前的挑战。
金属有机骨架材料(MOFs)作为一种新型多孔材料,具有可调孔径和高化学和热稳定性,引起了研究人员的广泛关注。考虑到MOFs的高稳定性和可调孔径,它可以用于多种类型的传感材料和设备,例如化学传感器、生物传感器、温度传感器和气体传感器。尤其是发光镧系元素(Ln)MOF,因其在UV-Vis到NIR范围内的长寿命发射以及尖锐的线性发射带而受到关注。然而,传统的传感平台通常专注于结晶粉末或散装材料作为载体,这在生物医学应用中受到很大限制。因此,如何实现DCF的快速检测并制备高灵敏度的即时检测(POST)设备,仍然是研究人员面临的问题。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供了一种非甾体抗炎药DCF检测膜材料及其制备方法与应用,所述的检测膜材料是基于发光Ln-MIL-78和静电纺丝技术的混合基质膜(MMMs),并将其开发为用于快速检测血清中双氯芬酸的传感平台。
本发明的制备方案是:
所述的MMMs的制备方法:首先,配置1,3,5-苯三甲酸(BTC)(0.2M-0.3M)和Ln(NO3)3·6H2O(0.2M-0.3M)的乙醇溶液,然后按照混合均匀,最后超声30-60分钟,离心,洗涤,得到Ln-MIL-78。
使用聚丙烯腈配置质量分数8%-12%的纺丝前溶液。
将Ln-MIL-78添加到纺丝前溶液中搅拌直到Ln-MIL-78均匀分散在溶液中。将制备的溶液(10ml-15ml)用于静电纺丝(溶剂盒移动速度为100-200mm/s,电压30-40KV),得到尺寸约为0.5m×0.5m的MMMs。
MMMs在快速检测血清中双氯芬酸(DCF)的应用
在常温条件下,首先将MMMs浸泡在待测血清中。然后将其快速取出并在290nm的激发波长下记录其发射光谱,重复该步骤三次,求波长为546nm处的荧光强度的平均值。最后计算I0/I-1的数值(I0和I是MMMs在DCF中浸泡前后的荧光强度),参照SV拟合曲线(图6,图7),读出血清中双氯芬酸的含量。
本发明具有以下优点:
1,使用超声方法快速制备了Ln-MIL-78。
2,无论是在存在大量干扰物质的情况下,还是在复杂的生物内源性环境中,传感平台仍能以优异的准确度对DCF进行特异性响应。更重要的是,这种发光传感平台不仅具有操作简单、可视性好等优点,而且在20个循环后仍能保持对分析物的良好响应,表现出优异的可回收性和重现性。
附图说明
图1MMMs的荧光激发发射光谱
图2在290nm激发波长下,MMMs浸泡过各种干扰物水溶液后的发射光谱
图3对应在546nm处的荧光淬灭效率
图4存在干扰物条件下优化的DCF 3D直方图选择性
图5MMMs在DCF水溶液中的发射光谱
图6宽浓度范围内,在DCF水溶液中MMMs的KSV曲线
图7低浓度范围内,在DCF水溶液中MMMs的KSV曲线
图8MMMs在DCF血清溶液中的发射光谱
图9宽浓度范围内,在DCF血清溶液中MMMs的KSV曲线
图10低浓度范围内,在DCF血清中MMMs的KSV曲线;
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1MMMs的制备
首先,配置1,3,5-苯三甲酸(BTC)为0.3M的乙醇溶液,配置Tb(NO3)3·6H2O为0.3M的乙醇溶液,然后混合均匀,超声30-60分钟,最后离心,洗涤,得到Tb-MIL-78。
称取聚丙烯腈(1.5g)于DMF(15ml)中,常温搅拌溶解12小时,得到纺丝前液。
将Tb-MIL-78(0.3g)添加到纺丝前溶液中搅拌,直到Tb-MIL-78均匀分散在溶液中。将制备的溶液用于静电纺丝(溶剂盒移动速度为100mm/s,电压40KV),得到尺寸约为0.5m×0.5m的MMMs。图1为MMMs的荧光光谱图。
实施例2MMMs的制备
首先,配置1,3,5-苯三甲酸(BTC)为0.3M的乙醇溶液,配置Eu(NO3)3·6H2O为0.3M的乙醇溶液,然后混合均匀,超声30-60分钟,最后离心,洗涤,得到Eu-MIL-78。
称取聚丙烯腈(1.5g)于DMF(15ml)中,常温搅拌溶解12小时,得到纺丝前液。
将Eu-MIL-78(0.3g)添加到纺丝前溶液中搅拌,直到Eu-MIL-78均匀分散在溶液中。将制备的溶液用于静电纺丝(溶剂盒移动速度为100mm/s,电压40KV),得到尺寸约为0.5m×0.5m的MMMs。
实施例3MMMs的制备
首先,配置1,3,5-苯三甲酸(BTC)为0.2M的乙醇溶液,配置Tb(NO3)3·6H2O为0.2M的乙醇溶液,然后混合均匀,超声30-60分钟,最后离心,洗涤,得到Tb-MIL-78。
称取聚丙烯腈(1.5g)于DMF(10ml)中,常温搅拌溶解12小时,得到纺丝前液。
将Tb-MIL-78(0.2g)添加到纺丝前液中搅拌,直到Tb-MIL-78均匀分散在溶液中。将制备的溶液用于静电纺丝(溶剂盒移动速度为200mm/s,电压30KV),得到尺寸约为0.5m×0.5m的MMMs。
实施例4基于实施例1的MMMs传感平台在水溶液中对DCF检测
为验证DCF的选择性识别,选取人体常见的10种物质作为干扰物质,分析MMMs对DCF的检测能力。干扰物质包括氯化钠(NaCl)、氯化钾(KCl)、氯化钙(CaCl2)、甘氨酸(Gly)、L-亮氨酸(L-Leu)、L-组氨酸(L-His)、半胱氨酸(Cys)、无水葡萄糖(C6Cl12O6)、维生素C(Vit.C)、维生素B(Vit.B1)。首先将上述物质分别配置成0.01mol/L的水溶液,然后在室温下条件下,把MMMs分别浸泡在上述溶液中,最后将MMMs从溶液中取出,在290nm激发波长下测量其荧光发射光谱。图2中,DCF对MMMs的荧光有着显著猝灭效应。在评估传感器的性能时,实现对DCF的高选择性而不是其他干扰物质是一个非常重要的特征。因此,对存在干扰物质的DCF溶液进行了传感实验,结果如图3,图4所示。结果表明,在DCF溶液中加入过量干扰物质时,MMMs在546nm处的强度变化显示出与仅使用DCF相似的强度变化。这表明DCF对Tb3+发射的猝灭效应不受共存组分的影响,进一步证实了MMMs作为DCF传感器非常有前景。
为了评估MMMs对DCF的敏感性,进行了荧光滴定实验。将MMMs浸入不同浓度的DCF溶液中,以了解MMMs的灵敏度。MMMs的荧光强度随DCF的浓度而变化,如图5所示。淬灭效应的定量合理化是通过使用Stern-Volmer(SV)方程拟合浓度滴定实验的最大荧光强度来实现的。如图6所示,拟合曲线是在很宽的浓度范围(10-5-10-4mol·L-1)上的非线性拟合。此外,在(10-6-10-5mol·L-1)范围内,发射强度比(I0/I-1)和DCF浓度之间存在良好的线性关系(R2=0.974)(图7),SV方程为I0/I-1=0.35023+0.06132[DCF],其中I0和I是MMMs在DCF中浸泡前后的荧光强度,[DCF]是DCF的浓度,KSV是淬火常数。根据3σIUPAC标准,计算出DCF的LOD(检测限)为98.5ppb。
实施例5基于实施例1的MMMs传感平台在血清溶液中对DCF检测
为了证明MMMs测定的实际用途,还在猪血清样品中进行了浓度滴定实验。结果如图8所示,MMMs的荧光强度随着DCF浓度的增加而逐渐降低。拟合结果如图9,在宽浓度范围内呈现非线性拟合关系。在DCF浓度范围为2*10-6–9*10-6mol·L-1范围内,发射强度比(I0/I-1)和DCF有着良好的线性拟合(图10)。血清中DCF的LOD计算为13.2ppm。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (6)

1.一种非甾体抗炎药DCF检测膜材料的制备方法,其特征在于,包括以下步骤:
配置0.2M-0.3M的1,3,5-苯三甲酸(BTC)乙醇溶液和0.2M-0.3M的Ln(NO3)3·6H2O乙醇溶液,然后将两溶液混合均匀,最后超声30-60分钟,离心,洗涤,得到Ln-MIL-78;
使用聚丙烯腈配置质量分数8%-12%的纺丝前溶液;
将Ln-MIL-78添加到纺丝前溶液中搅拌,直到Ln-MIL-78均匀分散在溶液中得到纺丝溶液;将制备的纺丝溶液用于静电纺丝,得到非甾体抗炎药DCF检测膜材料MMMs;所述Ln为镧系金属离子Tb3+或Eu3+
2.根据权利要求1所述的的制备方法,其特征在于,Ln-MIL-78与高分子化合物聚丙烯腈两者质量比:
3.根据权利要求1所述的的制备方法,其特征在于,1,3,5-苯三甲酸(BTC)乙醇溶液和0.2M-0.3M的Ln(NO3)3·6H2O乙醇溶液,按照的比例混合。
4.根据权利要求1所述的制备方法制备的非甾体抗炎药DCF检测膜材料MMMs。
5.权利要求4所述的非甾体抗炎药DCF检测膜材料MMMs在快速检测血清中双氯芬酸DCF中的应用。
6.权利要求5所述的应用,其特征在于,在常温条件下,首先将MMMs浸泡在待测血清中,然后将其快速取出并在290nm的激发波长下记录其发射光谱,重复该步骤三次,求波长为546nm处的荧光强度的平均值;最后计算I0/I-1的数值,I0和I是MMMs在DCF中浸泡前后的荧光强度,参照SV拟合曲线,读出血清中双氯芬酸的含量。
CN202210181114.5A 2022-02-26 2022-02-26 非甾体抗炎药dcf检测膜材料及其制备方法与应用 Active CN114660026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210181114.5A CN114660026B (zh) 2022-02-26 2022-02-26 非甾体抗炎药dcf检测膜材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210181114.5A CN114660026B (zh) 2022-02-26 2022-02-26 非甾体抗炎药dcf检测膜材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114660026A CN114660026A (zh) 2022-06-24
CN114660026B true CN114660026B (zh) 2024-03-08

Family

ID=82027138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210181114.5A Active CN114660026B (zh) 2022-02-26 2022-02-26 非甾体抗炎药dcf检测膜材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114660026B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027538A2 (en) * 2010-08-25 2012-03-01 Cornell University Cornell Center For Technology, Enterprise & Commercialization ("Cctec") Metal organic framework modified materials, methods of making and methods of using same
CN106237862A (zh) * 2016-08-31 2016-12-21 武汉三江航天远方科技有限公司 中空纤维气体分离膜及其制备方法
WO2019179082A1 (zh) * 2018-03-20 2019-09-26 时代沃顿科技有限公司 金属有机框架反渗透膜及其制备方法
CN111545077A (zh) * 2020-06-15 2020-08-18 黄淮学院 一种含稀土配合物混合基质膜的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027538A2 (en) * 2010-08-25 2012-03-01 Cornell University Cornell Center For Technology, Enterprise & Commercialization ("Cctec") Metal organic framework modified materials, methods of making and methods of using same
CN106237862A (zh) * 2016-08-31 2016-12-21 武汉三江航天远方科技有限公司 中空纤维气体分离膜及其制备方法
WO2019179082A1 (zh) * 2018-03-20 2019-09-26 时代沃顿科技有限公司 金属有机框架反渗透膜及其制备方法
CN111545077A (zh) * 2020-06-15 2020-08-18 黄淮学院 一种含稀土配合物混合基质膜的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Luminescent Properties of Mechanochemically Synthesized Lanthanide Containing MIL-78 MOF;Tarek Alammar 等;《The Royal Society of Chemistry》;20180427;第1-9页 *

Also Published As

Publication number Publication date
CN114660026A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
Zhu et al. Determination of catecholamines and related compounds by capillary electrophoresis with postcolumn terbium complexation and sensitized luminescence detection
Zamani et al. Neodymium (III)–PVC membrane sensor based on a new four dentate ionophore
JP3088789B2 (ja) イオンのアッセイ法とその装置
JP2004340923A (ja) 全血中の分析対象物の計測に対するヘマトクリットの影響を減らす方法ならびに当該方法で有用な試験キット及び試験用品
Yari et al. Ultra trace mercury (II) detection by a highly selective new optical sensor
Attia et al. Spectrofluorimetric assessment of metoclopramide hydrochloride using terbium doped in PMMA matrix optical sensor
Babu et al. Conventional and nanotechnology based sensors for creatinine (A kidney biomarker) detection: A consolidated review
Javanbakht et al. A selective and sensitive voltammetric sensor based on molecularly imprinted polymer for the determination of dipyridamole in pharmaceuticals and biological fluids
Ling et al. An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane
Amini et al. Development of a highly sensitive and selective optical chemical sensor for batch and flow-through determination of mercury ion
Hosseini et al. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support
Mohr et al. Optical sensing of anions via polarity-sensitive dyes: A bulk sensor membrane for nitrate
Heydari et al. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support
Duong et al. Ratiometric fluorescence sensors for the detection of HPO42− and H2PO4− using different responses of the morin-hydrotalcite complex
Ghaedi et al. Highly selective and sensitive determination of copper ion by two novel optical sensors
Gunjal et al. Waste derived sustainable carbon nanodots as a new approach for sensitive quantification of ethionamide and cell imaging
Segura-Carretero et al. Low-level mercury determination with thiamine by fluorescence optosensing
Monson et al. PEBBLE nanosensors for in vitro bioanalysis
Stanković et al. Electroanalytical approach for vitamin B12 quantification based on its oxidation at boron doped diamond electrode
Ganjali et al. Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion
CN114660026B (zh) 非甾体抗炎药dcf检测膜材料及其制备方法与应用
Suah et al. Highly sensitive fluorescence optode based on polymer inclusion membranes for determination of Al (III) ions
Ensafi et al. Potentiometric sensor for the determination of dibucaine in pharmaceutical preparations and electrochemical study of the drug with BSA
Liu et al. An optical fiber sensor for berberine based on immobilized 1, 4-bis (naphth [2, 1-d] oxazole-2-yl) benzene in a new copolymer
Firooz et al. A highly sensitive and selective bulk optode based on dithiacyclooctadecane derivative incorporating chromoionophore V for determination of ultra trace amount of Hg (II)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant