CN114645158A - 一种用于球阀激光表面强化的复合粉末材料及其应用 - Google Patents

一种用于球阀激光表面强化的复合粉末材料及其应用 Download PDF

Info

Publication number
CN114645158A
CN114645158A CN202210170585.6A CN202210170585A CN114645158A CN 114645158 A CN114645158 A CN 114645158A CN 202210170585 A CN202210170585 A CN 202210170585A CN 114645158 A CN114645158 A CN 114645158A
Authority
CN
China
Prior art keywords
powder
ball valve
nickel
composite powder
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210170585.6A
Other languages
English (en)
Inventor
梁栋
卜凡辉
吕庆
翟迎迎
曹庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Spray Technology Co ltd
Original Assignee
Jiangsu Spray Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Spray Technology Co ltd filed Critical Jiangsu Spray Technology Co ltd
Priority to CN202210170585.6A priority Critical patent/CN114645158A/zh
Publication of CN114645158A publication Critical patent/CN114645158A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Sliding Valves (AREA)

Abstract

本发明涉及一种用于球阀激光表面强化的复合粉末材料,包括镍基粉末60~85wt%;金属陶瓷粉末15~40wt%;镍基粉末与碳化钛粉末均匀混合;镍基粉末元素质量百分比组成为:17.0‑25.0%Cr,6.0‑12.0%Mo,2.15‑5.50%Nb,0.01‑5.0%Fe,0.01‑0.1%C,0.01‑0.8%Al,0.01‑0.3%Si,0.01‑1.15%Ti,余量Ni;金属陶瓷粉末元素质量百分比组成为:19.1‑20.0%C,余量Ti;采用该复合粉末材料进行球阀表面强化后,在兼顾镍基合金耐蚀的基础上,通过弥散分布的金属陶瓷相提高其耐磨性能;同时采用激光熔覆工艺,使涂层与基材实现冶金结合,结合强度更高,避免了涂层在高温、高压、高载荷下易与基材脱落的问题。

Description

一种用于球阀激光表面强化的复合粉末材料及其应用
技术领域
本发明涉及表面处理领域,特别是一种用于球阀激光表面强化的复合粉末材料。
背景技术
球阀是一种以球体为启闭件的阀门,被广泛的应用在石油、造纸、化工、水利、制药、电力、钢铁等行业,在国民经济中占有举足轻重的地位。球阀由于安装和使用的环境特点常接触腐蚀环境,特别是用于燃气、石油和煤化工行业常含有腐蚀性的液相和气相介质,导致球阀在恶劣的环境下熔覆发生快速的腐蚀与磨损。因此为了降低球阀腐蚀造成的损失、延长球阀在恶劣工况下使用寿命,使其能安全可靠地工作,采取合理有效的表面处理非常有意义。
目前常用的表面强化方式有超音速火焰喷涂、激光熔覆等。超音速火焰喷涂是利用氢、煤油、乙炔、丙烯等作为燃料,用氧气作为助燃剂,在燃烧室或喷嘴中燃烧,产生速度高达2100m/s以上的超音速燃焰,同时将粉末送入火焰中加热至熔化或半熔化的粒子,高速撞击到基体表面,形成高质量涂层的技术。超音速火焰喷涂具有粉末粒子飞行速度快,冲击能量大,且粉末在火焰中停留和加热时间短,温度不高,适合喷涂高温下易分解的金属陶瓷类粉末等优点。但超音速火焰喷涂涂层与基材结合方式为机械结合,在高温、高压、高载荷下使涂层与基材脱落,从而导致阀门在恶劣条件下过早失效。
激光熔覆是一种重要的材料表面改性技术,它是以高能量密度的激光束为热源在基材表面熔覆一层合金材料,使熔覆层与基材实现冶金结合,并且具有加热速度快,热影响区及基材稀释率小等优点,可以在基材表面形成与其原有完全不同成分、性能的合金层的表面改性方法。
发明内容
为了解决现有球阀表面强化耐磨、耐蚀性不高,且在恶劣条件下涂层与基材易脱落的问题,本发明提供了一种用于球阀激光表面强化的复合粉末材料,采用该复合粉末材料进行球阀表面强化后,在兼顾镍基合金耐蚀的基础上,通过弥散分布的金属陶瓷相提高其耐磨性能;同时采用激光熔覆工艺,使涂层与基材实现冶金结合,结合强度更高,避免了涂层在高温、高压、高载荷下易与基材脱落的问题。
为了解决上述技术问题,本发明提供了如下的技术方案:
一种用于球阀激光表面强化的复合粉末材料,包括镍基粉末60~85wt%;金属陶瓷粉末15~40wt%;镍基粉末与碳化钛粉末均匀混合。
进一步的,所述镍基粉末主要组成元素的质量百分比为:17.0-25.0%Cr,6.0-12.0%Mo,2.15-5.50%Nb,0.01-5.0%Fe,0.01-0.1%C,0.01-0.8%Al,0.01-0.3%Si,0.01-1.15%Ti,余量Ni。
进一步的,所述金属陶瓷粉末主要组成元素的质量百分比为:19.1-20.0%C,余量Ti。
进一步的,将镍基粉末与金属陶瓷粉末经三维混粉机机械混合或经行星球磨机研磨。镍基粉末粒度为45-150μm,三维混粉机机械混合后碳化钛粒度为45-100μm,行星球磨机研磨混合后碳化钛粒度为1-5μm。
所述复合粉末材料用于球阀表面熔覆强化。
本发明所达到的有益效果是:通过激光熔覆该复合粉末材料,在兼顾镍基合金耐蚀的基础上,通过弥散分布的金属陶瓷相提高其耐磨性能;采用激光熔覆工艺,使涂层与基材实现冶金结合,结合强度更高,避免了涂层在高温、高压、高载荷下易与基材脱落的问题。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
一种用于球阀激光表面强化的复合粉末材料,所述镍基粉末主要组成元素的质量百分比为:21.5%Cr,8.5%Mo,3.80%Nb,4.0%Fe,0.03%C,0.20%Al,0.02%Si,0.10%Ti,余量Ni。金属陶瓷粉末主要组成元素的质量百分比为:19.8%C,余量Ti。镍基粉末质量占比为85%,金属陶瓷粉末占比为15%。
将镍基粉末与金属陶瓷粉末倒入三维混粉机中机械混合,混合4h。
球阀材质为304不锈钢,对其进行机械加工及表面处理。
将混好的复合粉末材料通过激光熔覆在球阀表面,激光熔覆工艺参数为:P=2000W,光斑直径=4mm,送粉速率=4.0r/min,扫描速率=500mm/min,送粉气:He=5L/min,保护气:He=10L/min,焦距=16mm,搭接率=50%。熔覆层厚度约1.3mm。
将经过熔覆复合粉末材料的球阀通过磨削加工至成品尺寸。
对球阀成品进行手持硬度测量,测得熔覆层平均硬度为550.2HV。
实施例2
一种用于球阀激光表面强化的复合粉末材料,所述镍基粉末主要组成元素的质量百分比为:21.5%Cr,8.5%Mo,3.80%Nb,4.0%Fe,0.03%C,0.20%Al,0.02%Si,0.10%Ti,余量Ni。金属陶瓷粉末主要组成元素的质量百分比为:19.8%C,余量Ti。镍基粉末质量占比为80%,金属陶瓷粉末占比为20%。
将镍基粉末与金属陶瓷粉末倒入行星球磨机中研磨,研磨4h。
球阀材质为304不锈钢,对其进行机械加工及表面处理。
将研磨的复合粉末通过激光熔覆在球阀表面,激光熔覆工艺参数为:P=2300W,光斑直径=4mm,送粉速率=4.0r/min,扫描速率=450mm/min,送粉气:He=5L/min,保护气:He=10L/min,焦距=16mm,搭接率=50%。熔覆层厚度约1.4mm。
将经过熔覆复合粉末材料的球阀通过磨削加工至成品尺寸。
对球阀成品进行手持硬度测量,测得熔覆层平均硬度为582.1HV。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于球阀激光表面强化的复合粉末材料,其特征在于,包括镍基粉末60~85wt%;金属陶瓷粉末15~40wt%;镍基粉末与碳化钛粉末均匀混合。
2.根据权利要求1所述的复合粉末材料,其特征在于,所述镍基粉末主要组成元素的质量百分比为:17.0-25.0%Cr,6.0-12.0%Mo,2.15-5.50%Nb,0.01-5.0%Fe,0.01-0.1%C,0.01-0.8%Al,0.01-0.3%Si,0.01-1.15%Ti,余量Ni。
3.根据权利要求1所述的复合粉末材料,其特征在于,所述金属陶瓷粉末主要组成元素的质量百分比为:19.1-20.0%C,余量Ti。
4.如权利要求1所述的复合粉末材料,其特征在于,将镍基粉末与金属陶瓷粉末经三维混粉机机械混合或经行星球磨机研磨。
5.如权利要求2所述的复合粉末材料,其特征在于,镍基粉末粒度为45-150μm,三维混粉机机械混合后碳化钛粒度为45-100μm,行星球磨机研磨混合后碳化钛粒度为1-5μm。
6.根据权利要求1所述的复合粉末材料在球阀表面熔覆强化中的应用。
CN202210170585.6A 2022-02-24 2022-02-24 一种用于球阀激光表面强化的复合粉末材料及其应用 Pending CN114645158A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210170585.6A CN114645158A (zh) 2022-02-24 2022-02-24 一种用于球阀激光表面强化的复合粉末材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210170585.6A CN114645158A (zh) 2022-02-24 2022-02-24 一种用于球阀激光表面强化的复合粉末材料及其应用

Publications (1)

Publication Number Publication Date
CN114645158A true CN114645158A (zh) 2022-06-21

Family

ID=81993578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210170585.6A Pending CN114645158A (zh) 2022-02-24 2022-02-24 一种用于球阀激光表面强化的复合粉末材料及其应用

Country Status (1)

Country Link
CN (1) CN114645158A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094198A (zh) * 2011-03-25 2011-06-15 天津市汇利通金属表面技术有限公司 一种用于螺杆泵中螺旋套的表面激光熔覆合金方法
CN102962447A (zh) * 2012-11-20 2013-03-13 汕头大学 一种碳化钛金属陶瓷粉末及激光熔覆该粉末的方法
CN103305829A (zh) * 2013-06-18 2013-09-18 江苏和昊激光科技有限公司 专用于丝杠表面激光熔覆的镍基金属陶瓷合金粉末
CN103352220A (zh) * 2013-06-18 2013-10-16 江苏和昊激光科技有限公司 专用于凸轮轴激光熔覆的镍基金属陶瓷合金粉末
CN103409749A (zh) * 2013-09-02 2013-11-27 山东大学 一种激光熔覆金属/陶瓷复合涂层及其制备工艺
CN103602948A (zh) * 2013-11-20 2014-02-26 柳岸敏 专用于连续波光纤激光熔覆的镍基金属陶瓷合金粉末
CN106191853A (zh) * 2016-07-12 2016-12-07 暨南大学 一种热作模具钢的耐磨减摩金属陶瓷复合涂层工艺
CN108441859A (zh) * 2018-06-15 2018-08-24 北京工业大学 使用Nb元素增强Ni基耐磨激光熔覆涂层及其制备方法
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法
CN113373440A (zh) * 2021-05-31 2021-09-10 芜湖舍达激光科技有限公司 一种用于锌锅辊轴套表面制备硬质强化层的激光熔覆粉末
CN113832461A (zh) * 2021-09-23 2021-12-24 浙江亚通焊材有限公司 激光熔覆用镍基合金粉末、陶瓷颗粒增强复合粉末及应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094198A (zh) * 2011-03-25 2011-06-15 天津市汇利通金属表面技术有限公司 一种用于螺杆泵中螺旋套的表面激光熔覆合金方法
CN102962447A (zh) * 2012-11-20 2013-03-13 汕头大学 一种碳化钛金属陶瓷粉末及激光熔覆该粉末的方法
CN103305829A (zh) * 2013-06-18 2013-09-18 江苏和昊激光科技有限公司 专用于丝杠表面激光熔覆的镍基金属陶瓷合金粉末
CN103352220A (zh) * 2013-06-18 2013-10-16 江苏和昊激光科技有限公司 专用于凸轮轴激光熔覆的镍基金属陶瓷合金粉末
CN103409749A (zh) * 2013-09-02 2013-11-27 山东大学 一种激光熔覆金属/陶瓷复合涂层及其制备工艺
CN103602948A (zh) * 2013-11-20 2014-02-26 柳岸敏 专用于连续波光纤激光熔覆的镍基金属陶瓷合金粉末
CN106191853A (zh) * 2016-07-12 2016-12-07 暨南大学 一种热作模具钢的耐磨减摩金属陶瓷复合涂层工艺
CN108441859A (zh) * 2018-06-15 2018-08-24 北京工业大学 使用Nb元素增强Ni基耐磨激光熔覆涂层及其制备方法
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法
CN113373440A (zh) * 2021-05-31 2021-09-10 芜湖舍达激光科技有限公司 一种用于锌锅辊轴套表面制备硬质强化层的激光熔覆粉末
CN113832461A (zh) * 2021-09-23 2021-12-24 浙江亚通焊材有限公司 激光熔覆用镍基合金粉末、陶瓷颗粒增强复合粉末及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘正东著: "《电站耐热材料的选择性强化设计与实践》", 31 January 2017, 冶金工业出版社 *
赵雪阳等: ""H13钢激光熔覆TiC/Ni合金复合涂层的组织与耐磨性"", 《材料热处理学报》 *

Similar Documents

Publication Publication Date Title
EP3084026B1 (en) Powder for surface coating
Gatto et al. Plasma Transferred Arc deposition of powdered high performances alloys: process parameters optimisation as a function of alloy and geometrical configuration
CN100575519C (zh) 镍基合金和具有镍基合金层密封面的不锈钢阀门及制备方法
JP4399248B2 (ja) 溶射用粉末
JP2007308737A (ja) 溶接部の防食方法
CN111575705A (zh) 一种碳化钨增强镍基复合涂层的制备方法
US20180297260A1 (en) Surfacing process, surfaced or resurfaced metal part
CN113667974B (zh) 钛合金表面耐磨金属-多元陶瓷复合改性涂层的制备方法
CN105177567A (zh) 一种钢基表面耐磨涂层的制备方法
Agarwal et al. The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy
WO2021103120A1 (zh) 一种高耐磨耐腐蚀等离子熔覆金属涂层及其制备方法
CN114645158A (zh) 一种用于球阀激光表面强化的复合粉末材料及其应用
CN112626442A (zh) 一种耐高温氧化、耐腐蚀的涂层及其制备方法
CN110904450A (zh) 一种调控多组元激光熔覆层应力的方法
Fischer et al. Development of ultra thin carbide coatings for wear and corrosion resistance
CN110306188A (zh) 一种液压支架激光熔覆专用铁基不锈钢合金粉末及其应用
Dwivedi et al. Surface modification by developing coating and cladding
Biswas et al. A review on TIG cladding of engineering material for improving their surface property
Lisiecki STUDY OF LASER CLADDING OF COMPOSITE COATINGS.
Alam et al. Recent trends in surface cladding on AISI 1045 steel substrate: a review
Mohammadi et al. Improving the Erosion Behavior of Inconel 625 Substrate by PTA-Deposited Stellite6/B 4 C Composite Cladding.
CA1148035A (en) Fusable, self-fluxing alloy powders
Sun et al. Micro–PTA powder cladding on a hot work tool steel
Singh et al. The Effects of Laser Cladding Surface Treatment on Surface Degradation Properties: a Review
CN117644314A (zh) 一种不锈钢用深熔钨极氩弧焊活性剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220621