CN114621939B - 一种溶血磷脂酸酰基转移酶突变体及其应用 - Google Patents

一种溶血磷脂酸酰基转移酶突变体及其应用 Download PDF

Info

Publication number
CN114621939B
CN114621939B CN202210317934.2A CN202210317934A CN114621939B CN 114621939 B CN114621939 B CN 114621939B CN 202210317934 A CN202210317934 A CN 202210317934A CN 114621939 B CN114621939 B CN 114621939B
Authority
CN
China
Prior art keywords
mutant
lysophosphatidic acid
schizochytrium
leu
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210317934.2A
Other languages
English (en)
Other versions
CN114621939A (zh
Inventor
黄和
孙小曼
马旺
郭东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhihe Biotechnology Changzhou Co ltd
Original Assignee
Nanjing Zhihe Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Zhihe Biotechnology Co ltd filed Critical Nanjing Zhihe Biotechnology Co ltd
Priority to CN202210317934.2A priority Critical patent/CN114621939B/zh
Publication of CN114621939A publication Critical patent/CN114621939A/zh
Application granted granted Critical
Publication of CN114621939B publication Critical patent/CN114621939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种溶血磷脂酸酰基转移酶突变体,该溶血磷脂酸酰基转移酶突变体是通过突变技术对裂殖壶菌溶血磷脂酸酰基转移酶进行以下位点的突变改造得到:第106位氨基酸由亮氨酸突变为精氨酸,第113位氨基酸由苏氨酸突变为丝氨酸,第131位氨基酸由亮氨酸突变为缬氨酸,第216位氨基酸由异亮氨酸突变为缬氨酸,第261位氨基酸由苏氨酸突变为脯氨酸;本发明还提供了上述溶血磷脂酸酰基转移酶突变体的应用,通过发酵生产EPA和TAG。本发明实现了提高裂殖壶菌中EPA和TAG含量的目的。本发明提供的溶血磷脂酸酰基转移酶突变体的编码基因用于构建工程菌,构建的工程菌进一步应用于EPA和TAG的生产。

Description

一种溶血磷脂酸酰基转移酶突变体及其应用
技术领域
本发明属于基因工程领域,涉及一种溶血磷脂酸酰基转移酶突变体,具体地说是一种溶血磷脂酸酰基转移酶突变体及其应用。
背景技术
裂殖壶菌是一种富含DHA(二十二碳六烯酸)的异养海洋原生生物,因其生长速度快、DHA含量丰富、易于培养等特点,被广泛应用于科研和商业生产。而EPA(二十碳五烯酸)被认为对人体健康和心血管疾病防治有很好的作用,以EPA为代表的多不饱和脂肪酸在帮助COVID-19患者恢复健康方面也表现出良好的效果。然而,具有极高商业化价值的EPA在裂殖壶菌脂肪酸中占比很小。研究发现,裂殖壶菌中脂肪酸积累以中性脂质、磷脂和糖脂为主,而中性脂质占比超过75%,TAG(三酰基甘油酯)是中性脂质的主要储存形式。对裂殖壶菌HX-308的TAG组成进行分析,发现其TAG的sn-1/2/3位脂肪酸及其含量大小为:DHA>C16:0>DPA>C14:0,且以上四种脂肪酸的量约占总脂肪酸含量的95%,几乎没有EPA的存在,这可能是裂殖壶菌EPA积累过少的原因。
TAG是通过肯尼迪途径合成的,该途径包括以下三个步骤:第一步,3-磷酸甘油(G3P)被限速酶甘油-sn-3-磷酸酰基转移酶(GPAT)转化为溶血磷脂(LPA);第二步,溶血磷脂酸酰基转移酶(LPAAT)将一个酰基部分从CoA转移到LPA的sn-2位,得到磷脂酸(PA);第三步,在二酰基甘油酰基转移酶(DGAT)的催化下,酰基从CoA转移到二酰基甘油酯形成TAG。
相对于GPAT和DGAT将脂肪酸转移到甘油的sn-1/3位,LAPPT则将脂肪酸转移到甘油的sn-2位。研究表明,sn-2位上的脂肪酸在人体中不易被胃中的脂肪酶水解,更易被运输到人体的其他部位发挥功能。因此,通过调控酰基转移酶(尤其是LAPPT)使裂殖壶菌HX-308的TAG sn-1/2/3位定向富集EPA,对裂殖壶菌整体EPA积累将非常有意义。
传统许多研究都试图通过优化发酵过程来提高裂殖壶菌的脂质产量。Jakobsen等人报道,当细胞受到氮限制时,裂殖壶菌T66的脂质生成显著增强(Jakobsen AN,Accumulation of docosahexaenoic acid-rich lipid in thraustochytridAurantiochytrium sp.strain T66:effects of N and P starvation and O2limitation.Appl Microbiol Biotechnol,2018,80(2):297-306)。此外,当整个发酵过程中溶解氧水平保持在50%时,裂殖壶菌SR21产脂量为5.75g/L/d(Huang TY,Afermentation strategy for producing docosahexaenoic acid in Aurantiochytriumlimacinum SR21 and increasing C22:6proportions in total fatty acid.BioresourTechnol,2012,123:8-14)。然而,该技术已经达到了一个瓶颈,仅通过发酵优化无法进一步提高脂质生产率。同样的,适用于这些裂殖壶菌的高效基因编辑工具尚未完全建立(Du F,Biotechnological production of lipid and terpenoid fromthraustochytrids.Biotechnol Adv,2021,48(8):107725)。因此,寻找一种简单有效的代谢流扰动策略成为近年来的研究热点。
近年来,许多小分子药物通过靶向特定的酶蛋白或作为信号分子来扰乱生物系统,从而导致天然生产者的特定表型(Garlick JM,Norstictic acid is a selectiveallosteric transcriptional regulator.J Am Chem Soc,2021,143:9297-9302),而可作为激活剂或抑制剂的小分子药物称为化学调节剂。环己酰亚胺(Cycloheximide),别称放线菌酮,是一种干扰蛋白质生物合成过程的细菌毒素,一些细胞也用它构建蛋白质以执行不同功能,同时,环己酰亚胺是一种潜在的抑制淀粉合成途径关键酶尿苷二磷酸葡萄糖焦磷酸化酶的抑制剂(Decker,D,Identification and characterization of inhibitors ofUDP-glucose and UDP-sugar pyrophosphorylases for in vivo studies.Plant.J,2017,90,1093–1107)。淀粉合成途径通常被认为是菌体内碳源的主流途径,和脂肪酸合成途径竞争共同前体乙酰辅酶A,因此用环己酰亚胺抑制菌体内的淀粉合成,可能会使脂肪酸合成增多。
ARTP是常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,能够在大气压下产生温度在25-40℃之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。为了从生物技术应用的角度突出这种等离子体源的特点,采用常压室温等离子体即ARTP来代表这种RF APGD等离子体源。科学研究表明,等离子体中的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,进而使微生物基因序列及其代谢网络显著变化,最终导致微生物产生突变。与传统诱变方法相比,采用ARTP能够有效造成DNA多样性的损伤,突变率高,并易获得遗传稳定性良好的突变株;与分子操作手段相比,ARTP进行微生物诱变育种具有操作简便、成本低、无有毒有害物质参与诱变过程等优点。
发明内容
本发明的目的,旨在要提供一种溶血磷脂酸酰基转移酶突变体,以解决裂殖壶菌中EPA占比低的问题,同时达到提高TAG含量的目的;
本发明的另一个目的,是要提供上述一种溶血磷脂酸酰基转移酶突变体的应用。
为了实现上述目的,本发明采用的技术方案是:
一种溶血磷脂酸酰基转移酶突变体,通过突变技术对裂殖壶菌溶血磷脂酸酰基转移酶进行以下突变得到:第106位氨基酸由亮氨酸突变为精氨酸、第113位氨基酸由苏氨酸突变为丝氨酸、第131位氨基酸由亮氨酸突变为缬氨酸、第216位氨基酸由异亮氨酸突变为缬氨酸、第261位氨基酸由苏氨酸突变为脯氨酸。
作为一种限定,所述溶血磷脂酸酰基转移酶突变体的氨基酸序列如SEQ ID No.1所示:
SEQ ID No.1:
MLAKGFPQQTSSATASHGFGLPTTPTGASAKLGKAAAQEVSSGKSDVKATSRLEFLAFYARIAGLLLISIMIILVGLSAWPMIAPFHRGKWRTFIDQLECLWVNARLWLLPASTLEMHGDFPTASSTPKLVICNHATDVDWIYQLMPMTVVNFGTTDLSGSVKIFLKQEVKNIPIVGWGCALFEFVFLKRDWAVDRLRIENSLTRFCKDGGPITVVLYPEGSTVNTRTLDKCRTFARVQGRPEFDLTLLPRVRGFAHICEPLAKHSPTGDVDVFDQTMAFDTYSGEVPDWEMGFKRNVDTGVPNFQTMFLGRASRRCHIDSRRFSYRQLKQEYQDSLENWLDERWARKESLLREFIEHQQFDSLGAEPRLSVPVNGSIRRSLMAVTFYIAMWVGMAFTYSRYSADFSAFNL。
本发明还提供了上述一种溶血磷脂酸酰基转移酶突变体的编码基因,所述溶血磷脂酸酰基转移酶突变体的编码基因的序列如SEQ ID No.2所示:
SEQ ID No.2:
ATGCTCGCCAAGGGGTTTCCGCAGCAAACCTCGTCCGCCACAGCCTCACACGGGTTCGGTCTGCCCACGACGCCTACGGGCGCCAGCGCGAAGCTGGGCAAGGCCGCAGCGCAGGAGGTCAGTAGTGGGAAGAGCGATGTGAAAGCGACGTCGCGACTCGAATTTCTCGCTTTTTATGCGCGAATCGCCGGTCTCCTGCTCATCAGCATCATGATCATCCTCGTTGGCCTGTCTGCCTGGCCAATGATTGCCCCCTTCCACCGGGGCAAGTGGCGCACCTTCATCGACCAACTCGAGTGTCTGTGGGTGAATGCGCGTCTGTGGCTGCTACCCGCCTCCACGCTCGAGATGCACGGCGACTTTCCAACCGCATCGTCGACGCCCAAGTTGGTCATTTGCAACCACGCTACCGATGTCGACTGGATCTACCAGCTCATGCCCATGACCGTCGTCAACTTTGGTACGACCGATCTCAGTGGCTCCGTGAAGATTTTCCTCAAACAAGAAGTCAAGAACATCCCCATTGTCGGCTGGGGCTGCGCCCTCTTTGAGTTTGTTTTTCTCAAGCGCGACTGGGCCGTAGATAGACTGCGTATCGAGAATTCGCTCACGCGCTTTTGCAAAGACGGTGGCCCGATCACGGTGGTCCTCTACCCGGAAGGTTCCACCGTCAACACGCGCACTCTCGACAAGTGCCGCACCTTTGCCCGCGTGCAGGGCCGGCCCGAGTTTGACCTCACCTTGCTGCCACGTGTGCGCGGGTTCGCACACATTTGCGAACCTCTCGCCAAGCACTCTCCCACGGGCGACGTCGACGTCTTTGACCAGACCATGGCGTTCGACACATACTCGGGCGAGGTACCTGACTGGGAGATGGGCTTTAAGCGCAATGTGGACACGGGCGTGCCGAACTTCCAGACCATGTTCCTCGGGCGCGCGTCTCGCCGCTGCCACATTGACTCGCGCCGCTTTTCGTACCGCCAGCTTAAGCAAGAGTACCAGGACTCGCTCGAGAATTGGCTCGACGAGCGCTGGGCTCGTAAGGAGAGCCTGCTCCGCGAATTTATCGAGCACCAGCAGTTCGATTCGCTCGGCGCGGAACCGCGATTGTCGGTTCCGGTAAACGGTTCCATCCGTCGCTCTCTCATGGCCGTCACCTTTTACATTGCCATGTGGGTCGGTATGGCGTTCACGTATTCGCGCTACTCGGCCGACTTCTCCGCATTCAATCTGTAA。
本发明还提供了上述一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,所述溶血磷脂酸酰基转移酶突变体的编码基因用于构建工程菌。
作为一种限定,所述工程菌的构建包括以下步骤:
S1.克隆所述溶血磷脂酸酰基转移酶突变体的编码基因;
S2.将S1中的编码基因插入质粒中,构建所述溶血磷脂酸酰基转移酶突变体基因的载体;
S3.将所述载体电转化导入裂殖壶菌,即得所述工程菌。
作为另一种限定,所述工程菌的构建包括以下步骤:
S1.克隆所述溶血磷脂酸酰基转移酶突变体的编码基因和二酰基甘油酰基转移酶突变体的编码基因;
S2.将S1中的编码基因插入质粒中,构建所述溶血磷脂酸酰基转移酶突变体基因和所述二酰基甘油酰基转移酶突变体基因的载体;
S3.将所述载体电转化导入裂殖壶菌,即得所述工程菌。
作为进一步限定,所述二酰基甘油酰基转移酶突变体的编码基因序列如SEQ IDNo.3所示:
SEQ ID No.3:
ATGACCCTGACCGGGCCGGAGGAAGACTACGCCGCGAGTCTGAGTCTGCAAGAGGACGCGGGCGCGCCCGAAGTCGCGGACGCCTCGGCGAGGGAGCGCAAGCAGCGCGCGCCAGATGCGCCAAGCTTGTTGCGCCAGGGCTCGTCCCAGGAAGACGCTGACAATACGCTCGTGCAGCAGACAGGAGTGGCGACTGTCCTCTTGCACGATGCCTCGGAGGTGGTGCGACAGGCGACCTTTGGGTCCGGACATCGCCACGCCGTGGCCATGGAGAATGTAGAAATTAAAACACCTGCGAAAACCCTCCCCGAAGGCACAACGCGCAAGCCCGTCCTCATTATCCCTGGCTTCATGTCGAGTTCGCTCCGTGTCGAGTCATCGAGTGTAGTGCCTCGATGGGAGGGTAAGCGCATTTGGATGTCGCTCGGGCGTTTGGGTTTCACGGGCAAATTTTTAGGAACGTCGAGCGTTTTTGAGACCAAGGACGACGATGCGGAGCAGATCAGTATGCGGAATGATTGGCTCTTGCACATGTCACTTCAAACGGACCTCATTTCTGAGCGAGAAGGTGTGCGGGTGCGCGCCATTCCGGGCTTGCGTGGTGTTGATTTTCTCGAACCAGGTCTCTTCATGAACGCCCAGACCTACGTATTCGGGCCCGTAATTAGCGCTCTCGTCAAGCGCGGTGGTTACACTCCAGAAAAGGATCTCGATGCCGCATCGTACGTCTGGCGCATGCCGCCTCGCATTCTCGAGGAGAGAGACCAATACTTTACGCGTACACTTGATCGCATCGAGCGTATGTGCCAAGAAAACGACAATCGTCGCGTCGTTCTTCTCTGTCACTCCATGGGCTGCCAAATGGGCGAATATCTTTTGCGTTTTGCACTGGATCCTCGCGGACGCGAGTGGATCGATCAGCACATCGAAACGTATCTTCCCGTGGGCGGTCCGCATCTCGGATCTCCGAGCGCCTTGCAGAGCCTCGTGCATGGATCTAACATGGGTCTTCCCGCGGCCTTTCTCTCTTCGCATGCTGCTCTCATCATGGGCCGGTCCTTGGGGTCGACTCCTTTCCTGATGCCAGTGGCCACATCTGGAGATATCGAAGACGACCATACCGCAGCGAATTGCTTGTATCCTAACATCGTCAAGCAGACGGGCATGGTTCGCTTCAAAATCACCAAAATCGATCTTCGCCAAATCGCATCCTTTTATCGCAACTTGGGCCAGCTCCGTCTGCGCATTCGCTTCGGGCCCACGACCCTTGCAACCGCATGGTATACGACGCACCCCATTCATCCGATTCGTCCCGTGGACGGCGACAACAATTACGTCATGTTCGAAATGGAGGCCCCTGTCGAGCTAGGCCAGGGGGATGACATCTTCATTGTCGAGATCGTCGAGCAGGTTCTTGCACTAGACGTTACAGCGCGTCGCCTATACCTTCCCAATCGCATCACGCGCTGCATGTGCGTCGACACCAAGCTCGGCAAGGCCAGCAGTGCTGCCTTTGAGAATTCTCTCGGCACTCTCAAAGTCATTGACCCTGGAACGGTTCTATGCAAGAACAAATTTCAGCTCGCGCACATTTTGCGCAACCACGATTCTGAAAATCCGCATTCCGAGCCTGGCACGCCTAAACTCTTTACTTTTCCTCTCGCCAACATAAAAACCTCCCGCACGCGATATGGGTGCTATGCAGAGGCAGGAATGGAAATCACTTGGTTCTCGCCTGAAACGCTCTACCAAGAAGCCGGCGCGGAGATGCCTCGACACGCTGCGCCCCTATATACAACCAAGCGTCGCAAAAATGCATTTAACGCGGCGAGCTCAAGACCTCTGCTCCGCCTGTCGAAAACGTATACGCCATCCATGCCGTCAATGTTGACACTGTGA。
本发明还提供了上述一种工程菌的应用,所述工程菌用于积累二十碳五烯酸和三酰基甘油酯。
由于采用了上述技术方案,本发明与现有技术相比,所取得的技术进步在于:
①本发明提供的溶血磷脂酸酰基转移酶突变体,其基因转录水平上调,能产生更多的EPA和TAG;
②本发明提供的溶血磷脂酸酰基转移酶突变体,其编码基因可用于构建工程菌,构建的工程菌用于提高裂殖壶菌中油脂含量,且EPA占比和TAG含量都有所提高;
③本发明提供的溶血磷脂酸酰基转移酶突变体编码基因与二酰基甘油酰基转移酶突变体编码基因,用于构建工程菌,构建的工程菌EPA占比和TAG含量都有明显提高,为裂殖壶菌工程化定向合成EPA和TAG提供了基础。
本发明提供了一种溶血磷脂酸酰基转移酶突变体及其编码基因,该突变体与基因可用于提高裂殖壶菌中EPA和TAG的含量,同时该突变体也可与二酰基甘油酰基转移酶突变体共同应用于提高裂殖壶菌中油脂的含量。
附图说明
图1为实施例1中环己酰亚胺浓度与菌种存活率的关系;
图2为实施例1中ARTP诱导时间与菌种存活率的关系;
图3为实施例1中裂殖壶菌野生型和裂殖壶菌突变体(H1~H10)中TAG含量;
图4为实施例1中裂殖壶菌野生型和裂殖壶菌突变体(H1~H10)中EPA占比;
图5为实施例1中裂殖壶菌野生型和裂殖壶菌H-7中两种酶转录水平对比;
图6为实施例1中裂殖壶菌野生型和裂殖壶菌H-7的LPAAT-3蛋白质序列对比;
图7为实施例1中裂殖壶菌野生型和裂殖壶菌H-7的DGAT-4蛋白质序列对比;
图8为实施例2中LPAAT-3基因克隆的凝胶电泳图;
图9为实施例2中LPAAT-3基因裂殖壶菌表达载体构建示意图;
图10为实施例4中LPAAT-3和DGAT-4基因克隆的凝胶电泳图;
图11为实施例4中LPAAT-3和DGAT-4基因裂殖壶菌表达载体构建示意图。
具体实施方式
下面通过具体实施例对本发明作进一步详细说明。应当理解所描述的实施例仅用于解释本发明,并不限定本发明。
实施例1一种溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因的获得方法
本实施例为溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因的获得方法,该获得方法包括依次进行的以下步骤:
S1.菌种活化:将实验室自保存的产油裂殖壶菌(Sch i zochytr i um sp.HX-308)从-80℃的冷冻室中取出,接种于摇瓶培养基,于28℃条件下,180r/mi n摇床培养24h获得一代种子培养液;取1mL一代种子培养液接种于250mL锥形瓶(含种子培养基50mL)中,于28℃条件下,180r/mi n摇床培养24h获得二代种子培养液;取1mL二代种子培养液接种于250mL锥形瓶(含种子培养基50mL)中,于28℃条件下,180r/mi n摇床培养到对数期(OD540:0.6-0.8)获得三代种子培养液;
S2.筛选合适的环己酰亚胺压力:将环己酰亚胺溶于甲醇,获得1M的环己酰亚胺母液,然后分别制备含有0mM、0.1mM、0.2mM、0.5mM、1mM、2mM、5mM和10mM浓度的环己酰亚胺的固体培养基,分别取100μL三代种子培养液涂布于不同浓度环己酰亚胺平板上,筛选合适的环己酰亚胺压力,结果如图1所示,当环己酰亚胺浓度在5mM时,裂殖壶菌的致死率在90%左右,符合筛选标准,因此,选择5mM浓度的环己酰亚胺作为筛选压力;
S3.筛选合适的ARTP诱导时间:取1mL三代种子培养液,离心除去上清液,用去离子水洗涤两次,再次离心除去上清液后加入生理盐水稀释至1mL,得到菌悬液;
在ARTP诱变专用金属片上滴加10μL的菌悬液,并使其浸润金属片的整个平面,然后将ARTP诱变专用金属片放入ARTP诱变育种仪对应的孔中,调整ARTP诱变育种仪参数,设置诱变时间分别为0s、5s、10s、15s、30s、60s和90s,打开诱变开关开始诱变,诱变结束后将菌体用1mL生理盐水洗下,得到ARTP诱变菌悬液;
将100μL不同诱变时间的ARTP诱变菌悬液分别涂布于空白平板上,分析致死率,确定诱变时间,结果如图2所示,当诱变时间为30S时,裂殖壶菌的致死率在90%左右,符合筛选标准,因此,选择诱变时间为30s;
S4.获得诱变菌株:将100μL诱变时间为30s的ARTP诱变菌悬液涂布于5mM浓度的环己酰亚胺平板上,挑选单菌落,按照步骤S1的方法培养至三代种子,得突变体H1~H10,作为发酵菌种;
S5.菌株发酵分析:分别取10mL步骤S1中的三代种子培养液(野生型)和10mL步骤S4中的三代种子培养液(突变体H1~H10)接种于500mL锥形瓶(含发酵培养基90mL)中,于28℃条件下,180r/mi n摇床培养120h,每隔24h取样测量脂肪酸组成,发酵培养结束后收集菌体提取脂质,分析TAG含量和EPA的占比,结果分别如图3和图4所示,选取TAG含量和EPA占比最高的裂殖壶菌H-7;
S6.对裂殖壶菌野生型和裂殖壶菌H-7突变体转录分析:按照步骤S5发酵裂殖壶菌野生型与裂殖壶菌H-7突变体,取72h的发酵菌体,在-80℃冰箱中保存12h,然后使用真空冷冻干燥机除水48h;
用称量勺取出干燥后的菌体0.5g,放入碾钵中,倒入液氮后进行碾磨,反复碾磨5次;碾磨完成后,收集菌体提取RNA,进行转录组分析,并对溶血磷脂酸酰基转移酶(LPAAT)和二酰基甘油酰基转移酶(DGAT)的转录水平进行分析,结果如图5所示,LPAAT-3和DGAT-4基因的转录水平都明显提高;
对转录组差异较大的LPAAT-3和DGAT-4基因进行分析,蛋白质序列对比结果如图6、图7所示(LPAAT-3和DGAT-4基因均发生了突变),即得所述LPAAT-3,其氨基酸序列SEQ IDNo.1为:
MLAKGFPQQTSSATASHGFGLPTTPTGASAKLGKAAAQEVSSGKSDVKATSRLEFLAFYARIAGLLLISIMIILVGLSAWPMIAPFHRGKWRTFIDQLECLWVNARLWLLPASTLEMHGDFPTASSTPKLVICNHATDVDWIYQLMPMTVVNFGTTDLSGSVKIFLKQEVKNIPIVGWGCALFEFVFLKRDWAVDRLRIENSLTRFCKDGGPITVVLYPEGSTVNTRTLDKCRTFARVQGRPEFDLTLLPRVRGFAHICEPLAKHSPTGDVDVFDQTMAFDTYSGEVPDWEMGFKRNVDTGVPNFQTMFLGRASRRCHIDSRRFSYRQLKQEYQDSLENWLDERWARKESLLREFIEHQQFDSLGAEPRLSVPVNGSIRRSLMAVTFYIAMWVGMAFTYSRYSADFSAFNL;
LPAAT-3的基因序列SEQ ID No.2为:
ATGCTCGCCAAGGGGTTTCCGCAGCAAACCTCGTCCGCCACAGCCTCACACGGGTTCGGTCTGCCCACGACGCCTACGGGCGCCAGCGCGAAGCTGGGCAAGGCCGCAGCGCAGGAGGTCAGTAGTGGGAAGAGCGATGTGAAAGCGACGTCGCGACTCGAATTTCTCGCTTTTTATGCGCGAATCGCCGGTCTCCTGCTCATCAGCATCATGATCATCCTCGTTGGCCTGTCTGCCTGGCCAATGATTGCCCCCTTCCACCGGGGCAAGTGGCGCACCTTCATCGACCAACTCGAGTGTCTGTGGGTGAATGCGCGTCTGTGGCTGCTACCCGCCTCCACGCTCGAGATGCACGGCGACTTTCCAACCGCATCGTCGACGCCCAAGTTGGTCATTTGCAACCACGCTACCGATGTCGACTGGATCTACCAGCTCATGCCCATGACCGTCGTCAACTTTGGTACGACCGATCTCAGTGGCTCCGTGAAGATTTTCCTCAAACAAGAAGTCAAGAACATCCCCATTGTCGGCTGGGGCTGCGCCCTCTTTGAGTTTGTTTTTCTCAAGCGCGACTGGGCCGTAGATAGACTGCGTATCGAGAATTCGCTCACGCGCTTTTGCAAAGACGGTGGCCCGATCACGGTGGTCCTCTACCCGGAAGGTTCCACCGTCAACACGCGCACTCTCGACAAGTGCCGCACCTTTGCCCGCGTGCAGGGCCGGCCCGAGTTTGACCTCACCTTGCTGCCACGTGTGCGCGGGTTCGCACACATTTGCGAACCTCTCGCCAAGCACTCTCCCACGGGCGACGTCGACGTCTTTGACCAGACCATGGCGTTCGACACATACTCGGGCGAGGTACCTGACTGGGAGATGGGCTTTAAGCGCAATGTGGACACGGGCGTGCCGAACTTCCAGACCATGTTCCTCGGGCGCGCGTCTCGCCGCTGCCACATTGACTCGCGCCGCTTTTCGTACCGCCAGCTTAAGCAAGAGTACCAGGACTCGCTCGAGAATTGGCTCGACGAGCGCTGGGCTCGTAAGGAGAGCCTGCTCCGCGAATTTATCGAGCACCAGCAGTTCGATTCGCTCGGCGCGGAACCGCGATTGTCGGTTCCGGTAAACGGTTCCATCCGTCGCTCTCTCATGGCCGTCACCTTTTACATTGCCATGTGGGTCGGTATGGCGTTCACGTATTCGCGCTACTCGGCCGACTTCTCCGCATTCAATCTGTAA;
DGAT-4的基因序列SEQ ID No.3为:
ATGACCCTGACCGGGCCGGAGGAAGACTACGCCGCGAGTCTGAGTCTGCAAGAGGACGCGGGCGCGCCCGAAGTCGCGGACGCCTCGGCGAGGGAGCGCAAGCAGCGCGCGCCAGATGCGCCAAGCTTGTTGCGCCAGGGCTCGTCCCAGGAAGACGCTGACAATACGCTCGTGCAGCAGACAGGAGTGGCGACTGTCCTCTTGCACGATGCCTCGGAGGTGGTGCGACAGGCGACCTTTGGGTCCGGACATCGCCACGCCGTGGCCATGGAGAATGTAGAAATTAAAACACCTGCGAAAACCCTCCCCGAAGGCACAACGCGCAAGCCCGTCCTCATTATCCCTGGCTTCATGTCGAGTTCGCTCCGTGTCGAGTCATCGAGTGTAGTGCCTCGATGGGAGGGTAAGCGCATTTGGATGTCGCTCGGGCGTTTGGGTTTCACGGGCAAATTTTTAGGAACGTCGAGCGTTTTTGAGACCAAGGACGACGATGCGGAGCAGATCAGTATGCGGAATGATTGGCTCTTGCACATGTCACTTCAAACGGACCTCATTTCTGAGCGAGAAGGTGTGCGGGTGCGCGCCATTCCGGGCTTGCGTGGTGTTGATTTTCTCGAACCAGGTCTCTTCATGAACGCCCAGACCTACGTATTCGGGCCCGTAATTAGCGCTCTCGTCAAGCGCGGTGGTTACACTCCAGAAAAGGATCTCGATGCCGCATCGTACGTCTGGCGCATGCCGCCTCGCATTCTCGAGGAGAGAGACCAATACTTTACGCGTACACTTGATCGCATCGAGCGTATGTGCCAAGAAAACGACAATCGTCGCGTCGTTCTTCTCTGTCACTCCATGGGCTGCCAAATGGGCGAATATCTTTTGCGTTTTGCACTGGATCCTCGCGGACGCGAGTGGATCGATCAGCACATCGAAACGTATCTTCCCGTGGGCGGTCCGCATCTCGGATCTCCGAGCGCCTTGCAGAGCCTCGTGCATGGATCTAACATGGGTCTTCCCGCGGCCTTTCTCTCTTCGCATGCTGCTCTCATCATGGGCCGGTCCTTGGGGTCGACTCCTTTCCTGATGCCAGTGGCCACATCTGGAGATATCGAAGACGACCATACCGCAGCGAATTGCTTGTATCCTAACATCGTCAAGCAGACGGGCATGGTTCGCTTCAAAATCACCAAAATCGATCTTCGCCAAATCGCATCCTTTTATCGCAACTTGGGCCAGCTCCGTCTGCGCATTCGCTTCGGGCCCACGACCCTTGCAACCGCATGGTATACGACGCACCCCATTCATCCGATTCGTCCCGTGGACGGCGACAACAATTACGTCATGTTCGAAATGGAGGCCCCTGTCGAGCTAGGCCAGGGGGATGACATCTTCATTGTCGAGATCGTCGAGCAGGTTCTTGCACTAGACGTTACAGCGCGTCGCCTATACCTTCCCAATCGCATCACGCGCTGCATGTGCGTCGACACCAAGCTCGGCAAGGCCAGCAGTGCTGCCTTTGAGAATTCTCTCGGCACTCTCAAAGTCATTGACCCTGGAACGGTTCTATGCAAGAACAAATTTCAGCTCGCGCACATTTTGCGCAACCACGATTCTGAAAATCCGCATTCCGAGCCTGGCACGCCTAAACTCTTTACTTTTCCTCTCGCCAACATAAAAACCTCCCGCACGCGATATGGGTGCTATGCAGAGGCAGGAATGGAAATCACTTGGTTCTCGCCTGAAACGCTCTACCAAGAAGCCGGCGCGGAGATGCCTCGACACGCTGCGCCCCTATATACAACCAAGCGTCGCAAAAATGCATTTAACGCGGCGAGCTCAAGACCTCTGCTCCGCCTGTCGAAAACGTATACGCCATCCATGCCGTCAATGTTGACACTGTGA;
DGAT-4氨基酸序列SEQ ID No.4为:
MTLTGPEEDYAASLSLQEDAGAPEVADASARERKQRAPDAPSLLRQGSSQEDADNTLVQQTGVATVLLHDASEVVRQATFGSGHRHAVAMENVEIKTPAKTLPEGTTRKPVLIIPGFMSSSLRVESSSVVPRWEGKRIWMSLGRLGFTGKFLGTSSVFETKDDDAEQISMRNDWLLHMSLQTDLISEREGVRVRAIPGLRGVDFLEPGLFMNAQTYVFGPVISALVKRGGYTPEKDLDAASYVWRMPPRILEERDQYFTRTLDRIERMCQENDNRRVVLLCHSMGCQMGEYLLRFALDPRGREWIDQHIETYLPVGGPHLGSPSALQSLVHGSNMGLPAAFLSSHAALIMGRSLGSTPFLMPVATSGDIEDDHTAANCLYPNIVKQTGMVRFKITKIDLRQIASFYRNLGQLRLRIRFGPTTLATAWYTTHPIHPIRPVDGDNNYVMFEMEAPVELGQGDDIFIVEIVEQVLALDVTARRLYLPNRITRCMCVDTKLGKASSAAFENSLGTLKVIDPGTVLCKNKFQLAHILRNHDSENPHSEPGTPKLFTFPLANIKTSRTRYGCYAEAGMEITWFSPETLYQEAGAEMPRHAAPLYTTKRRKNAFNAASSRPLLRLSKTYTPSMPSMLTL。
实施例2含有溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因的重组载体
本实施例包括依次进行的以下步骤:
S1.溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因的克隆:根据裂殖壶菌溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因序列信息,设计如SEQ ID No.5/SEQ ID No.6所示的引物P1/P2;
SEQ ID No.5 P1(sense):ATGCTCGCCAAGGGGTTTCCGC
SEQ ID No.6 P2(antisense):TTACAGATTGAATGCGGAGAAG
以裂殖壶菌H-7基因组为模版,用引物P1/P2、PrimerStar高保真聚合酶,通过PCR对LPAAT-3基因片段进行扩增,得到LPAAT-3基因片段,PCR程序为:94℃30s、55℃30s、70℃30s,32个循环,并对PCR产物进行纯化,纯化产物进行琼脂糖凝胶电泳验证,结果如图8所示;
S2.溶血磷脂酸酰基转移酶突变体(LPAAT-3)基因上拼接及添加同源臂:为LPAAT-3基因设计同pBS-Zeo酶切位点两端的同源臂序列SEQ ID No.9 P5和SEQ ID No.10 P6;
SEQ ID No.9 P5(sense):CTCCTGGGAGGCGTCTAGAATGCTCGCCAAGGGGTTTCCGC
SEQ ID No.10 P6(antisense)ATAGACTGCGTATCGAGAATTCGTTACAGATTGAATGCGGAGAAG
将同源臂通过PCR加到LPAAT-3基因的两端,胶回收;
S3.连接反应:用gibson组装将酶切后的载体pBS-Zeo片段和LPAAT-3基因片段连接,得到重组过表达载体pBS-Zeo-LPAAT,连接体系(25μL):2μL目的基因片段,1μL载体酶切后片段,2.5μL连接酶buffer,19.5μL ddH2O,50℃连接2h;
S4.连接产物转化大肠杆菌DH5α感受态细胞:无菌状态下取100μL感受态细胞,加入连接产物混匀,冰上放置30min;42℃热激90s,迅速放置冰上2min;加入900μL LB培养基,37℃,180r/min孵育1h;取200μL涂布于含100μg/mL Zeo抗性LB平板上倒置,37℃培养过夜;挑选阳性转化子,提取质粒,测序验证结果表明连接成功,即得过表达载体pBS-Zeo-LPAAT,载体示意图如图9所示。
实施例3含有溶血磷脂酸酰基转移酶突变体(LPAAT-3)重组载体的工程菌
本实施例包括依次进行的以下步骤:
S1.裂殖壶菌感受态细胞的制备:
(1)挑取平板上已活化好的Schizochytrium sp.HX-308裂殖壶菌单菌落至50mL种子培养基,28℃,170r/min摇床培养24h;
(2)按5%的接种量转接至50mL种子培养基,28℃,170r/min摇床培养24h;
(3)重复前一步;
(4)取25mL菌液,4000rpm室温下离心2min,弃上清液,得菌体;
(5)用25mL的预处理剂(20mM DTT和0.1M CaCl2溶于pH6.5 Tris-HCl缓冲液)重悬菌体,轻微震荡以松散细胞壁;
(6)于4000rpm,4℃条件下对(5)中的菌体离心2min后,用25mL已预冷的无菌水洗涤菌体两次;
(7)于4000rpm,4℃条件下对(6)中的菌体离心2min后用1M的无菌预冷山梨醇溶液(含0.1M CaCl2)洗涤菌体两次;
(8)用200μL的1M的无菌预冷山梨醇溶液(含0.1M CaCl2)重悬(7)中的菌体,得裂殖壶菌感受态细胞,分装于1.5mL的无菌离心管,每管100μL,冰上备用;
S2.裂殖壶菌电转化:
(1)将10μL线性化后的过表达载体pBS-Zeo-LPAAT加入100μL裂殖壶菌感受态细胞,混匀后转移至预冷的电转杯,冰上静置30min;
(2)电击,2KV,一个脉冲;
(3)立即往电转杯加入1mL预冷的含1M山梨醇的种子培养基,混匀后转移至含1M山梨醇的种子培养基;
(4)28℃,180rpm培养2~3h;
(5)取适量菌液涂板,28℃培养2~4天,得电转化后的裂殖壶菌;
S3.重组过表达载体pBS-Zeo-LPAAT基因的裂殖壶菌基因工程菌株的筛选和鉴定:
(1)挑取S2中平板上电转化后的裂殖壶菌,接种至含50mg/L博莱霉素的种子培养基中,28℃,180rpm培养24h;
(2)传代5次保证过表达载体稳定遗传,每一代都重复前一步中描述实验;
(3)稳定遗传的菌株即为过表达pBS-Zeo-LPAAT的裂殖壶菌TE1工程菌株表型,保藏于-80℃冰箱。
实施例4含有溶血磷脂酸酰基转移酶突变体(LPAAT-3)和二酰基甘油酰基转移酶突变体(DGAT-4)的重组载体
本实施例包括依次进行的以下步骤:
S1.溶血磷脂酸酰基转移酶突变体(LPAAT-3)和二酰基甘油酰基转移酶突变体(DGAT-4)基因的克隆:根据裂殖壶菌LPAAT-3基因和DGAT-4的序列信息,设计分别如SEQ IDNo.5/SEQ ID No.6和SEQ ID No.7/SEQ ID No.8所示的引物P1/P2和P3/P4;
SEQ ID No.5 P1(sense):ATGCTCGCCAAGGGGTTTCCGC
SEQ ID No.6 P2(antisense):TTACAGATTGAATGCGGAGAAG
SEQ ID No.7 P3(sense):ATGACCCTGACCGGGCCGGAGGA
SEQ ID No.8 P4(antisense):TCACAGTGTCAACATTGACGGC
以裂殖壶菌H-7基因组为模版,用引物P1/P2或P3/P4、PrimerStar高保真聚合酶,通过PCR对LPAAT-3和DGAT-4基因片段进行扩增,得到LPAAT-3和DGAT-4基因片段,PCR程序为:94℃30s、55℃30s、70℃30s,32个循环,并对PCR产物进行纯化,纯化产物进行琼脂糖凝胶电泳验证,结果如图10所示;
S2.LPAAT-3和DGAT-4基因上拼接及添加同源臂:为LPAAT-3和DGAT-4基因设计同pBS-Zeo酶切位点两端的同源臂序列(SEQ ID No.9 P5和SEQ ID No.10 P6)和(SEQ IDNo.11 P7和SEQ ID No.12 P8);
SEQ ID No.9 P5(sense):CTCCTGGGAGGCGTCTAGAATGCTCGCCAAGGGGTTTCCGC
SEQ ID No.10 P6(antisense)ATAGACTGCGTATCGAGAATTCGTTACAGATTGAATGCGGAGAAG
SEQ ID No.11 P7(sense):CGAATTCTCGATACGCAGTCTATATGACCCTGACCGGGCCGGAGGA
SEQ ID No.12 P8(antisense)CGCCGAGTTTGAGCGGCTAGCTCACAGTGTCAACATTGACGGC
将同源臂通过PCR加到LPAAT-3和DGAT-4基因的两端,胶回收;
S3.连接反应:用gibson组装将酶切后的载体pBS-Zeo片段、LPAAT-3基因片段和DGAT-4基因片段连接,得到重组过表达载体pBS-Zeo-LPAAT-DGAT,连接体系(25μL):2μL目的基因片段,1μL载体酶切后片段,2.5μL连接酶buffer,19.5μL ddH2O,50℃连接2h;
S4.连接产物转化大肠杆菌DH5α感受态细胞:无菌状态下取100μL感受态细胞,加入连接产物混匀,冰上放置30min;42℃热激90s,迅速放置冰上2min;加入900μL LB培养基,37℃,180r/min孵育1h;取200μL涂布于含100μg/mL Zeo抗性LB平板上倒置,37℃培养过夜;挑选阳性转化子,提取质粒,测序验证结果表明连接成功,获得过表达载体pBS-Zeo-LPAAT-DGAT,载体示意图如图11所示。
实施例5含有溶血磷脂酸酰基转移酶(LPAAT-3)和二酰基甘油酰基转移酶(DGAT-4)重组载体的工程菌
本实施例包括依次进行的以下步骤:
S1.裂殖壶菌感受态细胞的制备:
(1)挑取平板上已活化好的Schizochytrium sp.HX-308裂殖壶菌单菌落至50mL种子培养基,28℃,170r/min摇床培养24h;
(2)按5%的接种量转接至50mL种子培养基,28℃,170r/min摇床培养24h;
(3)重复前一步;
(4)取25mL菌液,4000rpm室温下离心2min,弃上清液,得菌体;
(5)用25mL的预处理剂(20mM DTT和0.1M CaCl2溶于pH6.5 Tris-HCl缓冲液)重悬菌体,轻微震荡以松散细胞壁;
(6)于4000rpm,4℃条件下对(5)中的菌体离心2min后,用25mL已预冷的无菌水洗涤菌体两次;
(7)于4000rpm,4℃条件下对(6)中的菌体离心2min后用1M的无菌预冷山梨醇溶液(含0.1M CaCl2)洗涤菌体两次;
(8)用200μL的1M的无菌预冷山梨醇溶液(含0.1M CaCl2)重悬(7)中的菌体,得裂殖壶菌感受态细胞,分装于1.5mL的无菌离心管,每管100μL,冰上备用;
S2.裂殖壶菌电转化:
(1)将10μL线性化后的过表达载体pBS-Zeo-LPAAT-DGAT-4加入100μL裂殖壶菌感受态细胞,混匀后转移至预冷的电转杯,冰上静置30min;
(2)电击,2KV,一个脉冲;
(3)立即往电转杯加入1mL预冷的含1M山梨醇的种子培养基,混匀后转移至含1M山梨醇的种子培养基;
(4)28℃,180rpm培养2~3h;
(5)取适量菌液涂板,28℃培养2~4天,得电转化后的裂殖壶菌;
S3.重组过表达载体pBS-Zeo-LPAAT-DGAT-4基因的裂殖壶菌基因工程菌株的筛选和鉴定:
(1)挑取S2中平板上电转化后的裂殖壶菌,接种至含50mg/L博菜霉素的种子培养基中,28℃,180rpm培养24h;
(2)传代5次保证过表达载体稳定遗传,每一代都重复前一步中描述实验;
(3)稳定遗传的菌株即为过表达pBS-Zeo-LPAAT-DGAT-4的裂殖壶菌TE2工程菌株表型,保藏于-80℃冰箱。
实施例6裂殖壶菌野生型、突变体和工程菌脂肪酸含量检测
本实施例为裂殖壶菌野生型、裂殖壶菌H-7、裂殖壶菌TE1和裂殖壶菌TE2发酵产生脂肪酸含量的检测,结果如表1所示:
表1裂殖壶菌脂肪酸含量
野生型 裂殖壶菌H-7 裂殖壶菌TEl 裂殖壶菌TE2
C14:0(%) 9.29 10.29 8.94 8.29
C16:0(%) 18.27 17.37 16.79 16.66
EPA(%) 1.00 4.90 7.46 8.40
DPA(%) 14.62 12.47 12.62 11.62
DHA(%) 46.42 48.22 45.80 47.74
Other(%) 10.39 6.74 8.38 7.28
TAG(%) 53.64 77.33 68.46 68.53
TAG(g/L) 34.61 64.52 50.35 52.73
脂质(g/L) 64.52 83.44 73.55 76.95
由表1可知,裂殖壶菌突变体H-7、裂殖壶菌工程菌TE1和裂殖壶菌工程菌TE2的TAG含量、EPA占比和脂质含量都比裂殖壶菌野生型有显著提高,证明溶血磷脂酸酰基转移酶(LPAAT-3)以及溶血磷脂酸酰基转移酶(LPAAT-3)和二酰基甘油酰基转移酶(DGAT-4)可以提高裂殖壶菌中EPA和TAG含量,可用于裂殖壶菌积累脂质。
SEQUENCE LISTING
<110> 南京师范大学
<120> 一种溶血磷脂酸酰基转移酶突变体及其应用
<130> 12
<160> 12
<170> PatentIn version 3.3
<210> 1
<211> 411
<212> PRT
<213> 裂殖壶菌(Schizochytrium sp.)
<400> 1
Met Leu Ala Lys Gly Phe Pro Gln Gln Thr Ser Ser Ala Thr Ala Ser
1 5 10 15
His Gly Phe Gly Leu Pro Thr Thr Pro Thr Gly Ala Ser Ala Lys Leu
20 25 30
Gly Lys Ala Ala Ala Gln Glu Val Ser Ser Gly Lys Ser Asp Val Lys
35 40 45
Ala Thr Ser Arg Leu Glu Phe Leu Ala Phe Tyr Ala Arg Ile Ala Gly
50 55 60
Leu Leu Leu Ile Ser Ile Met Ile Ile Leu Val Gly Leu Ser Ala Trp
65 70 75 80
Pro Met Ile Ala Pro Phe His Arg Gly Lys Trp Arg Thr Phe Ile Asp
85 90 95
Gln Leu Glu Cys Leu Trp Val Asn Ala Arg Leu Trp Leu Leu Pro Ala
100 105 110
Ser Thr Leu Glu Met His Gly Asp Phe Pro Thr Ala Ser Ser Thr Pro
115 120 125
Lys Leu Val Ile Cys Asn His Ala Thr Asp Val Asp Trp Ile Tyr Gln
130 135 140
Leu Met Pro Met Thr Val Val Asn Phe Gly Thr Thr Asp Leu Ser Gly
145 150 155 160
Ser Val Lys Ile Phe Leu Lys Gln Glu Val Lys Asn Ile Pro Ile Val
165 170 175
Gly Trp Gly Cys Ala Leu Phe Glu Phe Val Phe Leu Lys Arg Asp Trp
180 185 190
Ala Val Asp Arg Leu Arg Ile Glu Asn Ser Leu Thr Arg Phe Cys Lys
195 200 205
Asp Gly Gly Pro Ile Thr Val Val Leu Tyr Pro Glu Gly Ser Thr Val
210 215 220
Asn Thr Arg Thr Leu Asp Lys Cys Arg Thr Phe Ala Arg Val Gln Gly
225 230 235 240
Arg Pro Glu Phe Asp Leu Thr Leu Leu Pro Arg Val Arg Gly Phe Ala
245 250 255
His Ile Cys Glu Pro Leu Ala Lys His Ser Pro Thr Gly Asp Val Asp
260 265 270
Val Phe Asp Gln Thr Met Ala Phe Asp Thr Tyr Ser Gly Glu Val Pro
275 280 285
Asp Trp Glu Met Gly Phe Lys Arg Asn Val Asp Thr Gly Val Pro Asn
290 295 300
Phe Gln Thr Met Phe Leu Gly Arg Ala Ser Arg Arg Cys His Ile Asp
305 310 315 320
Ser Arg Arg Phe Ser Tyr Arg Gln Leu Lys Gln Glu Tyr Gln Asp Ser
325 330 335
Leu Glu Asn Trp Leu Asp Glu Arg Trp Ala Arg Lys Glu Ser Leu Leu
340 345 350
Arg Glu Phe Ile Glu His Gln Gln Phe Asp Ser Leu Gly Ala Glu Pro
355 360 365
Arg Leu Ser Val Pro Val Asn Gly Ser Ile Arg Arg Ser Leu Met Ala
370 375 380
Val Thr Phe Tyr Ile Ala Met Trp Val Gly Met Ala Phe Thr Tyr Ser
385 390 395 400
Arg Tyr Ser Ala Asp Phe Ser Ala Phe Asn Leu
405 410
<210> 2
<211> 1236
<212> DNA
<213> 裂殖壶菌(Schizochytrium sp.)
<400> 2
atgctcgcca aggggtttcc gcagcaaacc tcgtccgcca cagcctcaca cgggttcggt 60
ctgcccacga cgcctacggg cgccagcgcg aagctgggca aggccgcagc gcaggaggtc 120
agtagtggga agagcgatgt gaaagcgacg tcgcgactcg aatttctcgc tttttatgcg 180
cgaatcgccg gtctcctgct catcagcatc atgatcatcc tcgttggcct gtctgcctgg 240
ccaatgattg cccccttcca ccggggcaag tggcgcacct tcatcgacca actcgagtgt 300
ctgtgggtga atgcgcgtct gtggctgcta cccgcctcca cgctcgagat gcacggcgac 360
tttccaaccg catcgtcgac gcccaagttg gtcatttgca accacgctac cgatgtcgac 420
tggatctacc agctcatgcc catgaccgtc gtcaactttg gtacgaccga tctcagtggc 480
tccgtgaaga ttttcctcaa acaagaagtc aagaacatcc ccattgtcgg ctggggctgc 540
gccctctttg agtttgtttt tctcaagcgc gactgggccg tagatagact gcgtatcgag 600
aattcgctca cgcgcttttg caaagacggt ggcccgatca cggtggtcct ctacccggaa 660
ggttccaccg tcaacacgcg cactctcgac aagtgccgca cctttgcccg cgtgcagggc 720
cggcccgagt ttgacctcac cttgctgcca cgtgtgcgcg ggttcgcaca catttgcgaa 780
cctctcgcca agcactctcc cacgggcgac gtcgacgtct ttgaccagac catggcgttc 840
gacacatact cgggcgaggt acctgactgg gagatgggct ttaagcgcaa tgtggacacg 900
ggcgtgccga acttccagac catgttcctc gggcgcgcgt ctcgccgctg ccacattgac 960
tcgcgccgct tttcgtaccg ccagcttaag caagagtacc aggactcgct cgagaattgg 1020
ctcgacgagc gctgggctcg taaggagagc ctgctccgcg aatttatcga gcaccagcag 1080
ttcgattcgc tcggcgcgga accgcgattg tcggttccgg taaacggttc catccgtcgc 1140
tctctcatgg ccgtcacctt ttacattgcc atgtgggtcg gtatggcgtt cacgtattcg 1200
cgctactcgg ccgacttctc cgcattcaat ctgtaa 1236
<210> 3
<211> 1899
<212> DNA
<213> 裂殖壶菌(Schizochytrium sp.)
<400> 3
atgaccctga ccgggccgga ggaagactac gccgcgagtc tgagtctgca agaggacgcg 60
ggcgcgcccg aagtcgcgga cgcctcggcg agggagcgca agcagcgcgc gccagatgcg 120
ccaagcttgt tgcgccaggg ctcgtcccag gaagacgctg acaatacgct cgtgcagcag 180
acaggagtgg cgactgtcct cttgcacgat gcctcggagg tggtgcgaca ggcgaccttt 240
gggtccggac atcgccacgc cgtggccatg gagaatgtag aaattaaaac acctgcgaaa 300
accctccccg aaggcacaac gcgcaagccc gtcctcatta tccctggctt catgtcgagt 360
tcgctccgtg tcgagtcatc gagtgtagtg cctcgatggg agggtaagcg catttggatg 420
tcgctcgggc gtttgggttt cacgggcaaa tttttaggaa cgtcgagcgt ttttgagacc 480
aaggacgacg atgcggagca gatcagtatg cggaatgatt ggctcttgca catgtcactt 540
caaacggacc tcatttctga gcgagaaggt gtgcgggtgc gcgccattcc gggcttgcgt 600
ggtgttgatt ttctcgaacc aggtctcttc atgaacgccc agacctacgt attcgggccc 660
gtaattagcg ctctcgtcaa gcgcggtggt tacactccag aaaaggatct cgatgccgca 720
tcgtacgtct ggcgcatgcc gcctcgcatt ctcgaggaga gagaccaata ctttacgcgt 780
acacttgatc gcatcgagcg tatgtgccaa gaaaacgaca atcgtcgcgt cgttcttctc 840
tgtcactcca tgggctgcca aatgggcgaa tatcttttgc gttttgcact ggatcctcgc 900
ggacgcgagt ggatcgatca gcacatcgaa acgtatcttc ccgtgggcgg tccgcatctc 960
ggatctccga gcgccttgca gagcctcgtg catggatcta acatgggtct tcccgcggcc 1020
tttctctctt cgcatgctgc tctcatcatg ggccggtcct tggggtcgac tcctttcctg 1080
atgccagtgg ccacatctgg agatatcgaa gacgaccata ccgcagcgaa ttgcttgtat 1140
cctaacatcg tcaagcagac gggcatggtt cgcttcaaaa tcaccaaaat cgatcttcgc 1200
caaatcgcat ccttttatcg caacttgggc cagctccgtc tgcgcattcg cttcgggccc 1260
acgacccttg caaccgcatg gtatacgacg caccccattc atccgattcg tcccgtggac 1320
ggcgacaaca attacgtcat gttcgaaatg gaggcccctg tcgagctagg ccagggggat 1380
gacatcttca ttgtcgagat cgtcgagcag gttcttgcac tagacgttac agcgcgtcgc 1440
ctataccttc ccaatcgcat cacgcgctgc atgtgcgtcg acaccaagct cggcaaggcc 1500
agcagtgctg cctttgagaa ttctctcggc actctcaaag tcattgaccc tggaacggtt 1560
ctatgcaaga acaaatttca gctcgcgcac attttgcgca accacgattc tgaaaatccg 1620
cattccgagc ctggcacgcc taaactcttt acttttcctc tcgccaacat aaaaacctcc 1680
cgcacgcgat atgggtgcta tgcagaggca ggaatggaaa tcacttggtt ctcgcctgaa 1740
acgctctacc aagaagccgg cgcggagatg cctcgacacg ctgcgcccct atatacaacc 1800
aagcgtcgca aaaatgcatt taacgcggcg agctcaagac ctctgctccg cctgtcgaaa 1860
acgtatacgc catccatgcc gtcaatgttg acactgtga 1899
<210> 4
<211> 632
<212> PRT
<213> 裂殖壶菌(Schizochytrium sp.)
<400> 4
Met Thr Leu Thr Gly Pro Glu Glu Asp Tyr Ala Ala Ser Leu Ser Leu
1 5 10 15
Gln Glu Asp Ala Gly Ala Pro Glu Val Ala Asp Ala Ser Ala Arg Glu
20 25 30
Arg Lys Gln Arg Ala Pro Asp Ala Pro Ser Leu Leu Arg Gln Gly Ser
35 40 45
Ser Gln Glu Asp Ala Asp Asn Thr Leu Val Gln Gln Thr Gly Val Ala
50 55 60
Thr Val Leu Leu His Asp Ala Ser Glu Val Val Arg Gln Ala Thr Phe
65 70 75 80
Gly Ser Gly His Arg His Ala Val Ala Met Glu Asn Val Glu Ile Lys
85 90 95
Thr Pro Ala Lys Thr Leu Pro Glu Gly Thr Thr Arg Lys Pro Val Leu
100 105 110
Ile Ile Pro Gly Phe Met Ser Ser Ser Leu Arg Val Glu Ser Ser Ser
115 120 125
Val Val Pro Arg Trp Glu Gly Lys Arg Ile Trp Met Ser Leu Gly Arg
130 135 140
Leu Gly Phe Thr Gly Lys Phe Leu Gly Thr Ser Ser Val Phe Glu Thr
145 150 155 160
Lys Asp Asp Asp Ala Glu Gln Ile Ser Met Arg Asn Asp Trp Leu Leu
165 170 175
His Met Ser Leu Gln Thr Asp Leu Ile Ser Glu Arg Glu Gly Val Arg
180 185 190
Val Arg Ala Ile Pro Gly Leu Arg Gly Val Asp Phe Leu Glu Pro Gly
195 200 205
Leu Phe Met Asn Ala Gln Thr Tyr Val Phe Gly Pro Val Ile Ser Ala
210 215 220
Leu Val Lys Arg Gly Gly Tyr Thr Pro Glu Lys Asp Leu Asp Ala Ala
225 230 235 240
Ser Tyr Val Trp Arg Met Pro Pro Arg Ile Leu Glu Glu Arg Asp Gln
245 250 255
Tyr Phe Thr Arg Thr Leu Asp Arg Ile Glu Arg Met Cys Gln Glu Asn
260 265 270
Asp Asn Arg Arg Val Val Leu Leu Cys His Ser Met Gly Cys Gln Met
275 280 285
Gly Glu Tyr Leu Leu Arg Phe Ala Leu Asp Pro Arg Gly Arg Glu Trp
290 295 300
Ile Asp Gln His Ile Glu Thr Tyr Leu Pro Val Gly Gly Pro His Leu
305 310 315 320
Gly Ser Pro Ser Ala Leu Gln Ser Leu Val His Gly Ser Asn Met Gly
325 330 335
Leu Pro Ala Ala Phe Leu Ser Ser His Ala Ala Leu Ile Met Gly Arg
340 345 350
Ser Leu Gly Ser Thr Pro Phe Leu Met Pro Val Ala Thr Ser Gly Asp
355 360 365
Ile Glu Asp Asp His Thr Ala Ala Asn Cys Leu Tyr Pro Asn Ile Val
370 375 380
Lys Gln Thr Gly Met Val Arg Phe Lys Ile Thr Lys Ile Asp Leu Arg
385 390 395 400
Gln Ile Ala Ser Phe Tyr Arg Asn Leu Gly Gln Leu Arg Leu Arg Ile
405 410 415
Arg Phe Gly Pro Thr Thr Leu Ala Thr Ala Trp Tyr Thr Thr His Pro
420 425 430
Ile His Pro Ile Arg Pro Val Asp Gly Asp Asn Asn Tyr Val Met Phe
435 440 445
Glu Met Glu Ala Pro Val Glu Leu Gly Gln Gly Asp Asp Ile Phe Ile
450 455 460
Val Glu Ile Val Glu Gln Val Leu Ala Leu Asp Val Thr Ala Arg Arg
465 470 475 480
Leu Tyr Leu Pro Asn Arg Ile Thr Arg Cys Met Cys Val Asp Thr Lys
485 490 495
Leu Gly Lys Ala Ser Ser Ala Ala Phe Glu Asn Ser Leu Gly Thr Leu
500 505 510
Lys Val Ile Asp Pro Gly Thr Val Leu Cys Lys Asn Lys Phe Gln Leu
515 520 525
Ala His Ile Leu Arg Asn His Asp Ser Glu Asn Pro His Ser Glu Pro
530 535 540
Gly Thr Pro Lys Leu Phe Thr Phe Pro Leu Ala Asn Ile Lys Thr Ser
545 550 555 560
Arg Thr Arg Tyr Gly Cys Tyr Ala Glu Ala Gly Met Glu Ile Thr Trp
565 570 575
Phe Ser Pro Glu Thr Leu Tyr Gln Glu Ala Gly Ala Glu Met Pro Arg
580 585 590
His Ala Ala Pro Leu Tyr Thr Thr Lys Arg Arg Lys Asn Ala Phe Asn
595 600 605
Ala Ala Ser Ser Arg Pro Leu Leu Arg Leu Ser Lys Thr Tyr Thr Pro
610 615 620
Ser Met Pro Ser Met Leu Thr Leu
625 630
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgctcgcca aggggtttcc gc 22
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ttacagattg aatgcggaga ag 22
<210> 7
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
atgaccctga ccgggccgga gga 23
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tcacagtgtc aacattgacg gc 22
<210> 9
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ctcctgggag gcgtctagaa tgctcgccaa ggggtttccg c 41
<210> 10
<211> 45
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
atagactgcg tatcgagaat tcgttacaga ttgaatgcgg agaag 45
<210> 11
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cgaattctcg atacgcagtc tatatgaccc tgaccgggcc ggagga 46
<210> 12
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
cgccgagttt gagcggctag ctcacagtgt caacattgac ggc 43

Claims (7)

1.一种溶血磷脂酸酰基转移酶突变体,其特征在于,通过突变技术对裂殖壶菌溶血磷脂酸酰基转移酶进行以下突变得到:第106位氨基酸由亮氨酸突变为精氨酸,第113位氨基酸由苏氨酸突变为丝氨酸,第131位氨基酸由亮氨酸突变为缬氨酸,第216位氨基酸由异亮氨酸突变为缬氨酸,第261位氨基酸由苏氨酸突变为脯氨酸;
所述溶血磷脂酸酰基转移酶突变体的氨基酸序列如SEQ ID No.1所示。
2.一种编码权利要求1所述的溶血磷脂酸酰基转移酶突变体的编码基因,其特征在于,所述溶血磷脂酸酰基转移酶突变体的编码基因的序列如SEQ IDNo.2所示。
3.根据权利要求2所述的一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,其特征在于,所述溶血磷脂酸酰基转移酶突变体的编码基因用于构建工程菌。
4.根据权利要求3所述的一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,其特征在于,所述工程菌的构建方法包括以下步骤:
S1.克隆所述溶血磷脂酸酰基转移酶突变体的编码基因;
S2.将S1中的编码基因插入质粒中,构建所述溶血磷脂酸酰基转移酶突变体基因的载体;
S3.将所述载体电转化导入裂殖壶菌,即得所述工程菌。
5.根据权利要求3所述的一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,其特征在于,所述工程菌的构建方法包括以下步骤:
S1.克隆所述溶血磷脂酸酰基转移酶突变体的编码基因和二酰基甘油酰基转移酶突变体的编码基因;
S2.将S1中的编码基因插入质粒中,构建所述溶血磷脂酸酰基转移酶突变体基因和所述二酰基甘油酰基转移酶突变体基因的载体;
S3.将所述载体电转化导入裂殖壶菌,即得所述工程菌。
6.根据权利要求5所述的一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,其特征在于,所述二酰基甘油酰基转移酶突变体的编码基因序列如SEQ IDNo.3所示。
7.根据权利要求3~6中任一项所述的一种溶血磷脂酸酰基转移酶突变体的编码基因的应用,其特征在于,所述工程菌用于积累二十碳五烯酸和三酰基甘油酯。
CN202210317934.2A 2022-03-29 2022-03-29 一种溶血磷脂酸酰基转移酶突变体及其应用 Active CN114621939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210317934.2A CN114621939B (zh) 2022-03-29 2022-03-29 一种溶血磷脂酸酰基转移酶突变体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210317934.2A CN114621939B (zh) 2022-03-29 2022-03-29 一种溶血磷脂酸酰基转移酶突变体及其应用

Publications (2)

Publication Number Publication Date
CN114621939A CN114621939A (zh) 2022-06-14
CN114621939B true CN114621939B (zh) 2023-07-28

Family

ID=81903390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210317934.2A Active CN114621939B (zh) 2022-03-29 2022-03-29 一种溶血磷脂酸酰基转移酶突变体及其应用

Country Status (1)

Country Link
CN (1) CN114621939B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208088A (zh) * 2014-12-10 2017-09-26 诺沃吉公司 酵母中的油酸生产
CN110846293A (zh) * 2019-12-02 2020-02-28 山东省农业科学院农产品研究所 一种溶血磷脂酸酰基转移酶

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2760326A1 (en) * 2009-05-13 2010-11-18 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
US20170191094A1 (en) * 2015-12-31 2017-07-06 Synthetic Genomics, Inc. Expression of type i fatty acid synthase genes in eukaryotic algae

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208088A (zh) * 2014-12-10 2017-09-26 诺沃吉公司 酵母中的油酸生产
CN110846293A (zh) * 2019-12-02 2020-02-28 山东省农业科学院农产品研究所 一种溶血磷脂酸酰基转移酶

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1-acyl-sn-glycerol-3-phosphate acyltransferase 3 [Hondaea fermentalgiana];Sedici k. et al.;《Genbank:GBG31411.1》;第1-2页 *
Metabolic Engineering Strategies for the Enhanced Microalgal Production of Long‐Chain Polyunsaturated Fatty Acids (LC‐PUFAs);Mohammad Rifqi Ghiffary et al.;《Biotechnol. J.》;第1-7页 *
Plant and algal lysophosphatidic acid acyltransferases increase docosahexaenoic acid accumulation at the sn-2 position of triacylglycerol in transgenic Arabidopsis seed oil;Laura L. Wayne et al.;《PLOS ONE》;第1-21页 *
常压室温等离子体(ARTP)诱变快速选育高产DHA 的裂殖壶菌突变株;袁军等;《生物技术通报》;第31卷(第10期);第199-204页 *

Also Published As

Publication number Publication date
CN114621939A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
JP4718477B2 (ja) 油性酵母中において多価不飽和脂肪酸レベルを変更するのに適したδ12デサチュラーゼ
US11603545B2 (en) Recombinant yeast strain for producing nervonic acids and application thereof
CA2526896A1 (en) Glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase promoters for gene expression in oleaginous yeast
US11345937B2 (en) Construction of Mucor circinelloides cell factory for producing stearidonic acid and fermentation technology thereof
KR20190113649A (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
CN100510057C (zh) L-甲硫氨酸的发酵制造方法
KR100830289B1 (ko) L-아르기닌 생산 변이주 및 이의 제조방법
CN110373436B (zh) 一种产双高-γ-亚麻酸卷枝毛霉细胞工厂的构建方法及发酵技术
CN111471602B (zh) 一种利用纤维素高效合成γ-亚麻酸的卷枝毛霉工程菌株的构建方法及应用
CN109136207B (zh) 一种重组大肠杆菌生产磷脂酶d的方法
CN108913737B (zh) 使用重组大肠杆菌发酵制备环二核苷酸的方法
CN114621939B (zh) 一种溶血磷脂酸酰基转移酶突变体及其应用
EP4001423A1 (en) Biosurfactant-producing recombinant microorganism
CN111286520B (zh) 用于发酵生产l-赖氨酸的重组dna、菌株及其应用
US9574215B2 (en) Production of fatty acids by heterologous expression of gene clusters from myxobacteria
CN108779444A (zh) 生产脂肪酸的方法
CN115820586A (zh) 一种溶血磷脂酰胆碱酰基转移酶、核酸分子及其应用
US10533232B2 (en) Parasitic phytophthora-derived omega-3 fatty acid desaturase for synthesizing polyunsaturated fatty acids, carrier containing fatty acid desaturase, recombinant microorganisms, and application thereof
CN112661821B (zh) 一种柠檬酸转运蛋白及其在脂质合成中的应用
CN100400663C (zh) 雅致枝霉△6-脂肪酸脱氢酶启动子序列及其应用
CN113061541B (zh) 一种重组酿酒酵母及其在生产共轭亚油酸中应用
WO2023070027A2 (en) Fatty acid production in escherichia coli
CN118064471A (zh) 一种提高大肠杆菌工程菌株产血红素的方法
CN117736895A (zh) 高产棕榈油酸的重组解脂耶氏酵母菌及其构建方法和应用
CN118109383A (zh) 一种生产依克多因的重组菌及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230223

Address after: Room 207 and 208, building D6, Jiangsu Life Science Park, No. 9, Weidi Road, Xianlin street, Qixia District, Nanjing, Jiangsu 210000

Applicant after: Nanjing Zhihe Biotechnology Co.,Ltd.

Address before: 210023 No. 1 Wenyuan Road, Qixia District, Nanjing City, Jiangsu Province

Applicant before: NANJING NORMAL University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Room 207 and 208, building D6, Jiangsu Life Science Park, No. 9, Weidi Road, Xianlin street, Qixia District, Nanjing, Jiangsu 210000

Patentee after: Zhihe Biotechnology (Changzhou) Co.,Ltd.

Country or region after: China

Address before: Room 207 and 208, building D6, Jiangsu Life Science Park, No. 9, Weidi Road, Xianlin street, Qixia District, Nanjing, Jiangsu 210000

Patentee before: Nanjing Zhihe Biotechnology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address