CN114618327B - 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用 - Google Patents

一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用 Download PDF

Info

Publication number
CN114618327B
CN114618327B CN202210276519.7A CN202210276519A CN114618327B CN 114618327 B CN114618327 B CN 114618327B CN 202210276519 A CN202210276519 A CN 202210276519A CN 114618327 B CN114618327 B CN 114618327B
Authority
CN
China
Prior art keywords
ethylenedioxythiophene
poly
sulfonic acid
membrane
polystyrene sulfonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210276519.7A
Other languages
English (en)
Other versions
CN114618327A (zh
Inventor
石慧
左秋阳
罗旭彪
耿志伟
彭明明
盛鑫
王志豪
邵鹏辉
杨利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202210276519.7A priority Critical patent/CN114618327B/zh
Publication of CN114618327A publication Critical patent/CN114618327A/zh
Application granted granted Critical
Publication of CN114618327B publication Critical patent/CN114618327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用,涉及一种超滤复合膜的制备方法及其应用。本发明是要解决现有的高分子超滤膜受制于渗透率与截留率之间的trade‑off效应,很难在提高膜的截留率的同时提高渗透通量的技术问题。本发明通过在制备传统超滤膜过程中嵌入纳米材料羧基化多壁碳纳米管,利用纳米材料的纳米通道以及负电荷对UF膜进行改性,进而对纯水的渗透路径进行调节,从而影响膜对废水中水的渗透。同时该复合膜对废水中Ag+截留率高达100%,实现了银元素的最大吸附还原,能够充分截留废水中Ag+,同时可以提高膜的纯水渗透通量,在3bar压力下最大水通量为81.21L/(m2·h)。

Description

一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方 法及其应用
技术领域
本发明涉及一种超滤复合膜的制备方法及其应用。
背景技术
伴随着社会的高度工业化,Ag被广泛应用于电镀等行业。因此也产生了大量的含Ag废水,废水中的Ag+具有生物活性,可以和哺乳类动物中的蛋白质、多类氨基酸、游离阴离子以及受体之间相互作用,并能通过抑制动物酶(Na/K腺甘三磷酸酶和碳酸醉酶)以及微蛋白质中的硫醇基团结合导致死亡,这导致含Ag废水严重威胁了饮用水安全。
但是NF(纳滤膜)和ROM(反渗透膜)有着渗透性差,运行压力高,更适合用于低分子量和水合半径小的污染物,此外NF和ROM膜运行成本高以及能耗高,限制了其水处理的应用前景。超滤膜因其渗透性好,运行压力低等优点,具有处理含Ag+废水的潜力。通常的超滤膜都是通过空间尺寸效应、静电排斥力和道南效应去除污染物,然而由于其1nm~100nm的孔径,孔径较大,超滤膜在空间尺寸效应去除污染物的应用中不具备优势。因此开发一种同时具有较高稳定性能,且对Ag+强吸附还原的吸附性复合超滤膜,具有实际意义。
发明内容
本发明是要解决现有的高分子超滤膜受制于渗透率与截留率之间的trade-off效应,很难在提高膜的截留率的同时提高渗透通量的技术问题,而提供一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用。
本发明的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法是按以下步骤进行的:
一、将聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液分散在无水乙醇中,在室温条件下搅拌,得到聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液的质量浓度为0.3%~0.8%;
二、将羧基化多壁碳纳米管分散于步骤一制备的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中,在室温条件下超声搅拌,得到掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的3%~10%;
三、通过真空抽滤的方法将步骤二中制备的掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液涂敷在无水乙醇清洗后的聚偏氟乙烯膜上,用去离子水漂洗除去膜表面未反应的单体和溶剂,放入干燥箱中烘干,冷却至室温,得到掺杂羧基化多壁碳纳米管的吸附性超滤复合膜。
本发明步骤三中对所述真空抽滤的方法没有特殊限定,采用本领域技术人员熟知的真空抽滤的方法和装置即可。
本发明的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜应用于含银离子废水的处理,处理方法为:经所制备的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜滤过对银元素进行吸附还原。
本发明制备得到的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜打破了传统高分子薄膜渗透率与截留率之间的trade-off效应,同时实现了100%的Ag+吸附还原。
截留率和水通量是评价纳滤膜的两个重要参数,通过富集率和水通量来评价本发明的性能。
截留率R(%)定义为:在一定的操作条件下,一减去渗透液中溶质的浓度(Cp)与进料液中溶质的浓度(Cf)之比,再乘以100:
水通量J,单位L/(m2·h),定义为:在一定的操作条件下,单位时间(t)内透过单位膜面积的水的体积(V),本发明中的单位为:
与现有技术相比,本发明具有如下有益效果:
本发明通过在制备传统超滤膜(UF)过程中嵌入纳米材料羧基化多壁碳纳米管,利用纳米材料的纳米通道以及负电荷对UF膜进行改性,进而对纯水的渗透路径进行调节,从而影响膜对废水中水的渗透。
本发明以掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸为分离层,所用优化的低聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸,得到良好的纳米科技厚度。羧基化多壁碳纳米管提供了大量纳米通道,大大提升了膜的水通量,同时提高了膜的机械强度。所制备的吸附性超滤复合膜具有比传统UF膜更优异的渗透性和截留性,且拥有纳米材料的亲水性、抗菌性和热稳定性。同时该掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸吸附性超滤复合膜首次应用于含Ag+废水的处理,对Ag+截留率高达100%,实现了银元素的最大吸附还原,能够充分截留废水中Ag+,同时可以提高膜的纯水渗透通量,在3bar压力下最大水通量为81.21L/(m2·h)。
附图说明
图1为本发明的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的合成工艺流程图;
图2为试验一的步骤二中的羧基化多壁碳纳米管的结构式图。
具体实施方式
具体实施方式一:本实施方式为一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法,具体是按以下步骤进行的:
一、将聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液分散在无水乙醇中,在室温条件下搅拌,得到聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液的质量浓度为0.3%~0.8%;
二、将羧基化多壁碳纳米管分散于步骤一制备的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中,在室温条件下超声搅拌,得到掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的3%~10%;
三、通过真空抽滤的方法将步骤二中制备的掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液涂敷在无水乙醇清洗后的聚偏氟乙烯膜上,用去离子水漂洗除去膜表面未反应的单体和溶剂,放入干燥箱中烘干,冷却至室温,得到掺杂羧基化多壁碳纳米管的吸附性超滤复合膜。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液的质量分数为1.5%。其他与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中在室温条件下搅拌45min,转速为700rbm。其他与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中所述的羧基化多壁碳纳米管为纯度98%的粉末,外径为10nm~20nm,长度为10μm~30μm。其他与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤二中在室温条件下超声搅拌12min~20min,超声的频率为30kHz~40kHz。其他与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是:步骤三中真空抽滤的压力为1.5bar~3bar;真空抽滤能够使掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸均匀的涂覆在聚偏氟乙烯膜表面,提高掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液分离层和聚偏氟乙烯基膜的结合力。其他与具体实施方式五相同。
具体实施方式七:本实施方式为具体实施方式一制备的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的应用,其应用于含银离子废水的处理,处理方法为:经所制备的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜滤过对银离子进行吸附氧化还原。
具体实施方式八:本实施方式与具体实施方式七不同的是:所述的含银离子废水中Ag+的浓度为5mg/L~15mg/L。其他与具体实施方式六相同。
用以下试验对本发明进行验证:
试验一:本试验为一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法,具体是按以下步骤进行的:
一、将聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液分散在无水乙醇中,在室温条件下搅拌45min,转速为700rbm,得到聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液的质量分数为1.5%;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液的质量浓度为0.45%;
二、将羧基化多壁碳纳米管分散于步骤一制备的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中,在室温条件下超声搅拌20min,超声的频率为35kHz,得到掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的羧基化多壁碳纳米管为纯度98%的粉末,外径为10nm~20nm,长度为10μm~30μm;
所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的5%;
三、通过真空抽滤的方法将步骤二中制备的掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液涂敷在无水乙醇清洗后的聚偏氟乙烯膜上,用去离子水漂洗除去膜表面未反应的单体和溶剂,放入干燥箱中烘干,烘干温度为85℃,烘干时间为40min,冷却至室温,得到掺杂羧基化多壁碳纳米管的吸附性超滤复合膜,记为M-1;
所述真空抽滤所有的装置为循环水式多用真空泵和抽滤杯-砂芯-抽滤瓶连接式制膜装置,将聚偏氟乙烯膜置于砂芯上部,抽滤杯固定在砂芯上部,砂芯下部连接抽滤瓶,连接循环水式多用真空泵,然后将掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液从上方倒入抽滤杯中,将掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸真空抽滤到聚偏氟乙烯膜上,形成分离层。
试验二:本试验与试验一不同的是:步骤二中所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的3%。其它与试验一相同,最终得到的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜,记为M-2。
试验三:本试验与试验一不同的是:步骤二中所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的4%。其它与试验一相同,最终得到的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜,记为M-3。
试验四:本试验与试验一不同的是:步骤二中所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的8%。其它与试验一相同,最终得到的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜,记为M-4。
试验五:本试验与试验一不同的是:步骤二中所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的10%。其它与试验一相同,最终得到的掺杂羧基化多壁碳纳米管的吸附性超滤复合膜,记为M-5。
对比例1:本试验与试验一不同的是不添加羧基化多壁碳纳米管,取消步骤二,其它与试验一相同。最终得到的薄膜纳米复合膜记为M-0。
应用例1:
将试验一至五以及对比例1中制备的复合膜分别置于超滤杯中固定,在超滤杯中加去离子水50mL,密封后连接空压机和超滤杯,在3bar压力下首次用以预压膜,预压膜后用秒表和量筒测定单位时间内透过膜的液体体积,参照以下公式计算水通量J:
式中:J为水通量L/(m2·h),t为测试时间(h),V为时间t内透过膜的水溶液体积(L),A为有效膜面积(m2)。
根据上述公式,可计算出复合膜在3bar压力下的纯水通量,具体结果见表1。
应用例2:
配制初始浓度均为0.5g/L的Ag+的水溶液,取1mL的Ag+的水溶液置于100mL的容量瓶中,用去离子水定容;在超滤杯中加入50mL定容后的混合溶液,密封后连接空压机和超滤杯,在3bar压力下分别经试验一至五以及对比例1制备的复合膜滤过溶液。取进料液和渗透液,用0.22μm滤头过滤,过滤后的进料液加1%的浓硝酸,再用超纯水稀释10倍,用火焰原子吸收分光光度计检测溶液中Ag+浓度;过滤后的渗透液加1%浓硝酸,再用超纯水稀释10倍,用火焰原子吸收分光光度计检测溶液中Ag+浓度。截留率和水通量是评价纳滤膜的两个重要参数,参照以下公式计算截留率:
式中:R为截留率(%),Cp为渗透液中离子的浓度(mg/L),Cf为进料液中离子的浓度(mg/L)。
根据上述公式,可计算出在Ag+溶液浓度为5mg/L,复合膜在3bar压力下对Ag+的截留性能,具体结果见表1。
表1复合膜的纯水通量
从表1可以看出,掺杂羧基化碳纳米管构建纳米通道对吸附性超滤膜的渗透性能起到促进作用,在不影响对Ag+截留率的情况下,纯水通量最高提升到了81.21(L·m-2·h-1)。

Claims (1)

1.一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法,其特征在于掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法是按以下步骤进行的:
一、将聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液分散在无水乙醇中,在室温条件下搅拌45min,转速为700rbm,得到聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的水溶液的质量分数为1.5%;
所述的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液的质量浓度为0.45%;
二、将羧基化多壁碳纳米管分散于步骤一制备的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中,在室温条件下超声搅拌20min,超声的频率为35kHz,得到掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液;
所述的羧基化多壁碳纳米管为纯度98%的粉末,外径为10nm~20nm,长度为10μm~30μm;
所述的掺杂羧基化多壁碳纳米管的质量是聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸的质量的5%;
三、通过真空抽滤的方法将步骤二中制备的掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液涂敷在无水乙醇清洗后的聚偏氟乙烯膜上,用去离子水漂洗除去膜表面未反应的单体和溶剂,放入干燥箱中烘干,烘干温度为85℃,烘干时间为40min,冷却至室温,得到掺杂羧基化多壁碳纳米管的吸附性超滤复合膜;
所述的真空抽滤所用的装置为循环水式多用真空泵和抽滤杯-砂芯-抽滤瓶连接式制膜装置,将聚偏氟乙烯膜置于砂芯上部,抽滤杯固定在砂芯上部,砂芯下部连接抽滤瓶,连接循环水式多用真空泵,然后将掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸悬浮溶液从上方倒入抽滤杯中,将掺杂羧基化多壁碳纳米管的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸真空抽滤到聚偏氟乙烯膜上,形成分离层。
CN202210276519.7A 2022-03-21 2022-03-21 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用 Active CN114618327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210276519.7A CN114618327B (zh) 2022-03-21 2022-03-21 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210276519.7A CN114618327B (zh) 2022-03-21 2022-03-21 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114618327A CN114618327A (zh) 2022-06-14
CN114618327B true CN114618327B (zh) 2023-11-24

Family

ID=81903920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210276519.7A Active CN114618327B (zh) 2022-03-21 2022-03-21 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114618327B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002814B (zh) * 2023-01-09 2024-05-24 上海师范大学 具有光催化-光热协同性能的超滤膜及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785305A (zh) * 2014-01-15 2014-05-14 天津工业大学 一种多壁碳纳米管-聚偏氟乙烯复合导电超滤膜及其制备方法
KR20150006501A (ko) * 2013-07-08 2015-01-19 연세대학교 산학협력단 전도성 고분자 용액의 정제방법, 및 정제 시스템
CN108079806A (zh) * 2018-02-07 2018-05-29 浙江大学 一种聚酰胺半透膜、制备方法及其应用
CN108325397A (zh) * 2018-02-06 2018-07-27 四会富士电子科技有限公司 一种无机微滤膜的制造方法
CN108325390A (zh) * 2018-03-08 2018-07-27 北京林业大学 一种提高聚乙烯亚胺/木质素磺酸钠复合膜性能的方法
CN110449041A (zh) * 2019-08-16 2019-11-15 河海大学 一种羧基功能化单壁碳纳米管改性聚哌嗪酰胺纳滤膜及其制备方法
CN111574735A (zh) * 2020-06-16 2020-08-25 南昌航空大学 一种基于聚偏氟乙烯的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸盐复合薄膜及其制备和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130512A1 (en) * 2017-03-07 2021-05-06 Agency For Science, Technology And Research A method of synthesizing a water-dispersible conductive polymeric composite
WO2020124362A1 (zh) * 2018-12-18 2020-06-25 大连理工大学 一种导电聚合物/碳纳米管复合纳滤膜的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006501A (ko) * 2013-07-08 2015-01-19 연세대학교 산학협력단 전도성 고분자 용액의 정제방법, 및 정제 시스템
CN103785305A (zh) * 2014-01-15 2014-05-14 天津工业大学 一种多壁碳纳米管-聚偏氟乙烯复合导电超滤膜及其制备方法
CN108325397A (zh) * 2018-02-06 2018-07-27 四会富士电子科技有限公司 一种无机微滤膜的制造方法
CN108079806A (zh) * 2018-02-07 2018-05-29 浙江大学 一种聚酰胺半透膜、制备方法及其应用
CN108325390A (zh) * 2018-03-08 2018-07-27 北京林业大学 一种提高聚乙烯亚胺/木质素磺酸钠复合膜性能的方法
CN110449041A (zh) * 2019-08-16 2019-11-15 河海大学 一种羧基功能化单壁碳纳米管改性聚哌嗪酰胺纳滤膜及其制备方法
CN111574735A (zh) * 2020-06-16 2020-08-25 南昌航空大学 一种基于聚偏氟乙烯的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸盐复合薄膜及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEDOT:PSS 薄膜性能优化的研究进展;李蛟;高分子材料科学与工程;第29卷(第11期);173-182页 *

Also Published As

Publication number Publication date
CN114618327A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Guo et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+:“Drag” effect from carboxyl-containing negative interlayer
CN109173746B (zh) 一种高效过滤水中微污染物的复合膜制备方法
Uragami Science and technology of separation membranes
Vatanpour et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification
Li et al. Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes
CN109126463B (zh) 一种含微孔中间层高通量纳滤膜的制备方法
Prihatiningtyas et al. Nanocomposite pervaporation membrane for desalination
Shan et al. Natural organic matter fouling behaviors on superwetting nanofiltration membranes
CN107583472B (zh) 一种纳米纤维素/滤纸复合过滤膜材料的制备方法
CN111921387B (zh) 聚多巴胺修饰咪唑基纳米粒子复合纳滤膜的制备方法
CN109603563B (zh) 一种锌配位有机纳米粒子杂化聚酰胺膜的制备方法
CN106000125A (zh) 一种无机复合纳滤膜的仿生制备方法
CN105727763A (zh) 一种含氟聚酰胺复合纳滤膜的制备方法
CN109603555B (zh) 超低压高通量金属有机纳米粒子组装纳滤膜的制备方法
CN114028947A (zh) 一种由氨基功能化ZIFs纳米材料改性的反渗透膜及其制备方法
CN114618327B (zh) 一种掺杂羧基化多壁碳纳米管的吸附性超滤复合膜的制备方法及其应用
WO2018091273A1 (en) New processes for treating water
Aryanti et al. Ultra low-pressure reverse osmosis (ULPRO) membrane for desalination: current challenges and future directions
CN110152503A (zh) 一种氧化石墨烯与自具微孔聚合物复合的耐溶剂纳滤膜的制备方法
CN113731190A (zh) 一种纳米纤维素层层自组装膜及其制备方法
CN115055061A (zh) 一种具有高渗透选择性的聚酰胺复合纳滤膜的制备方法
Eghbalazar et al. Novel thin film nanocomposite forward osmosis membrane embedded with amine functionalized UiO-66 metal organic frameworks as an effective way to remove heavy metal Cr3+ ions
CN205951427U (zh) 一种多层复合结构的薄膜复合膜
CN112973467B (zh) 一种复合纳滤膜的制备方法及复合纳滤膜
CN113477100A (zh) 一种海水淡化纳滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant