CN114616336A - 用于将货物递送至靶细胞的组合物和方法 - Google Patents
用于将货物递送至靶细胞的组合物和方法 Download PDFInfo
- Publication number
- CN114616336A CN114616336A CN202080075648.9A CN202080075648A CN114616336A CN 114616336 A CN114616336 A CN 114616336A CN 202080075648 A CN202080075648 A CN 202080075648A CN 114616336 A CN114616336 A CN 114616336A
- Authority
- CN
- China
- Prior art keywords
- protein
- crispr
- delivery
- cas
- retroviral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/735—Fusion polypeptide containing domain for protein-protein interaction containing a domain for self-assembly, e.g. a viral coat protein (includes phage display)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10023—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10041—Use of virus, viral particle or viral elements as a vector
- C12N2740/10042—Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13023—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13041—Use of virus, viral particle or viral elements as a vector
- C12N2740/13042—Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/14011—Deltaretrovirus, e.g. bovine leukeamia virus
- C12N2740/14022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/14011—Deltaretrovirus, e.g. bovine leukeamia virus
- C12N2740/14023—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/14011—Deltaretrovirus, e.g. bovine leukeamia virus
- C12N2740/14041—Use of virus, viral particle or viral elements as a vector
- C12N2740/14042—Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本文提供用于将货物递送至靶细胞的组合物、系统和方法。所述组合物、系统和方法包含编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的一种或多种多核苷酸。所述用于形成递送囊泡的一种或多种内源性逆转录病毒元件可包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。单独的逆转录病毒gag蛋白、单独的逆转录病毒包膜蛋白或逆转录病毒gag蛋白和逆转录病毒包膜蛋白两者可以是内源的。
Description
相关申请的交叉引用
本申请要求2019年9月20日提交的美国临时申请号62/903,127和2020年4月1日提交的美国临时申请号62/003,409的权益。上述申请的全部内容特此以引用方式完全并入本文。
关于联邦资助的研究的声明
本发明是根据美国国立卫生研究院授予的批准号HL141201在政府支持下进行。政府拥有本发明的某些权利。
电子序列表的引用
电子序列表(“BROD-4620WP_ST.25.txt”,大小为4,945字节,创建于2020年9月18日)的内容以引用方式整体并入本文。
技术领域
本文公开的主题整体涉及工程化的递送剂、组合物、系统及它们的用途。
背景技术
递送系统是治疗效果的重要方面。将治疗剂递送至细胞内部存在许多挑战,包括但不限于限制脱靶效应、递送效率、降解等等。病毒和病毒样颗粒已被用于将各种货物(例如,基因治疗剂)递送至靶细胞。然而,目前使用的囊泡和颗粒可能尺寸很大并且难以以一致的方式生成。因此,需要更简单和改进的递送系统。
发明内容
在某些示例性实施方案中,本发明提供了包含一种或多种多核苷酸的工程化的递送系统,其中一种或多种多核苷酸编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分。
在一些实施方案中,用于形成递送囊泡的一种或多种内源性逆转录病毒元件包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
在一些实施方案中,逆转录病毒gag蛋白可以是内源性的。在一些实施方案中,逆转录病毒包膜蛋白可以是内源性的。在一些实施方案中,逆转录病毒gag蛋白和逆转录病毒包膜蛋白都是内源性的。
在一些实施方案中,逆转录病毒gag蛋白含有NC和MA结构域。
在一些实施方案中,逆转录病毒gag蛋白是gag同源蛋白。在一些实施方案中,gag同源蛋白是Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。在具体实施方案中,gag同源蛋白是PNMA4、PEG10或RTL1。
在一些实施方案中,包膜蛋白可来自γ逆转录病毒或δ逆转录病毒。在一些实施方案中,包膜蛋白选自envH1、envH2、envH3、envK1、envK2_1、envK2_2、envK3、envK4、envK5、envK6、envT、envW、envW1、envfrd、envR(b)、envR、envF(c)2或envF(c)1。
在一些实施方案中,包膜蛋白包含货物结合结构域。在一些实施方案中,货物结合结构域是发夹环结合元件。在一些实施方案中,发夹环结合元件是MS2适体。
在一些实施方案中,递送系统引发差的免疫应答。
在一些实施方案中,货物包含核酸、蛋白质、它们的复合物或它们的组合。在一些实施方案中,货物通过接头与一个或多个包膜蛋白连接。在一些实施方案中,接头是甘氨酸-丝氨酸接头。在一些实施方案中,甘氨酸-丝氨酸接头是(GGS)3(SEQ ID NO:1)。
在一些实施方案中,货物包含核糖核蛋白。在一些实施方案中,货物包含遗传调节剂。在一些实施方案中,遗传调节剂包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。在一些实施方案中,基因编辑系统是CRISPR-Cas系统。在一些实施方案中,CRISPR-Cas系统是II型、V型或VI型CRISPR-Cas系统。在一些实施方案中,II型CRISPR-Cas系统包括CRISPR-Cas9。在一些实施方案中,V型CRISPR-Cas系统包括CRISPR-Cas12。在一些实施方案中,VI型CRISPR-Cas系统包括CRISPR-Cas13。
在一些实施方案中,可以修饰CRISPR-Cas系统的Cas蛋白以结合包膜蛋白的结合结构域。在一些实施方案中,修饰CRISPR-Cas系统的引导分子以结合包膜蛋白的结合结构域。在一些实施方案中,修饰包括掺入与包膜蛋白上的发夹结合元件结合的发夹环。在一些实施方案中,发夹环可被MS2适体识别。
在一些实施方案中,系统还可包含逆转录酶。
在一些实施方案中,一种或多种捕获部分包含DNA结合部分、RNA结合部分、蛋白质结合部分或它们的组合。
在一些实施方案中,递送囊泡是病毒样颗粒。
在一些实施方案中,系统还可包含靶向部分,其中靶向部分能够特异性结合靶细胞。在一些实施方案中,靶向部分包含膜融合蛋白。在一些实施方案中,膜融合蛋白是水疱性口炎病毒的G包膜蛋白(VSV-G)。
在一些实施方案中,靶细胞为哺乳动物细胞。在一些实施方案中,哺乳动物细胞是癌细胞。在一些实施方案中,哺乳动物细胞被病原体感染。在一些实施方案中,病原体是病毒。
在另一方面,本发明提供了一种递送囊泡,其包含在本文所述的工程化的递送系统中的一种或多种多核苷酸中编码的一种或多种组分。
在一些实施方案中,递送囊泡的一种或多种组分包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
在一些实施方案中,逆转录病毒gag蛋白是选自由以下组成的组的Agag同源蛋白:Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。在具体实施方案中,gag同源蛋白是PNMA4、PEG10或RTL1。
在一些实施方案中,囊泡包含细胞特异性靶向部分。在一些实施方案中,细胞特异性靶向部分靶向哺乳动物细胞。在一些实施方案中,细胞特异性靶向部分包含膜融合蛋白。在一些实施方案中,膜融合蛋白是VSV-G。
在一些实施方案中,哺乳动物细胞是癌细胞。在一些实施方案中,哺乳动物细胞被病原体感染。在一些实施方案中,病原体是病毒。
在又另一方面,本发明提供了一种用于将货物递送至靶细胞的系统,其包含包裹货物和内源性逆转录酶的递送囊泡。
在一些实施方案中,递送囊泡是病毒样颗粒。在一些实施方案中,递送囊泡由逆转录病毒gag蛋白和逆转录病毒包膜蛋白组成。在一些实施方案中,逆转录病毒gag蛋白源自人内源性逆转录病毒(HERV)。
在一些实施方案中,逆转录病毒gag蛋白是Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。在具体实施方案中,逆转录病毒gag蛋白是PNMA4、PEG10或RTL1。
在一些实施方案中,逆转录病毒包膜蛋白源自HERV。在一些实施方案中,逆转录病毒gag蛋白和逆转录病毒包膜蛋白均源自HERV。
在一些实施方案中,逆转录病毒包膜蛋白包含货物结合结构域。在一些实施方案中,货物结合结构域是发夹环结合元件。在一些实施方案中,发夹环结合元件是MS适体。
在一些实施方案中,货物包含核酸、蛋白质、它们的复合物或它们的组合。在一些实施方案中,货物包含核糖核蛋白。在一些实施方案中,货物包含遗传调节剂。在一些实施方案中,遗传调节剂包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。在一些实施方案中,基因编辑系统是CRISPR-Cas系统。在一些实施方案中,CRISPR-Cas系统是II型、V型或VI型CRISPR-Cas系统。在一些实施方案中,II型CRISPR-Cas系统包括CRISPR-Cas9。在一些实施方案中,V型CRISPR-Cas系统包括CRISPR-Cas12。在一些实施方案中,VI型CRISPR-Cas系统包括CRISPR-Cas13。
在一些实施方案中,货物通过接头与一个或多个包膜蛋白连接。
在一些实施方案中,接头是甘氨酸-丝氨酸接头。在一些实施方案中,甘氨酸-丝氨酸接头是(GGS)3(SEQ ID NO:1)。
在一些实施方案中,修饰CRISPR-Cas系统的Cas蛋白以结合包膜蛋白的结合结构域。在一些实施方案中,修饰CRISPR-Cas系统的引导分子以结合包膜蛋白的结合结构域。在一些实施方案中,修饰包括掺入与包膜蛋白上的发夹结合元件结合的发夹环。在一些实施方案中,发夹环被MS2适体识别。
在一些实施方案中,系统还可包含膜融合蛋白。在一些实施方案中,膜融合蛋白是VSV-G。
在一些实施方案中,靶细胞为哺乳动物细胞。在一些实施方案中,哺乳动物细胞是癌细胞。在一些实施方案中,哺乳动物细胞被病原体感染。在一些实施方案中,病原体是病毒。
在又另一方面,本发明提供了一种治疗疾病的方法,其包括向有需要的受试者施用本文所述的任何系统,其中递送囊泡将货物递送至受试者的一个或多个细胞。
在一些实施方案中,货物可包含治疗剂。在一些实施方案中,治疗剂包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
本领域普通技术人员在考虑所示出示例性实施方案的以下详细说明后,示例性实施方案的这些和其它方面、目标、特征和优点将变得显而易见。
附图说明
本发明的特征和优势的理解参考阐明可利用本发明原则的例示性实施方案的以下详细说明和附图来获得,并且在附图中:
图1-示出了HEK293T细胞中的各种env蛋白的表达,示出了Envw1、Envk1和Envfrd的表达增加。
图2-示出了来自用慢病毒蛋白假分型的颗粒的各种内源性逆转录病毒糖蛋白的表达。
图3-示出了与小鼠神经元细胞中的慢病毒-RFP报告基因相比,Pnma3-RFP融合构建体(在顶部说明)的表达。显微照片示出了前额叶皮层的器官型培养切片。
图4-示出了被测试形成衣壳、分泌蛋白质和将物质转移到新细胞的能力的各种内源性gag蛋白的图谱。
图5-示出了各种内源性gag蛋白候选物形成衣壳的能力的透射电子显微照片的图像。
图6-示出了各种内源性gag蛋白从细胞中分泌的能力。
图7A、图7B-示出了膜融合蛋白VSV-G不存在(7A)和存在(7B)的情况下的含有Cas9/gRNA复合物的gag构建体。
图8-说明实验大纲的示意图。
图9A、图9B-示出了引入的突变数量的序列比对,CRISPR复合物在包含RTL1的囊泡(9B)和对照囊泡(9A)中转移。
图10-示出了通过编辑包含各种gag同源蛋白的囊泡中的复合物诱导的插入缺失的数量的图表。
图11A至11C-说明(11A)PNMA4、(11B)PEG10和(11C)RTL1将Cas9/gRNA复合物转移到新细胞的能力。
图12-在内源性RTL-1上表达HA标签的敲入小鼠的序列比对。
图13-示出了有HA标签的PEG10和RTL1的硝化纤维素凝胶。
图14A至14D-说明了与对照颗粒(14A)相比,各种gag同源蛋白(14B至14D)在VSV-G存在的情况下下形成囊泡的能力的免疫荧光图像。
图15A、图15B-示出了在各种gag同源蛋白存在的情况下产生的囊泡拷贝数的图表。
图16-示出了各种gag同源蛋白过表达时的病毒感染性的倍数变化的图表。
图17-示出了在免疫原性降低的标度上各种推定的内源性信号传导系统的示意图。
图18-示出了包膜的VLP的要求的示意图。
图19-示出了各种gag同源蛋白从细胞中自发形成囊泡的能力的电子显微照片。
图20-示出了各种gag同源蛋白从细胞中自发形成囊泡的能力的电子显微照片。
图21-示出了从细胞中分泌的各种gag同源蛋白的免疫沉淀测定。
图22-示出了用于确定GAG是否被细胞摄取的测定的示意图。
图23A至23D-(23A、23B)示出了各种gag构建体被细胞摄取和将插入缺失引入靶序列的能力;(23A)SEQ ID NO:9-18;(23B)SEQ ID NO:19-26;(23C、23D)示出了囊泡在VSV-G不存在(23C)和存在(23D)的情况下被摄取到HEK293FT细胞中的能力的图表。
图24-示出了在VSV-G不存在(左)和存在(右)的情况下各种构建体被细胞摄取的能力的免疫沉淀测定。
图25-示出了PEG10的两个重叠阅读框的示意图。
图26-示出了PEG10的翻译ORF1和ORF1/2条带的免疫沉淀凝胶。
图27-用各种PEG10构建体转染的细胞的全细胞裂解液的免疫沉淀反应。
图28-用各种PEG10构建体转染的细胞的全细胞裂解液和VLP级分的免疫沉淀反应。
图29-分析VSV-G和SGCE增加PEG10分泌和摄取到靶细胞中的能力的免疫沉淀测定。
图30-示出了各个浓度的蔗糖缓冲提高PEG10递送效率的能力的免疫沉淀凝胶。
图31-示出了通过使用各种构建体生成的插入缺失百分比的图表。
图32-减慢了PEG10在大脑中的血清和皮层神经元中的定位的蛋白质印迹和免疫荧光染色。
图33-示出了缺乏PEG10的敲除小鼠表现出早期胚胎致死性的图表,表明该基因在胚胎发育中的重要性。
图34-原代小鼠神经元的RNA测序基因本体分析揭示了三组差异表达基因:1)涉及核染色质重塑的基因,2)涉及反面高尔基体网络(trans-golgi network)和胞吐作用的基因,和3)编码胞内体蛋白的SNARE和其它基因。
图35-示出了GFP/PEG10报告构建体的表达的荧光显微照片。
图36-示出了绘制DNA结合蛋白和染色质结合蛋白的结合位点的DNA甲基转移酶鉴定机制(DamID)的示意图。DamID通过将提议的DNA结合蛋白与DNA甲基转移酶一起表达为融合蛋白来鉴定结合位点。
图37-DamID绘制示意图。
图38-通过交叉引用DamID绘制数据和ATAC测序数据,分析了PEG10-DAMID融合构建体结合DNA和RNA的能力。
图39-来自N2A细胞的VLP级分中富含的蛋白质的质谱法分析结果。
图40-PEG10如何介导从细胞中分泌的示意图。
图41-示出了形成含有RNA的gag囊泡的构建体示意图的。
图42-示出了各种gag同源蛋白在不存在VSV-G的情况下产生含有RNA的囊泡的能力的图表。
图43-示出了各种gag同源蛋白在存在VSV-G的情况下产生含有RNA的囊泡的能力的图表
图44-示出了用于跨血脑屏障的天然蛋白质的全基因组筛选的方案的示意图。
图45-通过用第二代包装载体转染步骤1中传代的细胞以重新激活原病毒来修改图44中所示的方案。
图46-示出了频率,引导RNA最终以该频率内化在靶细胞中。
图47-示出了尾静脉后14天的一种核类型的CNS亚群。
图48-示出了不同融合剂(Arghap32和Clmp)进一步提高内化效率的能力的荧光显微照片。
图49-示出了用于转染构建体和评价生成插入缺失的能力的方案的示意图。细胞中的Cas9与PEG10的融合和过表达允许在靶细胞中生成插入缺失。
图50-各种gag同源蛋白充当天然融合剂的能力的分析。
图51-示出了不同融合剂(Arghap32和CXADR)进一步提高内化效率的能力的荧光显微照片
图52-示出了携带Cas9的各种gag从细胞中分泌的能力的分析结果的图表。
图53-示出了来自图52的选择gag在VSV-G存在的情况下从细胞中分泌的能力的分析的图表。
图54-示出了与HIV(右)相比,由图53的gag(左)生成的插入缺失百分比的图表。
图55-各种gag-IRES-Cas9构建体在各种融合剂存在的情况下生成插入缺失的能力的分析。
图56-示出了HEK293FT细胞中的过表达的、N末端和C末端有标签的小鼠PEG10的切割模式的PEG10和蛋白质印记的示意图。
图57A至57F-(57A)PEG10切割模式的蛋白质印记和示出了完整PEG10的肽丰度的图表;(57B)PEG10切割模式的蛋白质印记和示出了PEG10的第一阅读框的肽丰度的图表;(57C)PEG10切割模式的蛋白质印记和示出了NC切割产物的肽丰度的图表;(57D)PEG10切割模式的蛋白质印记和示出了在PEG10的第二阅读框的蛋白酶结构域处切割之后的肽丰度的图表;(57E)PEG10切割模式的蛋白质印记和示出了在PEG10的第二阅读框的RT结构域处切割之后的肽丰度的图表;(57F)PEG10切割模式的蛋白质印记和示出了在PEG10的第二阅读框的C末端切割之后的肽丰度的图表。
图58A至58B-蛋白质印迹和PEG10蛋白酶切割位点的示意图和所得蛋白质片段(58A)与在Gag结构域之前的推定切割(58B)。
图59-PEG10 ORF1/2基因的示意图和示出了从VLP级分和全细胞裂解液中分离的蛋白质的切割模式蛋白质印迹。
图60-PEG10蛋白的示意图,示出了NC结构域中的CCHC缺失使它无法与通过已知的髓磷脂表达因子(MYEF)结合的特定序列(SEQ ID NO:2)结合。
图61-用于确定PEG10是否与DNA结合的结合实验的方案和确认PEG10与DNA结合的图表。
图62-示出了ORF1的切割位点的位置估计和为确认该位置而进行的实验的示意图。
图63-示出了ORF1切割位点位置和有效负载分泌评估的示意图。
图64–示出了各种ORF的GFP融合构建体的表达的荧光显微照片。
图65-各种结构域与DNA相互作用时的推定功能的假设的示意图。
图66-具有各种结构域中的、确定其功能的突变的PEG10的示意图。
图67-示出了PEG10是否是核的并且可以结合DNA(如MYEF),然后是否遵循PEG10调节转录的示意图。
图68-示出了核衣壳结构域中的突变导致结合MYEF基序(SEQ ID NO:3)的能力降低的示意图。
图69-确定PEG10蛋白中的单个基序的功能的足迹测定。
图70-示出了转基因小鼠血液中的PEG10的定量的蛋白质印迹。
本文中的图片只是出于说明目的,并且不一定按比例绘制。
示例性实施方案详述
一般定义
除非另外定义,否则本文所使用的技术和科学术语具有与本公开所属领域的普通技术人员通常所理解相同的意义。分子生物学中的常见术语和技术的定义可见于:Molecular Cloning:A Laboratory Manual,第2版(1989)(Sambrook,Fritsch和Maniatis);Molecular Cloning:A Laboratory Manual,第4版(2012)(Green和Sambrook);Current Protocols in Molecular Biology(1987)(F.M.Ausubel等人编著);the seriesMethods in Enzymology(Academic Press,Inc.):PCR 2:A Practical Approach(1995)(M.J.MacPherson,B.D.Hames和G.R.Taylor编著):Antibodies,A Laboratory Manual(1988)(Harlow和Lane编著):Antibodies A Laboratory Manual,第2版2013(E.A.Greenfield编著);Animal Cell Culture(1987)(R.I.Freshney编著);BenjaminLewin,Genes IX,由Jones和Bartlet公布,2008(ISBN 0763752223);Kendrew等人(编著),The Encyclopedia of Molecular Biology,由Blackwell Science Ltd.公布,1994(ISBN0632021829);Robert A.Meyers(编著),Molecular Biology and Biotechnology:aComprehensive Desk Reference,由VCH Publishers,Inc.公布,1995(ISBN9780471185710);Singleton等人,Dictionary of Microbiology and Molecular Biology第2版,J.Wiley&Sons(New York,N.Y.1994),March,Advanced Organic ChemistryReactions,Mechanisms and Structure第4版,John Wiley&Sons(New York,N.Y.1992);以及Marten H.Hofker和Jan van Deursen,Transgenic Mouse Methods and Protocols,第2版(2011)。
除非上下文另外明确指出,否则如本文所用,单数形式“一种(a)”、“一种(an)”和“所述(the)”包括单数和复数个指代物。
术语“任选的”或“任选地”意指随后描述的事件、情形或取代者可发生或可不发生,并且描述包括其中所述事件或情形发生的情况和其中所述事件或情形不发生的情况。
通过端点表述的数值范围包括包含在相应范围内的所有数字和分数,以及表述的端点。
如本文所用,术语“约”或“大约”在指代诸如参数、量、持续时间等等的可测量值时,意在涵盖指定值的变化和从指定值的变化,诸如+/-10%或更小、+/-5%或更小、+/-1%或更小和+/-0.1%或更小的变化和从指定值的变化,只要此类变化适合在所公开的发明中执行。应当理解,修饰语“约”或“大约”所指代的值本身也是具体地且优选地公开的。
如本文所用,“生物样品”可含有全细胞和/或活细胞和/或细胞碎片。生物样品可含有(或源自)“体液”。本发明涵盖其中体液选自以下的实施方案:羊水、房水、玻璃状液、胆汁、血清、母乳、脑脊液、耵聍(耳垢)、乳糜、食糜、内淋巴液、外淋巴液、渗出液、粪便、女性潮射、胃酸、胃液、淋巴液、粘液(包括鼻腔引流液和痰(phlegm))、心包液、腹膜液、胸膜液、脓液、体液(rheum)、唾液、皮脂(皮肤油)、精液、痰(sputum)、滑液、汗液、泪液、尿液、阴道分泌物、呕吐物及一种或多种它们的混合物。生物样品包括细胞培养物、体液、来自体液的细胞培养物。体液可从哺乳动物生物体中获得,例如通过穿刺或其它收集或采样程序。
术语“受试者”、“个体”和“患者”在本文中可互换使用以指代脊椎动物,优选哺乳动物,更优选人。哺乳动物包括但不限于鼠、猿猴、人、农场动物、运动型动物和宠物。还包括在体内获得或在体外培养的生物实体的组织、细胞和其子代。
术语“高”、“更高”、“增加”、“升高(elevated)”或“升高(elevation)”是指增加至高于基础水平,例如,与对照相比。术语“低”、“更低”、“降低(reduced)”或“降低(reduction)”是指降低至低于基础水平,例如,与对照相比。
术语“对照”是指适合提供与测试样品中的表达产物的比较的任何参考标准。在一个实施方案中,对照包括获得“对照样品”,从对照样品中检测表达产物水平并将其与来自测试样品的表达产物水平进行比较。这种对照样品可包含任何合适的样品,包括但不限于来自具有已知结果的对照患者的样品(可以是储存的样品或先前的样品测量);从受试者(诸如正常患者或患有感兴趣的疾患的患者)中分离的正常组织、液体或细胞。
在下文中描述了各种实施方案。应当注意,具体的实施方案并不旨在作为详尽的描述或作为对本文讨论的更广泛方面的限制。结合特定实施方案描述的一个方面不一定限于那个实施方案并且可以与任何其它一个或多个实施方案一起实践。在整个本说明书中,提到“一个实施方案(one embodiment)”或“一个实施方案(an embodiment)”、“一个示例性实施方案(an example embodiment)”时,意指关于所述实施方案所述的具体特征、结构或特性被包括在本发明的至少一个实施方案中。因此,在整个本说明书中各处出现短语“在一个实施方案中(in one embodiment)”或“在一个实施方案中(in an embodiment)”或“一个示例性实施方案(an example embodiment)”不一定都指代同一个实施方案,但是可指代同一个实施方案。此外,如本领域的技术人员从本公开中将明白的,特定特征、结构或特性可在一个或多个实施方案中以任何合适方式组合。此外,虽然本文所述的一些实施方案包括其它实施方案中所包括的一些特征而非其它特征,但不同实施方案的特征的组合意图在本发明的范围内。例如,在所附权利要求中,所要求保护的实施方案中的任一个可以任何组合方式使用。
本文所引用的所有出版物、公布的专利文献、以及专利申请特此以引用的方式并入,其引用程度就如同具体地并且个别地指示每一单个出版物、公布的专利文献、或专利申请是以引用的方式并入。
概述
本文公开的实施方案提供用于将货物递送至靶细胞的组合物、系统和方法。本公开包括编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的多核苷酸。这种囊泡可以是病毒样颗粒。囊泡可用于将治疗剂递送至靶细胞中。多核苷酸可以包含允许募集货物分子或可以与可以包装在生成的囊泡中的货物分子融合的工程化的基因。定制多核苷酸组合物将允许定制货物和递送,包括细胞特异性和细胞非特异性递送方法。在具体实施方案中,逆转录病毒元件中的仅一种是内源性逆转录病毒元件。内源性逆转录病毒元件可以是逆转录病毒gag蛋白或逆转录病毒包膜蛋白。组合物、系统和方法还包含逆转录病毒逆转录酶。优选地,组合物具有降低的免疫原性。
工程化的递送系统
在一个方面,本文公开的实施方案涉及工程化的多核苷酸和载体,它们编码源自内源性逆转录病毒元件的囊泡形成递送系统。在另一个方面,本文公开的实施方案涉及此类工程化的多核苷酸在负载和/或包装期望的货物分子的方法中的用途。在另一个方面,本文公开的实施方案涉及此类载货递送囊泡和使用所述递送囊泡将货物分子递送至靶细胞的方法。
工程化的多核苷酸
在此公开的实施方案包含编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的工程化的多核苷酸。工程化的多核苷酸还可包括调控元件,例如启动子、增强子、内部核糖体进入位点(IRES)、阻遏物、诱导物等,以控制囊泡形成系统的表达。工程化的多核苷酸被设计用于递送至细胞、无细胞系统或任何其它合适的生物反应器以允许递送系统组分的表达和所述递送囊泡的形成,包括将期望的货物分子包装到所述递送囊泡中。
在一些实施方案中,用于形成递送囊泡的一种或多种内源性逆转录病毒元件是逆转录病毒包膜蛋白。在一些实施方案中,用于形成递送囊泡的一种或多种内源性逆转录病毒元件是逆转录病毒gag蛋白。在一些实施方案中,逆转录病毒gag蛋白和逆转录病毒包膜蛋白都是内源性的。在一些实施方案中,gag蛋白是内源性的而包膜蛋白是来源于病毒的。在一些实施方案中,包膜蛋白是内源性的而gag蛋白是来源于病毒的。系统还可包含货物结构域元件,诸如特异性结合感兴趣的货物并且如下文进一步详述的基于肽或核苷酸的元件。
系统还可包括一种或多种能够特异性结合靶细胞的靶向部分。在一些实施方案中,货物可通过接头与一个或多个包膜蛋白连接。在一些实施方案中,系统可包括控制囊泡形成系统的表达的调控分子。
术语“调控元件”旨在包括启动子、增强子、内部核糖体进入位点(IRES)、其它表达控制元件(例如,转录终止信号,诸如聚腺苷酸化信号和poly-U序列)和细胞定位信号(例如,核定位信号)。此类调控元件描述于,例如,Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)中。调控元件包括在许多类型的宿主细胞中指导核苷酸序列的组成型表达的调控序列,以及仅在某些宿主细胞中指导核苷酸序列的表达的调控序列(例如,组织特异性调控序列)。组织特异性启动子可以主要在期望的感兴趣组织(诸如肌肉、神经元、骨骼、皮肤、血液、指定器官(例如肝脏、胰腺)或特定细胞类型(例如,淋巴细胞))中指导表达。调控元件还可以时间依赖性方式(诸如以细胞周期依赖性或发育阶段依赖性方式)指导表达,这可能也是或可能也不是组织或细胞类型特异性的。在一些实施方案中,载体包含一个或多个pol III启动子(例如,1、2、3、4、5或更多个pol III启动子)、一个或多个pol II启动子(例如,1、2、3、4、5或更多个polII启动子)、一个或多个pol I启动子(例如1、2、3、4、5或更多个pol I启动子)或它们的组合。pol III启动子的示例包括但不限于U6、7SK和H1启动子。pol II启动子的示例包括但不限于逆转录病毒劳斯肉瘤病毒(Rous sarcoma virus,RSV)LTR启动子(任选地具有RSV增强子)、巨细胞病毒(cytomegalovirus,CMV)启动子(任选地具有CMV增强子)(参见,例如,Boshart等人,Cell,41:521-530(1985))、SV40启动子、二氢叶酸还原酶启动子、β-肌动蛋白启动子、磷酸甘油酸激酶(PGK)启动子和EF1α启动子。术语“调控元件”还涵盖增强子元件,诸如WPRE;CMV增强子;HTLV-I的LTR中的R-U5’片段(Mol.Cell.Biol.,Vol.8(1),p.466-472,1988);SV40增强子;和兔β球蛋白的外显子2和外显子3之间的内含子序列(Proc.Natl.Acad.Sci.USA.,Vol.78(3),p.1527-31,1981)。本发明的上下文中的gRNA、报告基因和pol II启动子以及pol III启动子的具体构型在本文别处更详细地描述。
在一些实施方案中,调控序列可以是描述于美国专利号7,776,321、美国专利公开号2011/0027239和国际专利公开号WO 2011/028929中的调控元件,所述专利的内容以引用方式整体并入本文。在一些实施方案中,载体可以含有最小启动子。在一些实施方案中,最小启动子是Mecp2启动子、tRNA启动子或U6。在另一个实施方案中,最小启动子具有组织特异性。在一些实施方案中,载体多核苷酸、最小启动子和多核苷酸序列的长度小于4.4Kb。
一般来讲,系统可包括生成囊泡的多核苷酸、生成囊泡的质粒、由此类质粒生成的囊泡,或两者。可以将下述序列克隆到载体中。如本文所用,“载体”是允许或有利于实体从一个环境转移到另一个环境的工具。载体是复制子,诸如质粒、噬菌体或粘粒,另一个DNA片段可插入载体中以便引起所插入片段的复制。一般来讲,当与适当的控制元件缔合时,载体能够复制。一般来讲,术语“载体”是指能够转运已经与它连接的另一核酸的核酸分子。载体包括但不限于单链、双链或部分双链的核酸分子;包含一个或多个游离端、无游离端(例如,环状)的核酸分子;包含DNA、RNA或两者的核酸分子;以及本领域已知的其它品种的多核苷酸。一种类型的载体是“质粒”,它是指环状双链DNA环,其中可以插入另外的DNA片段,诸如通过标准分子克隆技术。另一种类型的载体是病毒载体,其中病毒衍生的DNA或RNA序列存在于载体中以用于包装到病毒(例如,逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒(AAV))中。病毒载体还包括由病毒携带的用于转染到宿主细胞中的多核苷酸。某些载体能够在它们被引入的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和附加型哺乳动物载体)。其它载体(例如,非附加型哺乳动物载体)在引入宿主细胞中时整合到宿主细胞的基因组中,从而与宿主基因组一起复制。此外,某些载体能够指导它们所操作性地连接到的基因的表达。此类载体在本文中称为“表达载体”。在重组DNA技术中使用的常见表达载体经常呈质粒的形式。
多核苷酸可以是RNA或DNA分子。多核苷酸可以是天然存在的或重组的多核苷酸。多核苷酸可以编码蛋白质或RNA分子。
多核苷酸可包含本文中的囊泡的一种或多种组分的编码序列。在一些示例中,多核苷酸包含编码条形码构建体的序列。多核苷酸还可包含编码另一元件(诸如扰动元件)的序列。如本文所用,多核苷酸可以是DNA、RNA或它们的杂交体,包括但不限于cDNA、mRNA、基因组DNA、线粒体DNA、sgRNA、siRNA、shRNA、miRNA、tRNA、rRNA、snRNA、lncRNA和合成(诸如化学合成)DNA或RNA或它们的杂交体。多核苷酸可包括天然核苷酸(诸如A、T/U、C和G)、经修饰的核苷酸、天然核苷酸的类似物(诸如标记的核苷酸)或它们的任何组合。
本发明还提供用于递送编码内源性蛋白的多核苷酸的递送囊泡。本发明范围内的此类递送囊泡或系统可以任何形式提供,包括但不限于固体、半固体、乳液或胶粒。同样,本文所述的任何递送系统,包括但不限于,例如,基于脂质的系统、脂质体、胶束、微泡、外泌体或基因枪,可作为本发明范围内的颗粒递送系统提供。
一般来讲,“纳米颗粒”是指具有小于1000nm的直径的任何颗粒。在某些优选实施方案中,本发明的纳米颗粒具有500nm或更小的最大尺寸(例如,直径)。在其它优选实施方案中,本发明的纳米颗粒具有25nm至200nm范围内的最大尺寸。在其它优选实施方案中,本发明的纳米颗粒具有100nm或更小的最大尺寸。在其它优选实施方案中,本发明的纳米颗粒具有35nm至60nm范围内的最大尺寸。应当理解,本文提及的颗粒或纳米颗粒在适当的情况下可以是可互换的。
应当理解,颗粒的尺寸将根据是否在负载之前或之后测量而有所不同。因此,在特定实施方案中,术语“纳米颗粒”可仅应用于预负载的颗粒。
本发明所涵盖的纳米颗粒可以不同的形式提供,例如,作为固体纳米颗粒(例如,诸如银、金、铁、钛的金属、非金属、基于脂质的固体、聚合物)、纳米颗粒的悬浮液或它们的组合。可制备金属、介电和半导体纳米颗粒,以及杂交体结构(例如,核壳纳米颗粒)。由半导体材料制成的纳米颗粒也可标记为量子点,如果它们足够小(通常低于10nm),则发生电子能级的量子化。此类纳米级颗粒在生物医学应用中用作药物载体或成像剂,并且可适用于本发明中的相似目的。
已制造出半固体和软纳米颗粒,并且它们在本发明的范围内。具有半固体性质的原型纳米颗粒是脂质体。各种类型的脂质体纳米颗粒目前在临床上用作用于抗癌药物和抗体的递送系统。具有一半亲水性和另一半疏水性的纳米颗粒被称为Janus颗粒,并且对于稳定乳液特别有效。它们可以在水/油界面自组装并充当固体表面活性剂。
具有RNA的自组装输出隔室或纳米颗粒可用聚乙烯亚胺(PEI)构建,聚乙烯亚胺(PEI)用附接在聚乙二醇(PEG)远侧端部处的Arg-Gly-Asp(RGD)肽配体聚乙二醇化。这种系统已经用于,例如,作为靶向表达整联蛋白的肿瘤新血管系统和递送抑制血管内皮生长因子受体2(VEGF R2)表达的siRNA的方式,从而实现肿瘤血管新生(参见,例如,Schiffelers等人,Nucleic Acids Research,2004,Vol.32,No.19)。纳米复合物可通过混合等体积的阳离子聚合物和核酸的水溶液以产生在2至6的范围内的可电离的氮(聚合物)对磷酸盐(核酸)的净摩尔过量来制备。阳离子聚合物和核酸之间的静电相互作用导致形成平均颗粒尺寸分布约为100nm的复合物(polyplex),从而在此称为纳米复合物。设想约100至200mg的剂量的CRISPR Cas在Schiffelers等人的自组装纳米颗粒中用于递送。
Bartlett等人的纳米复合物(PNAS,September 25,2007,vol.104,no.39)也可应用于本发明。Bartlett等人的纳米复合物通过混合等体积的阳离子聚合物和核酸的水溶液以产生在2至6的范围内的可电离的氮(聚合物)对磷酸盐(核酸)的净摩尔过量来制备。阳离子聚合物和核酸之间的静电相互作用导致形成平均颗粒尺寸分布约为100nm的复合物,从而在此称为纳米复合物。Bartlett等人的DOTA-siRNA如下合成:从Macrocyclics(Dallas,TX)订购1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸单(N-羟基琥珀酰亚胺酯)(DOTA-NHS酯)。将碳酸盐缓冲液(pH 9)中的具有100倍摩尔过量的DOTA-NHS-酯的胺修饰的RNA有义链添加到微量离心管中。内容物通过在室温下搅拌4小时进行反应。DOTA-RNA有义缀合物用乙醇沉淀,重悬于水中,并且与未修饰的反义链退火,以产生DOTA-siRNA。所有液体都用Chelex-100(Bio-Rad,Hercules,CA)预处理以去除痕量金属污染物。靶向Tf的和非靶向siRNA纳米颗粒可通过使用含有环糊精的聚阳离子形成。通常,纳米颗粒以3(+/-)的电荷比和0.5克/升的siRNA浓度在水中形成。靶向纳米颗粒表面上的百分之一的金刚烷-PEG分子用Tf修饰(金刚烷-PEG-Tf)。将纳米颗粒悬浮在5%(重量/体积)葡萄糖载体溶液中用于注射。
塔夫茨大学的Qiaobing Xu实验室开发的脂质颗粒可用于/适用于本递送系统。参见Wang等人,J.Control Release,2017Jan 31.pii:S0168-3659(17)30038-X.doi:10.1016/j.jconrel.2017.01.037。[在发表之前发表电子版];等人,BiomaterSci.,4(12):1773-80,Nov.15,2016;Wang等人,PNAS,113(11):2868-73March 15,2016;Wang等人,PloS One,10(11):e0141860.doi:10.1371/journal.pone.0141860.eCollection 2015,Nov.3,2015;Takeda等人,Neural Regen Res.10(5):689-90,May 2015;Wang等人,Adv.Healthc Mater.,3(9):1398-403,Sep.2014;和Wang等人,Agnew Chem Int EdEngl.,53(11):2893-8,Mar.10,2014。
美国专利公开号20110293703还提供了通过本发明的方法制备的氨基醇类脂质化合物的文库。这些氨基醇类脂化合物可使用涉及液体处理程序、机器人、微量滴定板、计算机等的高通量技术来制备和/或筛选。在某些实施方案中,筛选氨基醇类脂质化合物的将多核苷酸或其它剂(例如,蛋白质、多肽、小分子)转染到细胞中的能力。
美国专利公开号2013/0302401涉及使用组合聚合制备的一类聚(β-氨基醇)(PBAA)。本发明的PBAA可作为涂层(诸如用于医疗设备或植入物的薄膜或多层薄膜的涂层)、添加剂、材料、赋形剂、非生物污垢剂、微图像化剂和细胞封装剂用于生物技术和生物医学应用中。当用作表面涂层时,这些PBAA会根据其化学结构在体外和体内引发不同水平的炎症。此类材料的较大的化学多样性允许鉴定在体外抑制巨噬细胞活化的聚合物涂层。此外,在皮下植入羧酸盐聚苯乙烯微粒之后,这些涂层减少炎症细胞的募集并减少纤维化。这些聚合物可用于形成用于细胞封装的聚电解质复合胶囊。本发明还可具有许多其它生物学应用,诸如抗微生物涂层、DNA或siRNA递送以及干细胞组织工程。美国专利公开号20130302401的教导可应用于本发明的CRISPR Cas系统或任何其它系统。
在另一个实施方案中,考虑了脂质纳米颗粒(LNP)。抗转甲状腺素蛋白小干扰性RNA已被封装在脂质纳米颗粒中并递送至人(参见例如Coelho等人,N Engl J Med 2013;369:819-29),并且此类系统可适用于并应用于本发明的CRISPR Cas系统或任何其它系统。考虑了静脉内施用的约0.01至约1mg/kg体重的剂量。考虑了降低输液相关反应风险的药物,诸如地塞米松(dexamethasone)、对乙酰氨基酚(acetaminophen)、苯海拉明(diphenhydramine)或西替利嗪(cetirizine)以及雷尼替丁(ranitidine)。还考虑了每4周约0.3mg/kg的多剂量,共5剂。
Zhu等人(US20140348900)提供了一种使用多端口歧管的用于制备脂质体、脂质盘和其它脂质纳米颗粒的工艺,其中将含有有机溶剂的脂质溶液流与两个或多个水溶液流(例如,缓冲液)混合。在一些方面,脂质流和水溶液流的至少一些不是彼此直接相反的。因此,该工艺不需要稀释有机溶剂作为附加步骤。在一些实施方案中,溶液中的一种还可含有活性药物成分(API)。本发明提供了一种使用不同脂质制剂和不同有效负载来制造脂质体的稳健工艺。颗粒尺寸、形态和制造规模可以通过改变端口尺寸和歧管端口的数量以及通过选择脂质和水溶液的流量或流速来控制。
LNP已被证明在将siRNA递送至肝脏方面非常有效(参见,例如,Tabernero等人,Cancer Discovery,April 2013,Vol.3,No.4,pages 363-470),LNP因此被考虑用于将编码CRISPR Cas的RNA递送至肝脏。可考虑每两周约四剂6mg/kg LNP的剂量。Tabernero等人证明,在以0.7mg/kg给药的LNP的前2个周期之后观察到肿瘤消退,并且在6个周期结束时,该患者已实现部分反应,淋巴结转移完全消退,并且肝脏肿瘤显著缩小。此患者在40剂后获得完全反应,该患者已保留缓解状态并且在接受超过26个月的剂量之后完成治疗。两名患有RCC和肝外疾病部位(包括肾、肺和淋巴结)的患者在先前使用VEGF通路抑制剂治疗后取得进展,所有部位的疾病均稳定大约8至12个月,一名患有PNET和肝转移的患者继续进行18个月(36剂)的延长研究,疾病稳定。
在一些实施方案中,LNP含有核酸,其中核酸主链磷酸酯与阳离子脂质氮原子的电荷比为约1:1.5-7或约1:4。
在一些实施方案中,LNP还包括屏蔽化合物,其在体内条件下可从脂质组合物中去除。在一些实施方案中,屏蔽化合物是生物惰性化合物。在一些实施方案中,屏蔽化合物在其表面或分子本身上不携带任何电荷。在一些实施方案中,屏蔽化合物是聚乙二醇(PEG)、基于羟乙基葡萄糖(HEG)的聚合物、聚羟乙基淀粉(聚HES)和聚丙烯。在一些实施方案中,PEG、HEG、聚HES和聚丙烯的重量为约500至10,000Da或约2000至5000Da。在一些实施方案中,屏蔽化合物是PEG2000或PEG5000。
在一些实施方案中,可使用基于糖的颗粒(例如GalNAc),如本文所述并参考WO2014118272(以引用方式并入本文)和Nair,JK等人,2014,Journal of the AmericanChemical Society 136(49),16958-16961以及本文的教导,尤其是关于应用于所有颗粒的递送的教导,除非另外明确说明。这可被认为是基于糖的颗粒并且本文提供了其它颗粒递送系统和/或制剂的另外细节。因此,GalNAc可以被认为是本文所述的其它颗粒意义上的颗粒,使得一般用途和其它考虑,例如所述颗粒的递送,也应用于GalNAc颗粒。溶液相缀合策略可例如用于将作为PFP(五氟苯基)酯激活的三触角GalNAc簇(分子量~2000)附接到5'-己基氨基修饰的寡核苷酸上(5′-HA ASO,分子量~8000Da;等人,Bioconjugate Chem.,2015,26(8),pp 1451-1455)。类似地,已经描述了聚(丙烯酸酯)聚合物的体内核酸递送(参见以引用方式并入本文的WO2013158141)。在另外的另选实施方案中,可使用将CRISPR纳米颗粒(或蛋白质复合物)与天然存在的血清蛋白预混合以改进递送(Akinc A等人,2010,Molecular Therapy vol.18no.7,1357-1364)。
可与本文的教导结合采用的文献包括:Cutler等人,J.Am.Chem.Soc.2011 133:9254-9257,Hao等人,Small.2011 7:3158-3162,Zhang等人,ACS Nano.2011 5:6962-6970,Cutler等人,J.Am.Chem.Soc.2012 134:1376-1391,Young等人,Nano Lett.2012 12:3867-71,Zheng等人,Proc.Natl.Acad.Sci.USA.2012 109:11975-80,Mirkin,Nanomedicine2012 7:635-638Zhang等人,J.Am.Chem.Soc.2012 134:16488-1691,Weintraub,Nature2013 495:S14-S16,Choi等人,Proc.Natl.Acad.Sci.USA.2013 110(19):7625-7630,Jensen等人,Sci.Transl.Med.5,209ra152(2013)和Mirkin等人,Small,10:186-192。
如Patsuzyn等人(Cell 172(1-2):275-288;2018)中所述,可以多个步骤评价细胞间转移的测量。在具体实施方案中,转染的HEK293细胞中的衣壳形成的间接测试可通过以下方式进行:化学交联,然后用SDS-PAGE探测对应于蛋白质寡聚体的较高分子量条带的出现。细胞外囊泡的输出可通过以下方式执行:从培养基中纯化细胞外囊泡级分,然后转染并使用蛋白质印迹来寻找除报告的细胞外囊泡标记物之外的蛋白质。最后,含有衣壳的细胞外囊泡的被受体细胞摄取的能力可通过以下方式测试:将培养基或来自用有GFP标签的Gag转染的细胞的纯化细胞外囊泡级分置于未转染的细胞上,并使用显微镜和/或FACS寻找荧光的摄取。除了细胞外囊泡介导的转移之外,重组Arc可以在体外形成衣壳,衣壳在内膜不存在的情况下将封闭的RNA转移至受体细胞。蛋白质也可从细菌中纯化或在体外翻译并测试这种活性。不同测定中的衣壳结构的形成可使用包括但不一定限于以下的方法来确认:电子显微镜法、动态光散射或Spectradyne颗粒分析。
在具体实施方案中,未组装的重组GAG样蛋白质、核酸和/或蛋白质在低盐条件下的溶液中组合。
以引用方式并入本文的美国专利号8,709,843提供了一种用于将含有治疗剂的颗粒靶向递送至组织、细胞和细胞内隔室的药物递送系统。本发明提供了包含与表面活性剂、亲水性聚合物或脂质缀合的聚合物的靶向颗粒。美国专利号8,709,843的教导可应用于和/或适用于掺入和/或递送本文所述的本发明的一种或多种工程化的递送系统分子。
以引用方式并入本文的美国专利号5,543,158提供了可生物降解的可注射颗粒,其具有含有生物活性材料和表面上的聚(烷撑二醇)部分的可生物降解的实芯。美国专利号5,543,158的教导可应用于和/或适用于掺入和/或递送本文所述的本发明的一种或多种工程化的递送系统分子。
以引用方式并入本文的国际专利公开号WO2012135025(也公开为US20120251560)描述了缀合聚乙烯亚胺(PEI)聚合物和缀合氮杂大环化合物(统称为“缀合微质体(conjugated lipomer)”或“微质体(lipomer)”)。在某些实施方案中,可以设想此类缀合微质体可以用于本文所述的工程化的递送系统的上下文中,以实现本文所述的工程化的递送系统的一种或多种组分的体外、离体和体内表达,并且一些实施方案可导致由一个或多个工程化的细胞产生工程化的递送颗粒。
此外,本文所述的工程化的递送系统分子可使用纳米线团来递送,例如,如Sun W等人,Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.,JAm Chem Soc.2014 Oct 22;136(42):14722-5.doi:10.1021/ja5088024.Epub 2014Oct13.;或Sun W等人,Self-Assembled DNA Nanoclews for the Efficient Delivery ofCRISPR-Cas9 for Genome Editing.,Angew Chem Int Ed Engl.2015 Oct 5;54(41):12029-33.doi:10.1002/anie.201506030.Epub 2015 Aug 27中所述。Sun等人的教导可以应用于和/或适用于生成和/或递送本文所述的CRISRP-Cas系统分子。
本文所述的一种或多种工程化的递送系统分子可以包含在外泌体中或以其它方式掺入外泌体中用于递送。含有本文所述的一种或多种工程化的递送分子的外泌体可用于将一种或多种工程化的递送系统分子递送至细胞和/或受试者。
外泌体是内源性纳米囊泡,其运输RNA和蛋白质,并且可将RNA递送到脑和其它靶器官。为了降低免疫原性,Alvarez-Erviti等人(2011,Nat Biotechnol 29:341)使用自源性树突状细胞来产生外泌体。靶向大脑是通过工程化树突状细胞以表达Lamp2b(一种外泌体膜蛋白,与神经元特异性RVG肽融合)来实现的。纯化的外泌体通过电穿孔负载外源性RNA。静脉注射的靶向RVG的外泌体将GAPDH siRNA特异性递送至大脑中的神经元、小胶质细胞、少突胶质细胞,从而导致特异性基因敲低。预暴露于RVG外泌体不减弱敲低,并且未观察到其它组织中的非特异性摄取。外泌体介导的siRNA递送的治疗潜力通过BACE1(一种阿兹海默症(Alzheimer's disease)的治疗剂)的强mRNA(60%)和蛋白质(62%)敲低得到证明。Alvarez-Erviti等人的教导可以应用于和/或适用于生成和/或递送本文所述的CRISPR-Cas系统分子。
在一些实施方案中,递送系统引发差的免疫应答或具有较低的免疫原性。
在一些实施方案中,递送囊泡是病毒样颗粒(VLP)。如本文所用,术语“病毒样颗粒”(VLP)是指在至少一种属性上类似于病毒但尚未证明具有感染性的结构。VLP可以是非复制性、非感染性的病毒外壳,它含有病毒衣壳,但缺乏全部或部分病毒基因组,特别是病毒基因组的复制组分。VLP通常由一种或多种病毒蛋白构成,诸如但不限于称为衣壳、外壳(coat)、壳(shell)、表面和结构蛋白(例如,VP1、VP2)的那些蛋白质。VLP也可类似于噬菌体的结构,具有非复制性和非感染性,并且至少缺乏编码噬菌体复制机制的一个或多个基因,并且还缺乏编码负责病毒附接至或进入宿主的一种或多种蛋白质的一个或多个基因。
来自各种逆转录病毒来源的包膜可以用于对载体进行假分型。假分型的确切规则(即,哪些包膜蛋白将与细胞膜细胞质侧的新生载体颗粒相互作用以产生有活力的病毒颗粒(Tato,Virology 88:71,1978)而哪些将不相互作用(Vana,Nature 336:36,1988))没有很好地表征。然而,由于一片细胞膜出芽形成病毒包膜,因此通常在膜中的分子被携带在病毒包膜上。因此,许多不同的潜在配体可以通过操纵细胞系制备gag和pol(载体在gag和pol中产生)或选择具有特定表面标记物的各种类型的细胞系来放置在病毒载体的表面上。一种可以在辅助细胞中表达并且可以产生可用的载体-细胞相互作用的表面标志物是另一种潜在病原性病毒的受体。病原性病毒在被感染的细胞表面上表现出它的通常与细胞表面标志物或受体相互作用以产生病毒感染的病毒特异性蛋白质(例如,env)。这通过使用相同的病毒蛋白-受体相互作用,但使用与载体上的受体和细胞上的病毒蛋白的相互作用,逆转了载体对潜在病原性病毒的感染特异性。
一种已知参与假型形成的病毒是水疱性口炎病毒(VSV),它是弹状病毒家族的原型成员。它是具有负链RNA基因组的可引起牲畜的自限性疾病的包膜病毒,并且对人类基本上无病原性。Balachandran和Barber(2000,IUBMB Life 50:135-8)。弹状病毒具有11,000至12,000个核苷酸的单负链RNA基因组(Rose和Schubert,1987,Rhabdovirus genomes andtheir products,in The Viruses:The Rhabdoviruses,Plenum Publishing Corp.,NY,pp.129-166)。病毒颗粒含有由基因组RNA和蛋白质构成的螺旋状核衣壳核心。一般来讲,发现称为N(核衣壳,紧密包裹基因组)、P(之前称为NS,最初指示非结构)和L(大)的三种蛋白质与核衣壳有关。另外的基质(M)蛋白位于膜包膜内,可能与膜和核衣壳核心两者相互作用。单个糖蛋白(G)物种跨膜并在病毒颗粒的表面上形成刺突。
内源性逆转录病毒元件
人内源性逆转录病毒(HERV)序列占人类基因组草图的8.29%。它们的流行是由于过去的逆转录病毒感染因子的积累,这些感染因子已经进入生殖系,与宿主细胞建立了休战状态,并从宿主基因组中表达。HERV可以根据序列同源性分成大约100个不同的家族,每个家族含有几个至几百个元素。发现宿主从内源性逆转录病毒中选择的基因是一些细胞过程(包括小鼠中Fv1和Fv4的病毒防御,以及通过合胞素介导的人胎盘发育中的细胞融合)的积极参与者。尽管已经在正常和癌组织(包括T细胞)中都检测到了HERV转录物,但它们在正常细胞功能和致癌作用中的角色尚不清楚。虽然促进HERV转录的细胞条件还不是非常清楚,但APOBEC已被证明在控制内源性逆转录病毒中发挥作用。
目前的HERV和逆转录病毒之间的强相似性可以从pol基因的逆转录酶结构域或env基因的跨膜(TM)部分中的系统发育分析中推导出来,这公开了两种元件的交错并表明了共同的历史和共享的祖先(Tristem,M.(2000)J.Virol.74,3715-3730;Benit等人(2001)J.Virol.75(11709-11719)。在功能水平也观察到相似之处。
由于HERV与感染性逆转录病毒之间的密切关系,并且尽管大多数HERV已经积累了突变、缺失和/或截短,但仍有可能一些元素仍然具有感染性逆转录病毒功能,而宿主可能已经将这些功能转化成了它们自己的利益。
编码能够自组装成有缺陷的、非繁殖病毒颗粒的病毒多肽的基因可以从DNA病毒的基因组DNA或RNA病毒的基因组cDNA或从含有这些基因的可获得的亚基因组克隆中获得。这些基因将包括编码病毒衣壳蛋白(即,构成病毒蛋白质壳的蛋白质)的那些基因,并且在包膜病毒(诸如逆转录病毒)的情况下,包括编码病毒包膜糖蛋白的基因。衣壳蛋白成熟和颗粒自组装可能也需要另外的病毒基因。这些可编码负责加工衣壳蛋白或包膜糖蛋白的病毒蛋白酶。例如,小核糖核酸病毒的基因组结构已经很好的表征,并且导致病毒粒子组装的蛋白质合成模式很清楚。Rueckert,R.in Virology(1985),B.N.Fields等人(编著)RavenPress,New York,pp 705-738。在小核糖核酸病毒中,病毒衣壳蛋白由含有单个长阅读框的RNA基因组编码并且合成为多蛋白的一部分,多蛋白通过细胞和病毒蛋白酶的组合加工产生成熟的衣壳蛋白。因此,衣壳自组装所需的小核糖核酸病毒基因包括衣壳结构基因和它们的成熟所需的病毒蛋白酶。可以从中分离出编码自组装衣壳蛋白的基因的另一种病毒是慢病毒,其中HIV就是一个示例。与小核糖核酸病毒衣壳蛋白类似,HIV gag蛋白合成作为前体多肽,前体多肽随后被病毒蛋白酶加工成成熟的衣壳多肽。然而,gag前体多肽可以在不存在蛋白质加工的情况下自组装成病毒样颗粒。Gheysen等人,Cell 59:103(1989);Delchambre等人,The EMBO J.8:2653-2660(1989)。与小核糖核酸病毒衣壳不同,HIV衣壳被含有病毒糖蛋白的松散膜包膜包围。这些由病毒env基因编码。
在另选的实施方案中,具有Gag同源性的另外的人蛋白质可用于组装介导货物的细胞间转移的病毒样衣壳。此类蛋白质包括但不一定限于扩展的PNMA基因家族,包括ZCC18、ZCH12、PNM8B、PNM8B、PNM6A、PMA6F、PMA6E、PNMA2、PNM8A、PNMA3、PNMA5、PNMA1、MOAP1和CCDC8。在具体实施方案中,GAG样蛋白是Arc。
在一些实施方案中,内源性逆转录病毒元件是内源性逆转录病毒gag蛋白。在一些实施方案中,内源性逆转录病毒元件是内源性逆转录病毒包膜蛋白。在一些实施方案中,内源性逆转录病毒元件是逆转录病毒逆转录酶。在一些实施方案中,一种或多种逆转录病毒元件可以是内源性的。在一些实施方案中,两种或更多种逆转录病毒元件可以是内源性的。
在一些实施方案中,用于形成递送囊泡的一种或多种内源性逆转录病毒元件可包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
逆转录病毒Gag蛋白
组特异性抗原(gag)蛋白是逆转录病毒衣壳的核心结构蛋白或主要组分。HIV p17基质蛋白(MA)是17kDa蛋白,由132个氨基酸组成,包含Gag多蛋白的N末端。它负责将Gag多蛋白靶向质膜,但也与组装的病毒中的HIV跨膜糖蛋白gp41接触,并可在将Env糖蛋白募集到病毒出芽位点中发挥关键作用。
若干研究已经证明,在许多系统中单独表达gag基因导致膜包膜病毒粒子的有效组装和释放(Craven,R.C.等人(1996)。Gag多蛋白的动态相互作用。Current Topics inMicrobiology and Immunology 214,pp.65-94;Delchambre,M.等人(1989).The Gagprecursors of simian immunodeficiency virus assemble into virus-likeparticles.EMBO 8,pp.2653-60;Dickson,C.等人(1984).“Protein biosynthesis andassembly,”RNA tumor viruses(R.Weiss,N.Teich,H.Varmus和J.Coffin编著),Vol.1,pp.513-648.2vols.Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.;Gheysen,H.P.等人(1989),“Assembly and release of HIV-1precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells,”Cell 59,pp.103-12;Haffar,O.等人(1990),“Human immunodeficiency virus-like,non-replication,Gag-Env particles assemble in a recombinant vaccinia virusexpression system,”J.Virol.64,pp.2653-59;Hunter,E.(1994),“Macromolecularinteractions in the assembly of HIV and other retroviruses,”Sem.in Virology5,pp.71-83;H.-G.等人(1996),“Intracellular transport of retroviralcapsid components,”Current Topics in Microbiology and Immunology 214,pp.25-64;Madisen,L.等人(1987),“Expression of the human immunodeficiency virus gaggene in insect cells,”Virology 158,pp.248-250;Smith,A.J.等人(1990),“Humanimmunodeficiency virus type 1Pr55gag and Pr160gag-pol expressed from a simianvirus 40late-replacement vector are efficiently processed and assembled intovirus-like particles,”J.Virol.64,pp.2743-50;Sommerfelt,M.A.等人(1992),“Importance of the p12 protein in Mason-Pfizer monkey virus assembly andinfectivity,”J.Virol.66,pp.7005-11;Wills,J.W.等人(1989),“Creation andexpression of myristylated forms of Rous sarcoma virus Gag protein inmammalian cells,”J.Virol.63,pp.4331-43)。因此,这种基因的产物具有介导细胞内转运、直接组装成衣壳外壳以及催化称为出芽的膜挤出程序所必要的结构信息。
一旦Gag被翻译,Gag多蛋白在其N末端甘氨酸残基处被N-肉豆蔻酰转移酶1肉豆蔻酰化,这是一种对质膜靶向很关键的修饰。在膜不结合形式中,MA肉豆蔻酰脂肪酸尾被隔离在MA蛋白核心中的疏水袋中。MA对质膜蛋白的识别激活了“肉豆蔻酰开关”,其中肉豆蔻酰基团从MA中的疏水袋中挤出并嵌入质膜中。
HIV核衣壳蛋白(NC)是Gag多蛋白中的7kDa锌指蛋白,并且在病毒成熟后形成病毒核衣壳。NC将全长病毒基因组RNA募集至新生病毒粒子。
神经元基因Arc与Ty3/gypsy反转录转座子的Gag组分具有同源性,并且表现出让人想起逆转录病毒Gag蛋白的生化性质。Arc蛋白在细胞中和当在细菌中重组表达时都组装成病毒样衣壳。Arc衣壳能够封装它们自己的mRNA,从而介导它们在细胞外囊泡中的细胞间转移。纯化的Arc蛋白可用于用不同的DNA或RNA或蛋白质或它们的一些混合物重构衣壳,并且可以包装到衣壳中以用于递送至细胞中。在一些实施方案中,可使用脂质组装衣壳以帮助细胞摄取。各种实施方案可利用不同的Arc直系同源物。
在一些实施方案中,本文所述的多核苷酸可包含Gag同源蛋白或其功能结构域。术语“功能结构域”是指具有与核酸结合结构域识别的核酸序列结合之外的活性的多肽序列。通过将核酸结合结构域与一种或多种效应结构域组合,本发明的多肽可用于将效应结构域介导的一种或多种功能或活性靶向核酸结合结构域特异性结合的特定的靶DNA序列。
Gag介导的细胞间通讯的分子和遗传决定因素可以通过表征衣壳介导的细胞间mRNA转移的机制来确定,特别关注可以允许使这种系统用于可编程递送货物的特征。不同的Gag蛋白进化出用于介导其RNA基因组的特异性封装的各种不同的RNA结合结构域。人Gag同源蛋白的RNA结合序列特异性可以通过蛋白质下拉(pull-down)和相关RNA的测序和/或通过来自过表达每种蛋白质的HEK293细胞的细胞外囊泡级分的测序来测试。核酸结合结构域可以在蛋白质之间交换,或者特异性已知的另外的RNA结合结构域可以融合以测试结合特异性可以重新编程的程度。因此,Gag同源蛋白或其功能结构域可以包含输出隔室结构域和核酸结合结构域(complain)。
Gag-同源蛋白可以选自Arc、ASPRV1、Sushi类蛋白、SCAN蛋白或PNMA蛋白。在特定情况下,Gag同源蛋白是PNMA蛋白,例如ZCC18、ZCH12、PNM8B、PNM6A、PNMA6E_i2、PMA6F、PMAGE、PNMA1、PNMA2、PNM8A、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PNMA1、MOAP1或CCD8。在实施方案中,Gag同源蛋白是Arc蛋白,在某些实施方案中,是hARC或dARC1。Gag同源蛋白可以包含ASPRV1。在其它情况下,Gag同源蛋白是PEG10、RTL3、RTL10或RTL1。在某些实施方案中,Gag同源蛋白是SCAN蛋白,例如PGBD1。在一些情况下,PEG10 Gag同源蛋白是PEG10_i6或PEG10_i2。
在一些实施方案中,Gag同源蛋白或其功能结构域可包含输出隔室结构域和核酸结合结构域。在具体实施方案中,核酸结合结构域可相对于Gag同源蛋白的天然核酸结合结构域进行修饰。在具体实施方案中,核酸结合结构域可以是相对于Gag同源蛋白的非天然核酸结合结构域。在一些实施方案中,Gag同源蛋白可以是Arc或副肿瘤Ma抗原(PNMA)蛋白。
在一些实施方案中,重组GAG样蛋白可以从细菌、酵母、昆虫细胞或哺乳动物细胞中表达和纯化。重组GAG样蛋白可在变性条件下纯化,并通过缓冲液交换转移至非变性条件。
在一些实施方案中,逆转录病毒gag蛋白是内源性的。
在一些实施方案中,逆转录病毒gag蛋白可含有NC和MA结构域。
在一些实施方案中,如本文所述,逆转录病毒gag蛋白可以是gag同源蛋白。
在一些实施方案中,gag同源蛋白可包括但不一定限于Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。在具体实施方案中,gag同源蛋白是Arc1、PNMA6a或PNMA3。在具体实施方案中,gag同源蛋白是PEG10。
在一些实施方案中,gag同源蛋白可含有DNA结合基序。作为具体示例,并且如在实施例4中讨论的,PEG10包含允许包装指定序列的DNA的DNA结合基序。
如本领域的任何技术人员将理解的,本文所述的任何系统还可以工程化成最小的组分集并应用于任何合适的内源性元件。如实施例3和实施例4以及图56至70中所述,使用PEG10只是一种示例方法,在该方法之后可以使用任何其它内源性元素。
逆转录Env蛋白
Env是编码形成病毒包膜的蛋白质的逆转录病毒基因。env基因的表达允许逆转录病毒靶向并附着至特定细胞类型,并渗透靶细胞膜。若干不同的env基因的结构和序列表明Env蛋白是1型融合机器。1型融合机器最初与靶细胞表面上的受体结合,这触发构象变化,从而允许融合蛋白的结合。融合肽将自身插入宿主细胞膜中,并且使宿主细胞膜非常接近病毒膜,从而允许膜融合。env基因的序列在逆转录病毒之间可差异显著,然而,该基因始终位于gag、pro和pol的下游。env mRNA必须经过剪接才能表达。
Env不仅介导病毒进入细胞,而且还是细胞和抗体反应的主要靶标。它作为前体分子gp160合成,随后被细胞蛋白酶加工成表面亚基(SU)gp120和跨膜亚基(TM)gp41,并在病毒或细胞膜上作为gp120-gp41异源二聚体的三聚体存在。SU蛋白结构域决定了病毒的趋向性,因为它负责病毒的受体结合功能。因此,SU结构域决定了病毒对单个受体分子的特异性。gp120与HIV的受体和共受体分子相互作用并且介导病毒附接至细胞,而gp41在初始感染过程期间引起病毒和细胞膜之间的随后融合,以用于将病毒核心组分释放到细胞中。TM蛋白由三种不同的结构域组成:细胞外结构域、跨膜结构域和细胞质结构域。
在一些实施方案中,逆转录病毒包膜蛋白是内源性的。
在一些实施方案中,包膜蛋白可来自γ逆转录病毒。在一些实施方案中,包膜蛋白可来自δ逆转录病毒。
在一些实施方案中,包膜蛋白可选自但不一定限于envH1、envH2、envH3、envK1、envK2_1、envK2_2、envK3、envK4、envK5、envK6、envT、envW、envW1、envfrd、envR(b)、envR、envF(c)2或envF(c)1。
在一个方面,本发明提供了将RNA序列引入转录物募集序列中,转录物募集序列形成环状二级结构并与衔接蛋白结合。在一个方面,本发明提供了一种本文讨论的组合物,其中与一种或多种衔接蛋白结合的不同RNA序列的插入是适体序列。在一个方面,本发明提供了一种本文讨论的组合物,其中适体序列是对同一衔接蛋白具有特异性的两种或更多种适体序列。在一个方面,本发明提供了一种本文讨论的组合物,其中适体序列是对不同衔接蛋白具有特异性的两种或更多种适体序列。在一个方面,本发明提供了一种本文讨论的组合物,其中衔接蛋白包含MS2、PP7、Qβ、F2、GA、fr、JP501、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、φCb5、φCb8r、φCb12r、φCb23r、7s、PRR1。在一个方面,本发明提供了一种本文讨论的组合物,其中细胞是真核细胞。在一个方面,本发明提供了一种本文讨论的组合物,其中真核细胞是哺乳动物细胞,任选地是小鼠细胞。在一个方面,本发明提供了一种本文讨论的组合物,其中哺乳动物细胞是人细胞。本发明的方面涵盖与Konermann等人“Genome-scale transcriptional activation by an engineeredCRISPR-Cas9 complex”Nature.2014 Dec 10.doi:10.1038/nature14136中所述的MS2衔接蛋白相关的实施方案,所述文献的内容以引用方式整体并入本文。
在一些实施方案中,衔接蛋白结构域是RNA结合蛋白结构域。RNA结合蛋白结构域识别相应的不同RNA序列,相应的不同RNA序列可以是适体。例如,MS2 RNA结合蛋白识别并特异性结合MS2适体(或反之亦然)。
相似地,也可使用MS2变体衔接子结构域,诸如N55突变体,尤其是N55K突变体。这是MS2噬菌体外壳蛋白的N55K突变体(在Lim,F.、M.Spingola和D.S.Peabody."Alteringthe RNA binding specificity of a translational repressor."Journal ofBiological Chemistry269.12(1994):9006-9010中证明具有比野生型MS2更高的结合亲和力)。
在一些实施方案中,包膜蛋白可包含货物结合结构域。在一些实施方案中,货物结合结构域是发夹环结合元件。在一些实施方案中,发夹环结合元件是MS2适体。
在一些实施方案中,逆转录病毒gag蛋白和逆转录病毒包膜蛋白都是内源性的。在一些实施方案中,gag蛋白是内源性的而包膜蛋白是来源于病毒的。在一些实施方案中,包膜蛋白是内源性的而gag蛋白是来源于病毒的。
捕获部分
在一些实施方案中,囊泡包含一种或多种捕获部分,例如,用于包装货物和/或将指定货物募集到囊泡中的捕获部分。
如本文所用,术语“核酸捕获部分”或简称为“捕获部分”是指选择性结合靶分子的部分。任选地,该部分可以固定在不溶性支持体上,如固定在微阵列中或固定在微粒(诸如珠)上。当用作引物时,本发明的探针将可能不会锚固到固体支持体上。捕获部分可以通过与靶标杂交并从而固定靶标来“捕获”靶标分子。在部分本身被固定的情况下,目标也变得固定。这种与固体支持体的结合可通过与捕获部分或固体支持体结合的连接部分。
捕获部分可包含一种或多种多核苷酸内源性基因或质粒内源性基因,例如能够将质粒募集到囊泡中的基因。捕获部分可包含外源性基因或可包含能够募集或捕获用于囊泡的货物分子的分子。在一些示例中,捕获部分可与货物相互作用。捕获部分可以是核酸结合分子,例如DNA、RNA、DNA结合蛋白、RNA结合蛋白或它们的组合。在一些实施方案中,捕获部分可以是蛋白质结合分子,例如DNA、RNA、抗体、纳米抗体、抗原、受体、配体、它们的片段或它们的组合。捕获部分可以与内源性基因或外源性基因融合。
在一些实施方案中,一种或多种捕获部分包含DNA结合部分、RNA结合部分、蛋白质结合部分或它们的组合。
在某些实施方案中,捕获部分可用例如荧光部分、放射性同位素(例如,32P)、抗体、抗原、凝集素、酶(例如,碱性磷酸酶或辣根过氧化物酶,它们可以用于量热法)、化学发光、生物发光或本领域众所周知的其它标记来标记。在某些实施方案中,可以通过色谱法或电泳法检测靶链与捕获部分的结合。在捕获部分不含有可检测标记的实施方案中,靶核酸序列可如此标记,或另选地,可采用标记次级探针。“次级探针”包括与靶核酸序列的区域或捕获部分的区域互补的核酸序列。探针的G区(将通常不与靶标互补)可能可用于捕获次级标记核酸探针。
在一些实施方案中,捕获部分是核酸发夹。如本文所用,术语“核酸发夹”、“发夹捕获部分”或简称为“发夹”是指含有单分子核酸的结构,其包含至少两个相互互补的核酸区域,使得至少一个分子内双链体可以形成。发夹在例如Cantor和Schimmel,"BiophysicalChemistry",Part III,p.1183(1980)中有所描述。在某些实施方案中,相互互补的核酸区域通过核酸链连接;在这些实施方案中,发夹包含核酸单链。连接相互互补的区域的捕获部分的区域在本文中称为“环”或“接头”。在一些实施方案中,环包含核酸链或经修饰的核酸。在一些实施方案中,接头不是氢键。在其它实施方案中,环包含不基于核酸的接头区;然而,其中环区不是核酸序列的捕获部分在本文中称为发夹。适用于环区的非核酸接头的示例是本领域已知的并且包括例如烷基链(参见,例如,Doktycz等人(1993)Biopolymers 33:1765)。虽然应当理解,环可以是发夹的单链区,但是为了以下讨论的目的,发夹的“单链区”是指发夹的非环区。在环是核酸链的实施方案中,环优选包含2个至20个核苷酸,更优选地3个至8个核苷酸。选择环或接头的尺寸或构型以允许相互互补的区域形成分子内双链体。在优选的实施方案中,可用于本发明的发夹将形成至少一个分子内双链体,分子内双链体具有至少2个碱基对、更优选地至少4个碱基对并且仍更优选地至少8个碱基对。可以选择双链体区中的碱基对的数量以及其碱基组成以确保双链体形成的任何期望的相对稳定性。例如,为了防止非靶核酸与发夹的分子内双链体形成区杂交,分子内双链体区中的碱基对的数量将通常大于约4个碱基对。分子内双链体将通常不具有大于约40个碱基对。在优选的实施方案中,分子内双链体的长度小于30个碱基对,更优选地小于20个碱基对。
发夹可能够形成多于一个环。例如,能够形成两个分子内双链体和两个环的发夹在本文中被称为“双发夹”。在优选的实施方案中,发夹将具有至少一个与靶核酸序列基本上互补的单链区。“基本上互补”意指能够在所采用的条件下与靶核酸序列杂交。在优选的实施方案中,“基本上互补”的单链区与靶核酸序列精确互补。在优选的实施方案中,可用于本发明的发夹具有靶互补单链区,靶互补单链区具有至少5个碱基,更优选地至少8个碱基。在优选的实施方案中,发夹具有靶互补单链区,靶互补单链区具有少于30个碱基,更优选地少于25个碱基。将选择靶互补区以确保靶链与捕获部分形成稳定的双链体。在捕获部分用于检测来自大量非靶序列的靶链的实施方案中(例如,当筛选基因组DNA时),靶互补区应当足够长以防止非靶序列的结合。靶特异性单链区域可位于捕获部分链的3'或5'末端,或者它可以位于两个分子内双链体区之间(例如,在双发夹中的两个双链体之间)。
货物分子
可使用本文所述的递送颗粒并且其还包含用于递送的许多不同的货物分子。代表性货物分子可包括但不限于核酸、多核苷酸、蛋白质、多肽、多核苷酸/多肽复合物、小分子、糖或它们的组合。可以根据本文所述的系统和方法递送的货物包括但不一定限于生物活性剂,生物活性剂包括但不限于治疗剂、显像剂和监测剂。货物可以是外源性材料或内源性材料。
生物活性剂包括诱导细胞中的效应的任何分子。生物活性剂可以是蛋白质、核酸、小分子、碳水化合物和脂质。当货物是或包含核酸时,核酸可以是来自基于DNA的载体的分离的实体。在这些实施方案中,基于DNA的载体本身不是货物。在其它实施方案中,基于DNA的载体本身可包含核酸货物。治疗剂包括化学治疗剂、抗癌剂、抗血管生成剂、肿瘤抑制剂、抗微生物剂、酶替代剂、基因表达调节剂和包含编码治疗性蛋白质或核酸的核酸的表达构建体。治疗剂可以是肽、蛋白质(包括酶、抗体和肽激素)、细胞骨架的配体、核酸、小分子、非肽激素等等。为了增加对核的亲和力,可将剂与核定位序列缀合。可通过本发明的方法递送的核酸包括合成核酸材料和天然核酸材料,包括DNA、RNA、转座子DNA、反义核酸、dsRNA、siRNA、转录RNA、信使RNA、核糖体RNA、核仁小RNA、微RNA、核糖酶、质粒、表达构建体等。
成像剂包括造影剂,诸如基于铁磁流体的MRI造影剂和用于PET扫描的钆剂、异硫氰酸荧光素和6-TAMARA。监测剂包括报告探针、生物传感器、绿色荧光蛋白等。报告探针包括光发射化合物,诸如磷光体、放射性部分和荧光部分,诸如稀土螯合物(例如,铕螯合物)、德克萨斯红(Texas Red)、罗丹明(rhodamine)、荧光素、FITC、fluo-3,5十六酰荧光素、Cy2、fluor X、Cy3、Cy3.5、Cy5、Cy5.5、Cy7、丹酰、藻红蛋白(phycocrytherin)、藻蓝蛋白(phycocyanin)、光谱橙色、光谱绿色和/或以上中任何一种或多种的衍生物。生物传感器是检测和传输关于生理变化或过程的信息的分子,例如,通过检测化学物质的存在或在化学物质存在下的变化。由生物传感器获得的信息通常激活由换能器检测到的信号。换能器通常将生物反应转化为电信号。生物传感器的示例包括用作识别元件的酶、抗体、DNA、受体和调控蛋白,它们可以在整个细胞中使用或分离并独立地使用(D'Souza,2001,Biosensorsand Bioelectronics 16:337-353)。
一种或两种或更多种不同的货物可由本文所述的递送颗粒递送。
在一些实施方案中,如本文别处所述,货物可通过接头与一个或多个包膜蛋白连接。合适的接头可包括但不一定限于甘氨酸-丝氨酸接头。在一些实施方案中,甘氨酸-丝氨酸接头是(GGS)3(SEQ ID NO:1)。
在一些实施方案中,货物包含核糖核蛋白。在具体实施方案中,货物包含遗传调节剂。
如本文所用,术语“改变的表达”可特别表示细胞对所述基因产物的改变的产生。如本文所用,术语“基因产物”包括从基因转录的RNA(例如,mRNA)或由基因编码或从RNA翻译的多肽。
另外,如本文所指的“改变的表达”可涵盖调节一种或多种内源性基因产物的活性。因此,“改变的表达(altered expression)”、“改变的表达(altering expression)”、“调节表达(modulating expression)”或“检测表达(detecting expression)”或类似术语可以分别与“改变的表达或活性(altered expression or activity)”、“改变的表达或活性(altering expression or activity)”、“调节表达或活性(modulating expression oractivity)”或“检测表达或活性(detecting expression or activity)”或类似术语互换使用。如本文所用,“调节(modulating)”或“调节(to modulate)”通常意指降低或抑制靶标或抗原的活性,或者另选地增加靶标或抗原的活性,如使用合适的体外、细胞或体内测定法所测量的。特别地,“调节(modulating)”或“调节(to modulate)”可以意指:与同一条件但不存在本文所述的抑制剂/拮抗剂或活化剂/激动剂的情况下的同一测定中的靶标或抗原的活性相比,如使用合适的体外、细胞或体内测定法所测量的(将通常取决于涉及的靶标或抗原),将靶标或抗原的活性(相关的或预期的)降低或抑制了5%、至少10%、至少25%、至少50%、至少60%、至少70%、至少80%或90%或更多,或者另选地将靶标或抗原的生物活性(相关的或预期的)增加了至少5%、至少10%、至少25%、至少50%、至少60%、至少70%、至少80%或90%或更多。
如本领域技术人员将清楚的,“调节”还可以涉及与同一条件但不存在调节剂的情况相比,影响靶标或抗原对其一个或多个靶标的亲和力、亲合性、特异性和/或选择性的改变(可以是增加或减少)。同样,这可以根据靶标以任何合适的方式和/或使用本身已知的任何合适的测定法来确定。特别地,作为抑制剂/拮抗剂或活化剂/激动剂的作用可以使得与同一条件但不存在抑制剂/拮抗剂或活化剂/激动剂的情况下的同一测定中的生物活性或生理活性相比,预期的生物活性或生理活性分别增加或减少了至少5%、至少10%、至少25%、至少50%、至少60%、至少70%、至少80%或90%或更多。调节还可以涉及激活靶标或抗原或靶标或抗原所涉及的机制或途径。
在一些实施方案中,遗传调节剂可包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
在一些实施方案中,基因编辑系统可以是CRISPR-Cas系统。
CRISPR系统
一般而言,如本文和文件(诸如WO 2014/093622(PCT/US2013/074667))中所用的CRISPR-Cas或CRISPR系统统指转录物和其它涉及CRISPR相关基因(“Cas”)的表达或指导CRISPR相关基因活性的元件,包括编码Cas基因的序列、tracr(反式激活CRISPR(trans-activating CRISPR))序列(例如,tracrRNA或活性部分tracrRNA)、tracr-mate序列(在内源性CRISPR系统的上下文中涵盖“直接重复”和tracrRNA处理的部分直接重复)、引导序列(在内源性CRISPR系统的上下文中也称为“间隔物”)或如本文所述的术语“RNA”(例如,引导Cas(诸如Cas9)的RNA,例如CRISPR RNA和反式激活(tracr)RNA或单链引导RNA(sgRNA)(嵌合RNA))或来自CRISPR基因座的其它序列和转录物。一般来讲,CRISPR系统的特征在于促进在靶序列位点形成CRISPR复合物的元件(在内源性CRISPR系统的上下文中也称为前间隔序列(protospacer))。参见,例如,Shmakov等人(2015)“Discovery and FunctionalCharacterization of Diverse Class 2CRISPR-Cas Systems”,Molecular Cell,DOI:dx.doi.org/10.1016/j.molcel.2015.10.008。
1类系统
本文提供的方法、系统和工具可被设计用于与1类CRISPR蛋白一起使用。在某些示例性实施方案中,1类系统可以是如Makarova等人“Evolutionary classification ofCRISPR-Cas systems:a burst of class 2and derived variants”Nature ReviewsMicrobiology,18:67-81(2020年2月)中所述的I型、III型或IV型Cas蛋白,并且特别如第326页的图1所述,所述文献以引用方式整体并入本文。1类系统通常使用多蛋白效应复合物,其在一些实施方案中可以包括辅助性蛋白(ancillary protein),诸如称为CRISPR相关复合物的用于抗病毒防御的复合物(Cascade)中的一种或多种蛋白质、一种或多种适应蛋白(例如Cas1、Cas2、RNA核酸酶)和/或一种或多种辅助蛋白(accessory protein)(例如Cas4、DNA核酸酶)、含有CRISPR相关Rossman折叠的蛋白质和/或RNA转录酶(CRISPRassociated Rossman fold,CARF)结构域。尽管1类系统的序列相似性有限,但1类系统蛋白可以通过其相似的构造来鉴定,相似的构造包括一个或多个重复相关的神秘蛋白(RepeatAssociated Mysterious Protein,RAMP)家族亚基,例如Cas 5、Cas6、Cas7。RAMP蛋白的特征在于具有一个或多个RNA识别基序结构域。大亚基(例如,cas8或cas10)和小亚基(例如,cas11)也是1类系统的典型特征。参见例如图1和图2。Koonin EV,MakarovaKS.2019Origins and evolution of CRISPR-Cas systems.Phil.Trans.R.Soc.B 374:20180087,DOI:10.1098/rstb.2018.0087。在一个方面,1类系统的特征在于特征蛋白Cas3。Cascade,特别是1类蛋白,可以包含结合pre-crRNA并募集另外的Cas蛋白(例如Cas6或Cas5)的多个Cas蛋白的专用复合物,该复合物是直接负责加工pre-crRNA的核酸酶。在一个方面,I型CRISPR蛋白包含有包含一个或多个Cas5亚基和两个或更多个Cas7亚基的效应复合物。1类亚型包括I-A型、I-B型、I-C型、I-U型、I-D型、I-E型和I-F型、IV-A型和IV-B型和III-A型、III-D型、III-C型和III-B型。1类系统还包括CRISPR-Cas变体,包括I-A型、I-B型、I-E型、I-F型和I-U型变体,这些变体可以包括由转座子和质粒携带的变体,包括由一大家族的Tn7样转座子和较小组的Tn7样转座子编码的I-F亚型版本,Tn7样转座子编码相似降解的I-B亚型系统。Peters等人,PNAS 114(35)(2017);DOI:10.1073/pnas.1709035114;还参见Makarova等人,the CRISPR Journal,v.1,n5,图5。
2类系统
本文别处更详细描述的组合物、系统和方法可以被设计并调整用于与2类CRISPR-Cas系统一起使用。因此,在一些实施方案中,CRISPR-Cas系统是2类CRISPR-Cas系统。2类系统与1类系统的区别在于它们具有单个、大的、多结构域效应蛋白。在某些示例性实施方案中,2类系统可以是II型、V型或VI型系统,其如Makarova等人“Evolutionaryclassification of CRISPR-Cas systems:a burst of class 2 and derived variants”Nature Reviews Microbiology,18:67-81(2020年2月)中所述,所述文献以引用方式并入本文。每种类型的2类系统还分为亚型。参见Markova等人2020,特别是图2。2类、II型系统可以分成4种亚型:II-A、II-B、II-C1和II-C2。2类、V型系统可以分成17种亚型:V-A、V-B1、V-B2、V-C、V-D、V-E、V-F1、V-F1(V-U3)、V-F2、V-F3、V-G、V-H、V-I、V-K(V-U5)、V-U1、V-U2和V-U4。2类、IV型系统可以分成5个亚型:VI-A、VI-B1、VI-B2、VI-C和VI-D。
这些类型的区别特征是它们的效应复合物由单个、大的、多结构域蛋白质组成。V型系统与II型效应子(例如,Cas9)不同,II型效应子含有两个核结构域,每个核结构域负责切割靶DNA的一条链,HNH核酸酶插入到Ruv-C样核酸酶结构域序列内。V型系统(例如,Cas12)仅含有切割两条链的RuvC样核酸酶结构域。VI型(Cas13)与II型和V型系统的效应子无关,并且含有两个HEPN结构域和靶RNA。Cas13蛋白还表现出由靶标识别触发的附带活性。还已经发现一些V型系统在体外的上下文中具有这种附带活性并具有两条单链DNA。
在一些实施方案中,2类系统是II型系统。在一些实施方案中,II型CRISPR-Cas系统是II-A CRISPR-Cas系统。在一些实施方案中,II型CRISPR-Cas系统是II-B CRISPR-Cas系统。在一些实施方案中,II型CRISPR-Cas系统是II-C1 CRISPR-Cas系统。在一些实施方案中,II型CRISPR-Cas系统是II-C2 CRISPR-Cas系统。在一些实施方案中,II型系统是Cas9系统。在一些实施方案中,II型系统包括Cas9。
在一些实施方案中,2类系统是V型系统。在一些实施方案中,V型CRISPR-Cas系统是V-A CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-B1 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-B2 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-C CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-DCRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-E CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-F1 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-F1(V-U3)CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-F2CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-F3 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-G CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-H CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-I CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-K(V-U5)CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-U1 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-U2 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统是V-U4 CRISPR-Cas系统。在一些实施方案中,V型CRISPR-Cas系统包括Cas12a(Cpf1)、Cas12b(C2c1)、Cas12c(C2c3)、Cas12d(CasY)、Cas12e(CasX)、Cas14和/或CasΦ。
在一些实施方案中,2类系统是VI型系统。在一些实施方案中,VI型CRISPR-Cas系统是VI-A CRISPR-Cas系统。在一些实施方案中,VI型CRISPR-Cas系统是VI-B1 CRISPR-Cas系统。在一些实施方案中,VI型CRISPR-Cas系统是VI-B2 CRISPR-Cas系统。在一些实施方案中,VI型CRISPR-Cas系统是VI-C CRISPR-Cas系统。在一些实施方案中,VI型CRISPR-Cas系统是VI-D CRISPR-Cas系统。在一些实施方案中,VI型CRISPR-Cas系统包括Cas13a(C2c2)、Cas13b(组29/30)、Cas13c和/或Cas13d。
CRISPR-Cas系统货物分子
一般而言,如本文和文件(诸如WO 2014/093622(PCT/US2013/074667))中所用的CRISPR-Cas或CRISPR系统统指转录物和其它涉及CRISPR相关基因(“Cas”)的表达或指导CRISPR相关基因活性的元件,包括编码Cas基因的序列、tracr(反式激活CRISPR)序列(例如,tracrRNA或活性部分tracrRNA)、tracr-mate序列(在内源性CRISPR系统的上下文中涵盖“直接重复”和tracrRNA处理的部分直接重复)、引导序列(在内源性CRISPR系统的上下文中也称为“间隔物”)或如本文所述的术语“RNA”(例如,引导Cas(诸如Cas9)的RNA,例如CRISPR RNA和反式激活(tracr)RNA或单链引导RNA(sgRNA)(嵌合RNA))或来自CRISPR基因座的其它序列和转录物。一般来讲,CRISPR系统的特征在于促进在靶序列位点形成CRISPR复合物的元件(在内源性CRISPR系统的上下文中也称为前间隔序列)。参见,例如,Shmakov等人(2015)“Discovery and Functional Characterization of Diverse Class2CRISPR-Cas Systems”,Molecular Cell,DOI:dx.doi.org/10.1016/j.molcel.2015.10.008。
在某些实施方案中,前间隔序列邻近基序(protospacer adjacent motif,PAM)或PAM样基序指导如本文所公开的效应蛋白复合物与感兴趣的靶基因座的结合。在一些实施方案中,PAM可以是5'PAM(即,位于前间隔序列的5'端的上游)。在其它实施方案中,PAM可以是3'PAM(即,位于前间隔序列的5'端的下游)。术语“PAM”可以与术语“PFS”或“前间隔序列侧翼位点”或“前间隔序列侧翼序列”互换使用。
在优选的实施方案中,CRISPR效应蛋白可识别3'PAM。在某些实施方案中,CRISPR效应蛋白可识别为5'H的3'PAM,其中H是A、C或U。
在CRISPR复合物的形成的上下文中,“靶序列”是指引导序列被设计成与其具有互补性的序列,其中靶序列和引导序列之间的杂交促进了CRISPR复合物的形成。靶序列可包含RNA多核苷酸。术语“靶RNA”是指是或包含靶序列的RNA多核苷酸。换句话讲,靶RNA可以是RNA多核苷酸或是RNA多核苷酸的一部分,gRNA的一部分(即,引导序列)被设计成与靶RNA具有互补性,并且由包含CRISPR效应蛋白和gRNA的复合物介导的效应功能将指向靶RNA。在一些实施方案中,靶序列位于细胞的细胞核或细胞质中。
在某些示例性实施方案中,可以使用编码CRISPR效应蛋白的核酸分子递送CRISPR效应蛋白。编码CRISPR效应蛋白的核酸分子可有利地为密码子优化的CRISPR效应蛋白。密码子优化序列的一个示例,在这种情况下,是用于在真核生物(例如,人)中表达而优化的序列(即,用于在人中表达而优化),或是用于如本文所讨论的另一种真核生物、动物或哺乳动物而优化的序列;参见,例如,WO 2014/093622(PCT/US2013/074667)中的SaCas9人密码子优化序列。虽然这是优选的,但应当理解其它示例是可能的,并且用于人以外的宿主物种的密码子优化或用于指定器官的密码子优化是已知的。在一些实施方案中,编码CRISPR效应蛋白的酶编码序列是用于在特定细胞(诸如真核细胞)中表达而优化的密码子。真核细胞可以是特定生物体的那些或源自特定生物体(诸如植物或哺乳动物),特定生物体包括但不限于如本文所讨论的人或非人真核生物或动物或哺乳动物,例如小鼠、大鼠、兔、狗、牲畜或非人类哺乳动物或灵长类动物。在一些实施方案中,可能用于改变人类生殖系遗传同一性的过程和/或用于改变动物遗传同一性的过程可能会引起人类和动物遭受痛苦,而基本上对人或动物以及由此类过程造成的动物无任何医疗益处,这些过程可排除。一般来讲,密码子优化是指修饰核酸序列以增强在感兴趣的宿主细胞中的表达的过程,这是通过将天然序列的至少一个密码子(例如,约或大于1、2、3、4、5、10、15、20、25、50或更多个密码子)用所述宿主细胞的基因中更频繁或最频繁使用的密码子置换,同时维持天然氨基酸序列来实现的。各种物种对特定氨基酸的某些密码子表现出特定的偏好性。密码子偏好性(生物体之间密码子使用的差异)通常与信使RNA(mRNA)的翻译效率相关,而信使RNA的翻译效率继而被认为取决于被翻译的密码子的性质和特定转运RNA(tRNA)分子的可用性等等。细胞中的所选tRNA的主导地位通常反映了在肽合成中最频繁使用的密码子。因此,可以基于密码子优化来定制基因,以在给定生物体中实现最佳基因表达。密码子使用表很容易获得,例如在kazusa.orjp/codon/上可用的“密码子使用数据库(Codon Usage Database)”中,并且这些表可以以许多方式进行调整。参见,Nakamura,Y.等人“Codon usage tabulated from theinternational DNA sequence databases:status for the year 2000”Nucl.AcidsRes.28:292(2000)。用于密码子优化特定序列以在特定宿主细胞中表达的计算机算法也是可用的,诸如Gene Forge(Aptagen;Jacobus,PA)。在一些实施方案中,编码Cas的序列中的一个或多个密码子(例如,1、2、3、4、5、10、15、20、25、50或更多个或所有密码子)对应于用于特定氨基酸的最频繁使用的密码子。
在某些实施方案中,如本文所述的方法可包括提供Cas转基因细胞,其中提供或引入编码一种或多种引导RNA的一种或多种核酸,所述核酸在细胞中与包含一个或多个感兴趣的基因的启动子的调控元件连接。如本文所用,术语“Cas转基因细胞”是指其中已经在基因组上整合了Cas基因的细胞,诸如真核细胞。根据本发明,细胞的本质、类型或来源没有特别限制。另外,将Cas转基因引入细胞的方式可改变并且可以是本领域已知的任何方法。在某些实施方案中,Cas转基因细胞通过将Cas转基因引入分离的细胞中而获得。在某些其它实施方案中,Cas转基因细胞是通过从Cas转基因生物体中分离细胞而获得的。通过举例而非限制的方式,如本文所指代的Cas转基因细胞可源自Cas转基因真核生物,诸如Cas敲入真核生物。参考WO 2014/093622(PCT/US13/74667),所述文献以引用方式并入本文。可修改转让给Sangamo BioSciences,Inc.的美国专利公开号20120017290和20110265198的涉及靶向Rosa基因座的方法以利用本发明的CRISPR Cas系统。还可修改转让给Cellectis的美国专利公开号20130236946的涉及靶向Rosa基因座的方法以利用本发明的CRISPR Cas系统。通过进一步举例的方式,参考描述了Cas9敲入小鼠的Platt等人(Cell;159(2):440-455(2014)),所述文献以引用方式并入本文。Cas转基因还可以包含Lox-Stop-polyA-Lox(LSL)盒,从而使Cas表达可被Cre重组酶诱导。或者,Cas转基因细胞可通过将Cas转基因引入分离的细胞中来获得。用于转基因的递送系统是本领域众所周知的。通过举例的方式,Cas转基因可通过载体(例如,AAV、腺病毒、慢病毒)和/或颗粒和/或纳米颗粒递送在例如真核细胞中递送,也如本文别处所述。用于递送CRISPR-Cas系统组分的慢病毒和逆转录病毒系统以及非病毒系统是本领域公知的。用于CRISPR-Cas系统组分的基于AAV和腺病毒的系统是本领域公知的并且如本文所述(例如,本发明的工程化AAV)。
技术人员将理解,当与能够将Cas引导至靶基因座的RNA复合时,如本文所指代的细胞(诸如Cas转基因细胞)除了具有整合的Cas基因或由Cas的序列特异性作用产生的突变之外,还可包含基因组改变。
在某些实施方案中,本发明涉及例如用于将能够将Cas引导至靶基因座的Cas和/或RNA(即,引导RNA)递送或引入到细胞中而且用于繁殖这些组分(例如,在原核细胞中)的载体。这可以是对一种或多种CRISPR-Cas组分的递送或尚未由本文所述的工程化的颗粒递送的其它基因修饰系统组分的递送的补充。如本文所用,“载体”是允许或有利于实体从一个环境转移到另一个环境的工具。载体是复制子,诸如质粒、噬菌体或粘粒,另一个DNA片段可插入载体中以便引起所插入片段的复制。一般来讲,当与适当的控制元件缔合时,载体能够复制。一般来讲,术语“载体”是指能够转运已经与它连接的另一核酸的核酸分子。载体包括但不限于单链、双链或部分双链的核酸分子;包含一个或多个游离端、无游离端(例如,环状)的核酸分子;包含DNA、RNA或两者的核酸分子;以及本领域已知的其它品种的多核苷酸。一种类型的载体是“质粒”,它是指环状双链DNA环,其中可以插入另外的DNA片段,诸如通过标准分子克隆技术。另一种类型的载体是病毒载体,其中病毒衍生的DNA或RNA序列存在于载体中以用于包装到病毒(例如,逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒(AAV))中。病毒载体还包括由病毒携带的用于转染到宿主细胞中的多核苷酸。某些载体能够在它们被引入的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和附加型哺乳动物载体)。其它载体(例如,非附加型哺乳动物载体)在引入宿主细胞中时整合到宿主细胞的基因组中,从而与宿主基因组一起复制。此外,某些载体能够指导它们所操作性地连接到的基因的表达。此类载体在本文中称为“表达载体”。在重组DNA技术中使用的常见表达载体经常呈质粒的形式。
重组表达载体可以包含适合在宿主细胞中表达核酸的形式的本发明的核酸,这意指重组表达载体包括一种或多种调控元件,调控元件可基于待用于表达的宿主细胞来选择,与待表达的核酸序列可操作地连接。在重组表达载体内,“可操作地连接”旨在意指感兴趣的核苷酸序列以允许核苷酸序列表达的方式与调控元件连接(例如,在体外转录/翻译系统中或当载体被引入宿主细胞时在宿主细胞中)。关于重组和克隆方法,提及2004年9月2日作为US 2004-0171156 A1公开的美国专利申请10/815,730,所述申请的内容以引用方式整体并入本文。因此,本文公开的实施方案还可包含有包含CRISPR效应系统的转基因细胞。在某些示例性实施方案中,转基因细胞可用作单独的离散体积。换句话讲,可以将包含掩蔽构建体(masking construct)的样品递送至细胞,例如在合适的递送囊泡中,并且如果靶标存在于递送囊泡中,则CRISPR效应子被激活并生成可检测的信号。
载体可以包括调控元件,例如启动子。载体可以包含多个Cas编码序列和/或单个,但也可以包含至少3个或8个或16个或32个或48个或50个引导RNA(例如,sgRNA)编码序列,诸如1至2个、1至3个、1至4个、1至5个、3至6个、3至7个、3至8个、3至9个、3至10个、3至8个、3至16个、3至30个、3至32个、3至48个、3至50个RNA(例如,sgRNA)。在单个载体中,每个RNA(例如,sgRNA)可以有一个启动子,当存在至多约16个RNA时是有利的;并且,当单个载体提供多于16个RNA时,一个或多个启动子可以驱动多于一个的RNA的表达,例如,当存在32个RNA时,每个启动子可以驱动两个RNA的表达,当存在48个RNA时,每个启动子可以驱动三个RNA的表达。通过简单的算术和完善建立的克隆方案以及本公开中的教导,本领域技术人员可以关于用于合适的示例性载体(诸如AAV)和合适的启动子(诸如U6启动子)的RNA,容易地实践本发明。例如,AAV的包装限制为约4.7kb。单个U6-gRNA(加上克隆限制位点)的长度为361bp。因此,技术人员可以容易地将大约12至16个(例如13个)U6-gRNA盒装配到单个载体中。这可以通过任何合适的方式组装,例如用于TALE组装的金门策略(genome-engineering.org/taleffectors/)。技术人员还可以使用串联引导策略以将U6-gRNA的数量增加大约1.5倍,例如从12至16个(例如13个)U6-gRNA增加至大约18至24个(例如约19个)U6-gRNA。因此,本领域技术人员可以容易地在单个载体(例如,AAV载体)中达到大约18至24个(例如大约19个)启动子-RNA(例如,U6-gRNA)。用于增加载体中的启动子和RNA数量的另一种方式是使用单个启动子(例如,U6)来表达被可切割序列分隔的RNA阵列。用于增加载体中的启动子-RNA数量的更另一种方式是表达被编码序列或基因的内含子中的可切割序列分隔的启动子-RNA阵列;并且,在这种情况下,使用聚合酶II启动子是有利的,它可以增加表达并允许以组织特异性方式转录长RNA(参见,例如,nar.oxfordjournals.org/content/34/7/e53.shortand nature.com/mt/journal/v16/n9/abs/mt2008144a.html)。在有利的实施方案中,AAV可以包装靶向至多约50个基因的U6串联gRNA。因此,根据本领域的知识和本公开中的教导,技术人员可以容易地制备并使用载体(例如,单个载体),载体表达处于一个或多个启动子的控制之下或者与一个或多个启动子可操作地或功能地连接的多个RNA或引导RNA——尤其是关于本文所讨论的RNA或引导RNA的数量,而不需要任何过度的实验。
引导RNA编码序列和/或Cas编码序列可以功能地或可操作地与调控元件连接,从而调控元件驱动表达。启动子可以是组成型启动子和/或条件启动子和/或诱导型启动子和/或组织特异性启动子。启动子可以选自由以下组成的组:RNA聚合酶、pol I、pol II、polIII、T7、U6、H1、逆转录病毒劳斯肉瘤病毒(RSV)LTR启动子、巨细胞病毒(CMV)启动子、SV40启动子、二氢叶酸还原酶启动子、β-肌动蛋白启动子、磷酸甘油酸激酶(PGK)启动子和EF1α启动子。有利的启动子是U6启动子。
根据本发明使用的另外的效应子可以通过它们与cas1基因的接近度来鉴定,例如但不限于在距cas1基因起点20kb和距cas1基因末端20kb的区域内。在某些实施方案中,效应蛋白包含至少一个HEPN结构域和至少500个氨基酸,并且其中C2c2效应蛋白天然存在于Cas基因或CRISPR阵列的上游或下游20kb内的原核基因组中。Cas蛋白的非限制性示例包括Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9(也称为Csn1和Csx12)、Cas10、Cas 12、Cas 12a、Cas 13a、Cas 13b、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4、它们的同系物或它们的修饰版本。在某些示例实施方案中,C2c2效应蛋白天然存在于Cas 1基因上游或下游20kb内的原核基因组中。术语“直系同源物(orthologue)”(本文也称为“直系同源物(ortholog)”)和“同系物(homologue)”(本文也称为“同系物(homolog)”)是本领域众所周知的。通过进一步引导的方式,如本文所用的蛋白质的“同系物”是相同物种的蛋白质,它执行与它是同系物的蛋白质的相同或相似功能。同源蛋白质可但不一定在结构上相关,或仅在结构上部分相关。如本文所用的蛋白质的“直系同源物”是不同物种的蛋白质,它执行与它是直系同源物的蛋白质的相同或相似功能。直系同源蛋白质可但不一定在结构上相关,或仅在结构上部分相关。
在一些实施方案中,核酸靶向系统的一种或多种元件源自包含内源性CRISPR RNA靶向系统的特定生物体。在某些实施方案中,CRISPR RNA靶向系统存在于真杆菌属(Eubacterium)和瘤胃球菌属(Ruminococcus)中。在某些实施方案中,效应蛋白包含靶向和附带的ssRNA切割活性。在某些实施方案中,效应蛋白包含双HEPN结构域。在某些实施方案中,效应蛋白缺乏Cas13a的Helical-1结构域的对应物。在某些实施方案中,效应蛋白小于先前表征的2类CRISPR效应蛋白,中值尺寸为928aa。这种中值尺寸比Cas13c的中值尺寸小190aa(17%),比Cas13b的中值尺寸小大于200aa(18%),并且比Cas13a的中值尺寸小大于300aa(26%)。在某些实施方案中,效应蛋白不需要侧翼序列(例如,PFS、PAM)。
在某些实施方案中,效应蛋白基因座结构包括含有辅助蛋白的WYL结构域(在最初鉴定的这些结构域组中保守的三个氨基酸之后如此表示;参见,例如,WYL结构域IPR026881)。在某些实施方案中,WYL结构域辅助蛋白包含至少一个螺旋-转角-螺旋(HTH)或带状-螺旋-螺旋(RHH)DNA结合结构域。在某些实施方案中,含有WYL结构域的辅助蛋白增加了RNA靶向效应蛋白的靶向和附带的ssRNA切割活性。在某些实施方案中,含有WYL结构域的辅助蛋白包含N末端RHH结构域以及主要疏水保守残基的模式,包括对应于原始WYL基序的不变酪氨酸-亮氨酸双联体。在某些实施方案中,含有WYL结构域的辅助蛋白是WYL1。WYL1是主要与瘤胃球菌属相关的单一WYL结构域蛋白。
在其它示例实施方案中,VI型RNA靶向Cas酶是Cas 13d。在某些实施方案中,Cas13d是惰性真杆菌DSM 15702(Eubacterium siraeum DSM 15702)(EsCas13d)或瘤胃球菌属物种N15.MGS-57(RspCas13d)(参见,例如,Yan等人,Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein,Molecular Cell(2018),doi.org/10.1016/j.molcel.2018.02.028)。RspCas13d和EsCas13d没有侧翼序列需求(例如,PFS、PAM)。
本文提供的方法、系统和工具可被设计用于与1类CRISPR蛋白一起使用,1类CRISPR蛋白可以是如Makarova等人,The CRISPR Journal,v.1,n.,5(2018);DOI:10.1089/crispr.2018.0033中所述的I型、III型或IV型Cas蛋白,并且特别如第326页的图1所述,所述文献以引用方式整体并入本文。1类系统通常使用多蛋白效应复合物,其在一些实施方案中可以包括辅助性蛋白,诸如称为CRISPR相关复合物的用于抗病毒防御的复合物(Cascade)中的一种或多种蛋白质、一种或多种适应蛋白(例如Cas1、Cas2、RNA核酸酶)和/或一种或多种辅助蛋白(例如Cas 4、DNA核酸酶)、含有CRISPR相关Rossman折叠(CARF)结构域的蛋白质和/或RNA转录酶。尽管1类系统的序列相似性有限,但1类系统蛋白可以通过其相似的构造来鉴定,相似的构造包括一个或多个重复相关的神秘蛋白(RAMP)家族亚基,例如Cas5、Cas6、Cas7。RAMP蛋白的特征在于具有一个或多个RNA识别基序结构域。大亚基(例如,cas8或cas10)和小亚基(例如,cas11)也是1类系统的典型特征。参见例如图1和图2。Koonin EV,Makarova KS.2019Origins and evolution of CRISPR-Cassystems.Phil.Trans.R.Soc.B 374:20180087,DOI:10.1098/rstb.2018.0087。在一个实施方案中,1类系统的特征在于特征蛋白Cas3。Cascade,特别是1类蛋白,可以包含结合pre-crRNA并募集另外的Cas蛋白(例如Cas6或Cas5)的多个Cas蛋白的专用复合物,该复合物是直接负责加工pre-crRNA的核酸酶。在一个实施方案中,I型CRISPR蛋白包含有包含一个或多个Cas5亚基和两个或更多个Cas7亚基的效应复合物。1类亚型包括I-A型、I-B型、I-C型、I-U型、I-D型、I-E型和I-F型、IV-A型和IV-B型和III-A型、III-D型、III-C型和III-B型。1类系统还包括CRISPR-Cas变体,包括I-A型、I-B型、I-E型、I-F型和I-U型变体,这些变体可以包括由转座子和质粒携带的变体,包括由一大家族的Tn7样转座子和较小组的Tn7样转座子编码的I-F亚型版本,Tn7样转座子编码相似降解的I-B亚型系统。Peters等人,PNAS 114(35)(2017);DOI:10.1073/pnas.1709035114;还参见Makarova等人,the CRISPR Journal,v.1,n5,图5。
靶向部分
在一些实施方案中,工程化的递送系统还可包含能够特异性结合靶细胞的靶向部分。为了有效地将递送囊泡靶向细胞(诸如癌细胞),靶向部分对细胞表面受体具有亲和力以及以足够具有对细胞表面受体的最佳亲和力的量与靶向部分连接是有用的;并且确定这些方面在技术人员的范围内。在主动靶向领域,存在许多细胞(例如,肿瘤)特异性靶向配体。
另外关于主动靶向,关于靶向细胞表面受体(诸如癌细胞表面受体),脂质体上的靶向配体可以提供脂质体通过非内化表位与细胞(例如,血管细胞)的附着;并且,这可以增加被递送物质的细胞外浓度,从而增加递送至靶细胞的量。靶向细胞表面受体(诸如癌细胞上的细胞表面受体(诸如癌细胞上过表达的细胞表面受体))的策略是使用受体特异性配体或抗体。许多癌细胞类型表现出肿瘤特异性受体的上调。例如,TfR和叶酸受体(FR)被许多肿瘤细胞类型很大地过表达,以响应它们增加的代谢需求。叶酸可用作用于专门递送的靶向配体,这归功于它易于与纳米载体缀合,它具有对FR的高亲和力,并且与FR在活化的巨噬细胞和癌细胞(例如,某些某些卵巢、乳腺、肺、结肠、肾和脑肿瘤)中的过表达相比,FR在正常组织中的频率相对较低。FR在巨噬细胞上的过表达是炎症性疾病(诸如牛皮癣(psoriasis)、克罗恩病(Crohn's disease)、类风湿性关节炎(rheumatoid arthritis)和动脉粥样硬化(atherosclerosis))的指征;因此,本发明的叶酸介导的靶向也可用于研究、解决或治疗炎症性病症以及癌症。本发明的叶酸连接的脂质颗粒或纳米颗粒或脂质体或脂质双层(“本发明的脂质实体”)通过受体介导的内吞作用在细胞内递送它们的货物。细胞内运输可以涉及有利于货物释放的酸性隔室,并且最重要的是,货物的释放可以改变或延迟,直到它到达靶细胞器的细胞质或附近。使用本发明的具有靶向部分的脂质实体(诸如本发明的叶酸连接的脂质实体)递送货物可以优于本发明的非靶向脂质实体。叶酸直接与脂质头部基团的附接可能不利于本发明的叶酸缀合的脂质实体的细胞内递送,因为它们与细胞的结合可能不如通过间隔物附接到本发明的脂质实体表面的叶酸那样有效,通过间隔物附接的叶酸可更有效地进入癌细胞。与叶酸偶联的本发明的脂质实体可以用于递送脂质复合物,例如脂质体,例如阴离子脂质体和病毒或衣壳或包膜或病毒外蛋白,诸如本文讨论的那些,诸如腺病毒或AAV。Tf是大约80KDa的单体血清糖蛋白,涉及全身铁的运输。Tf与TfR结合并通过受体介导的内吞作用易位到细胞中。TfR的表达在某些细胞(诸如肿瘤细胞)中可以更高(与正常细胞相比),并且与快速增殖的癌细胞中的铁需求的增加有关。因此,本发明包括本发明的靶向TfR的脂质实体,例如关于肝细胞、肝癌、乳腺细胞(诸如乳腺癌细胞)、结肠(诸如结肠癌细胞)、卵巢细胞(诸如卵巢癌细胞)、头、颈和肺细胞(诸如头、颈和非小细胞肺癌细胞)、口腔细胞(诸如口腔肿瘤细胞)。
另外关于主动靶向,本发明的脂质实体可以是多功能的,即采用多于一种的靶向部分(诸如CPP,以及Tf);双功能系统;例如,可以提供跨血脑屏障内皮转运的Tf和聚-L-精氨酸的组合。EGFR是属于ErbB受体家族的酪氨酸激酶受体,可介导细胞(尤其是非癌细胞)中的细胞生长、分化和修复,但是EGF在某些细胞(诸如许多实体瘤,包括结肠直肠癌、非小细胞肺癌、卵巢鳞状上皮细胞癌、肾癌、头癌、胰腺癌、颈癌和前列腺癌,尤其是乳腺癌)中过表达。本发明包括与本发明的脂质实体连接的靶向EGFR的单克隆抗体。HER-2通常在乳腺癌患者中过表达,并且还与肺癌、膀胱癌、前列腺癌、脑癌和胃癌有关。HER-2由ERBB2基因编码。本发明包括本发明的HER-2靶向脂质实体,例如,本发明的抗HER-2-抗体(或其结合片段)-脂质实体、本发明的HER-2靶向聚乙二醇化的脂质实体(例如,具有抗-HER-2抗体或其结合片段)、本发明的HER-2靶向马来酰亚胺PEG聚合物脂质实体(例如,具有抗-HER-2抗体或其结合片段)。在细胞缔合时,受体-抗体复合物可以通过形成胞内体而被内化,以递送至细胞质。关于受体介导的靶向,技术人员考虑配体/靶标亲和力和细胞表面上受体的数量,以及聚乙二醇化可以充当针对与受体的相互作用的屏障。使用本发明的抗体-脂质实体靶向可以是有利的。靶向部分的多价呈递也可以增加抗体片段的摄取和信号传导性质。在本发明的实践中,技术人员考虑配体密度(例如,本发明的脂质实体上的高配体密度对增加与靶细胞的结合可能是有利的)。巨噬细胞的早期预防的可以用本发明的空间稳定的脂质实体和将配体连接至锚固在本发明的脂质实体(例如,脂质颗粒或纳米颗粒或脂质体或脂质双层)中的分子(诸如PEG)的末端来解决。可以靶向细胞团的微环境,诸如肿瘤微环境;例如,靶向细胞团脉管系统(诸如肿瘤脉管系统微环境)可能是有利的。因此,本发明包括靶向VEGF。VEGF及其受体是众所周知的促血管生成分子,并且是用于抗血管生成疗法的充分表征的靶标。已经开发了许多受体酪氨酸激酶的小分子抑制剂(诸如VEGFR或碱性FGFR)作为抗癌剂,并且本发明包括将这些多肽中的任何一种或多种与本发明的脂质实体偶联,例如,噬菌体IVO多肽(例如,通过或使用PEG末端)、肿瘤归巢肽APRPG(tumor-homing peptideAPRPG)(SEQ ID NO:4)(诸如APRPG-PEG修饰的)。VCAM、血管内皮在炎症、血栓和动脉粥样硬化的发病机制中发挥关键作用。CAM涉及炎症性病症(包括癌症)并且是逻辑靶标;E-和P-选择素、VCAM-1和ICAM可以用于靶向本发明的脂质实体,例如,使用聚乙二醇化。基质金属蛋白酶(MMP)属于锌依赖性内肽酶家族。它们涉及组织重塑、肿瘤侵袭性、抗凋亡和抗转移。有四种称为TIMP1至4的MMP抑制剂,它们决定了肿瘤生长抑制和转移之间的平衡;涉及肿瘤血管的血管生成的蛋白质是在新形成的血管和肿瘤组织上表达的MT1-MMP。MT1-MMP的蛋白水解活性在质膜上切割蛋白质(诸如纤连蛋白、弹性蛋白、胶原蛋白和层粘连蛋白)并激活降解基质的可溶性MMP(诸如MMP-2)。抗体或其片段(诸如Fab'片段)可以用于本发明的实践中,诸如用于与本发明的脂质实体连接(例如,通过间隔物,诸如PEG间隔物)的抗人MT1-MMP单克隆抗体。αβ整联蛋白或整联蛋白是一组介导细胞与细胞周围组织或细胞外基质之间的附着的跨膜糖蛋白受体。整联蛋白含有两条不同的链(异源二聚体),称为α亚基和β亚基。整联蛋白受体的肿瘤组织特异性表达可以用于本发明中的靶向递送,例如,由此靶向部分可以是RGD肽,诸如环状RGD。适体是ssDNA或RNA寡核苷酸,其通过静电相互作用、氢键和疏水相互作用而不是Watson-Crick碱基配对来赋予目标分子的高亲和力和特异性识别,Watson-Crick碱基配对是寡核苷酸键合相互作用的典型。作为靶向部分的适体可以比抗体更具有优势:与抗体相比,适体可以表现出更高的靶抗原识别;与抗体相比,适体可以更稳定并且尺寸更小;适体可以容易地合成并化学改性以用于分子缀合;以及适体可以按顺序改变以用于改进选择性,并且可以被开发用于识别免疫原性较差的靶标。此类部分,如sgc8适体,可以用作靶向部分(例如,通过与本发明的脂质实体共价连接,例如,通过间隔物,诸如PEG间隔物)。靶向部分可以具有刺激敏感性,例如,对外部施加的刺激(诸如磁场、超声或光)敏感;并且还可以使用pH触发,例如,可以使用亲水部分(诸如PEG)和疏水部分(诸如本发明的脂质实体)之间的不稳定键合,该键合仅在暴露于特定环境或微环境的相对酸性条件特征(诸如胞内液泡或酸中毒肿瘤块)时才会被切割。pH敏感性共聚物也可以掺入本发明的实施方案中并且可以提供屏蔽;二原酸酯(diortho ester)、乙烯基酯、半胱氨酸可切割的脂质聚合物、双酯和腙是在pH 7.5下非常稳定的一些pH敏感性键的示例,但在pH 6和更低pH下相对较快地水解,例如,N-异丙基丙烯酰胺和甲基丙烯酸的末端烷基化共聚物,该共聚物有利于破坏本发明的脂质实体的稳定性并在pH值降低的隔室中释放;或者,本发明包括用于生成本发明的pH反应性脂质实体的离子聚合物(例如,聚(甲基丙烯酸)、聚(甲基丙烯酸二乙氨基乙酯)、聚(丙烯酰胺)和聚(丙烯酸))。温度触发的输送也在本发明的范围内。与正常组织相比,许多病理区域(诸如发炎的组织和肿瘤)表现出独特的过高热。利用这种过高热是癌症疗法中的有吸引力的策略,因为过高热与增加的肿瘤渗透性和增强的摄取有关这种技术涉及对部位进行局部加热以增加微血管孔径和血流,这继而可以导致本发明的实施方案的外渗增加。本发明的温度敏感脂质实体可以由具有低临界溶液温度的热敏脂质或聚合物制备。高于该低临界溶液温度(例如,在诸如肿瘤部位或发炎组织部位的部位),聚合物沉淀,从而破坏脂质体以释放。具有指定凝胶-液相转变温度的脂质用于制备本发明的这些脂质实体;并且用于热敏实施方案的脂质可以是双棕榈酰磷脂酰胆碱。热敏聚合物还可以有助于去稳定化然后释放,并且可用的热敏聚合物是聚(N-异丙基丙烯酰胺)。另一种温度触发系统可以采用溶血脂质温度敏感脂质体。本发明还包括氧化还原触发的递送:已利用正常和发炎或肿瘤组织之间以及细胞内和细胞外环境之间的氧化还原电势差进行递送;例如,GSH是细胞中丰富的还原剂,尤其是在细胞溶胶、线粒体和细胞核中。血液和细胞外基质中的GSH浓度分别仅为细胞内浓度的百分之一和千分之一。由GSH、半胱氨酸和其它还原剂引起的这种高氧化还原电势差可以断开可还原键,破坏本发明的脂质实体的稳定性并导致有效负载的释放。二硫键可以用作本发明的脂质实体中的可切割/可逆接头,因为它由于二硫化物-硫醇还原反应而引起对氧化还原的敏感性;本发明的脂质实体可以通过使用两种(例如,两种形式的二硫键缀合的多功能脂质作为二硫键的切割(例如,通过三(2-羧乙基)膦、二硫苏糖醇、L-半胱氨酸或GSH))制成具有还原敏感性,可以引起缀合物的亲水性头部基团的去除并改变膜组织,从而导致有效负载的释放。从含有二硫化物缀合物的本发明的还原敏感性脂质实体中释放的钙黄绿素可以比还原不敏感性实施方案更有用。酶也可以用作释放有效负载的触发器。已经发现酶,包括MMP(例如,MMP2)、磷脂酶A2、碱性磷酸酶、转谷氨酰胺酶或磷脂酰肌醇特异性磷脂酶C,在某些组织(例如肿瘤组织)中过表达。在这些酶存在的情况下,特异性地,本发明的工程化的酶敏感性脂质实体可以被破坏并释放有效负载。MMP2-可切割八肽(Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln)(SEQ ID NO:5)可以掺入接头中,并且可以具有抗体靶向,例如抗体2C5。本发明还包括光触发或能量触发的递送,例如,本发明的脂质实体可以具有光敏感性,使得光或能量可以有助于结构和构象变化,这导致本发明的脂质实体通过膜融合、光致异构效应、光碎片化或光聚合与靶细胞直接相互作用;因此,这种部分可以是苯并卟啉光敏剂。超声可以是触发递送的能量形式;具有少量特定气体(包括空气或全氟烃)的本发明的脂质实体可以用超声(例如,低频超声(LFUS))触发释放。磁性递送:本发明的脂质实体可以通过掺入磁铁矿(诸如Fe3O4或γ-Fe2O3(例如,尺寸小于10nm的那些))而被磁化。然后可以通过暴露于磁场来进行靶向递送。
另外关于主动靶向,本发明还包括细胞内递送。由于脂质体遵循内吞途径,它们被包埋在胞内体(pH 6.5-6)中并随后与溶酶体融合(pH<5),它们在溶酶体中经受导致治疗潜力降低的降解。可以利用低胞内体pH来避免降解。在较低的pH下构象转变/活化后,融合脂质或肽破坏胞内体膜的稳定性。胺在酸性pH下质子化并通过缓冲作用引起胞内体膨胀并破裂。不饱和二油酰基磷脂酰乙醇胺(DOPE)在低pH下容易呈倒六角形,这引起脂质体与胞内体膜融合。这种过程破坏含有脂质实体的DOPE的稳定性,并将货物释放到细胞质中;融合脂质GALA、胆固醇GALA和PEG-GALA可表现出高效的胞内体释放;成孔蛋白李斯特菌溶血素O(pore-forming protein listeriolysin O)可提供胞内体逃逸机制;并且,富含组氨酸的肽具有与胞内体膜融合的能力,导致孔形成,并且可以缓冲质子泵,引起膜裂解。
另外关于主动靶向,细胞穿膜肽(CPP)有利于通过细胞膜摄取大分子,并因此增强CPP修饰分子在细胞内部的递送。CPP可以分为两类:两亲螺旋肽,诸如转运蛋白和MAP,其中赖氨酸残基是正电荷的主要贡献者;和富含Arg的肽,诸如TATp、Antennapedia或penetratin。TATp是具有86个氨基酸的转录激活因子,含有可引起核定位和RNA结合的高碱性(9个残基中有两个Lys和六个Arg)蛋白转导结构域。已用于脂质体修饰的其它CPP包括以下:Antennapedia的最小蛋白质转导结构域,一种果蝇同源蛋白,称为penetratin,它是存在于同源结构域的第三螺旋中的16聚体肽(残基43-58);27个氨基酸长的嵌合CPP,含有来自神经肽甘丙肽的氨基末端的肽序列,神经肽甘丙肽通过赖氨酸残基mastoparan(一种黄蜂毒肽)结合;VP22,HSV-1的主要结构组分,有利于细胞内转运和转运(18聚体)两亲性模型肽,通过能量依赖性和非能量依赖性机制转移肥大细胞和内皮细胞的质膜。本发明包括用于细胞内递送的、用CPP修饰的本发明的脂质实体,细胞内递送可通过能量依赖性巨胞饮然后胞内体逃逸来进行。本发明还包括细胞器特异性靶向。用三苯基鏻(TPP)部分表面官能化的本发明的脂质实体或具有亲脂性阳离子罗丹明123的本发明的脂质实体可以有效地将货物递送至线粒体。DOPE/鞘磷脂/硬脂基-八-精氨酸可以通过膜融合将货物递送至线粒体内部。用亲溶酶体配体十八烷基罗丹明B表面修饰的本发明的脂质实体可以将货物递送至溶酶体。神经酰胺可用于诱导溶酶体膜透化;本发明包括具有神经酰胺的本发明的脂质实体的细胞内递送。本发明还包括靶向细胞核(例如,通过DNA嵌入部分)的本发明的脂质实体。本发明还包括用于靶向的多功能脂质体,即,将多于一个官能团附接至本发明的脂质实体的表面,例如以增强在期望位点的积累和/或促进细胞器特异性递送和/或靶向特定类型的细胞和/或对局部刺激(诸如温度(例如,升高)、pH(例如,降低))作出反应、对外部施加的刺激(诸如磁场、光、能量、热或超声)作出反应和/或促进货物的细胞内递送。所有这些都被认为是主动靶向部分。
本发明的实施方案包括递送系统,其包含主动靶向的脂质颗粒或纳米颗粒或脂质体或脂质双层递送系统;或包含有包含靶向部分的脂质颗粒或纳米颗粒或脂质体或脂质双层,由此存在主动靶向或其中靶向部分是主动靶向部分。靶向部分可以是一个或多个靶向部分,并且靶向部分可以用于任何期望的靶向类型,诸如,例如,靶向细胞(诸如本文提及的任何细胞);或靶向细胞器(诸如本文提及的任何细胞器);或用于靶向诸如对物理状况(诸如热、能量、超声、光、pH)、化学物质(诸如酶)或磁性刺激的反应;或靶向以实现特定结果,诸如将有效负载递送至特定位置(诸如通过细胞穿透)。
应当理解,关于本文讨论的每种可能的靶向或主动靶向部分,存在本发明的一个方面,其中递送系统包含这种靶向或主动靶向部分。同样,下表提供了可以用于实施本发明的实践中的示例性靶向部分,并且关于本发明的每个方面,提供了包含这种靶向部分的递送系统。
表1.
因此,在递送系统的实施方案中,靶向部分包含受体配体,诸如,例如,用于CD44受体的透明质酸、用于肝细胞的半乳糖,或抗体或其片段(诸如针对期望表面受体的结合抗体片段),并且关于包含受体配体或抗体或其片段(诸如其结合片段,诸如针对期望表面受体)的每个靶向部分,存在本发明的一个方面,其中递送系统包含靶向部分,靶向部分包含受体配体或抗体或其片段(诸如其结合片段,诸如针对期望表面受体)或用于CD44受体的透明质酸、用于肝细胞的半乳糖(参见,例如,Surace等人,“Lipoplexes targeting the CD44hyaluronic acid receptor for efficient transfection of breast cancer cells,”J.Mol Pharm 6(4):1062-73;doi:10.1021/mp800215d(2009);Sonoke等人,“Galactose-modified cationic liposomes as a liver-targeting delivery system for smallinterfering RNA,”Biol Pharm Bull.34(8):1338-42(2011);Torchilin,“Antibody-modified liposomes for cancer chemotherapy,”Expert Opin.Drug Deliv.5(9),1003-1025(2008);Manjappa等人,“Antibody derivatization and conjugation strategies:application in preparation of stealth immunoliposome to targetchemotherapeutics to tumor,”J.Control.Release 150(1),2-22(2011);Sofou S“Antibody-targeted liposomes in cancer therapy and imaging,”Expert Opin.DrugDeliv.5(2):189-204(2008);Gao J等人,“Antibody-targeted immunoliposomes forcancer treatment,”Mini.Rev.Med.Chem.13(14):2026-2035(2013);Molavi等人,“Anti-CD30antibody conjugated liposomal doxorubicin with significantly improvedtherapeutic efficacy against anaplastic large cell lymphoma,”Biomaterials 34(34):8718-25(2013),所述文献中的每一篇和其中引用的文件特此以引用方式并入本文)。
此外,参考本文的教导内容,在关于本发明的脂质实体的本发明的实践中,技术人员可以容易地选择并应用期望的靶向部分。本发明包括一个实施方案,其中递送系统包含具有靶向部分的脂质实体。
在一些实施方案中,靶向细胞可以是哺乳动物细胞。在一些实施方案中,哺乳动物细胞可以是癌细胞,如下文进一步描述。
在一些实施方案中,哺乳动物细胞可被病原体感染。在一些实施方案中,病原体可以是病毒,如下文进一步描述。
在一些实施方案中,靶向部分包含膜融合蛋白。在一些实施方案中,膜融合蛋白是水疱性口炎病毒的G包膜蛋白(VSV-G)。
膜融合是一种普遍且重要的生物学现象,这种现象在两个独立的脂质膜合并成单个连续的双层时发生。融合反应具有共同的特征,但由各种不同的蛋白质催化。这些蛋白质介导对注定要融合的膜的初始识别,并将膜拉近在一起以破坏脂质/水界面的稳定性并引发脂质的混合。单个融合蛋白可以做所有事情,或者细胞内融合反应可能需要蛋白质复合物的组装以保证在空间和时间上的严格调控。调整细胞融合机器以适应不同反应的需要,但以相似的原理操作以实现双层的合并。
膜融合的范围可以从细胞融合和细胞器动力学到囊泡运输和病毒感染。无一例外,所有这些融合事件都是由膜融合蛋白(也称为融合剂)驱动的。由融合蛋白介导的常见融合过程由一系列步骤组成,步骤包括使两个相对的脂质膜接近、破坏脂质双层、以及最后将两个脂质双层合并为一个。我们对膜融合的大部分理解来自对囊泡融合的研究,它是由一种称为SNARE的特殊蛋白质驱动的。囊泡上的SNARE蛋白(v-SNARE)和靶膜上的那些(t-SNARE)不仅提供识别特异性,而且提供囊泡融合所需的能量。
病毒融合是另一个重要的融合事件。被源自宿主细胞的膜封装的包膜病毒在病毒包膜和宿主细胞膜融合后释放基因组。病毒融合蛋白在脱壳阶段占主导地位。根据其结构特征,病毒融合蛋白分为三种类型:I型、II型和III型。尽管对病毒融合蛋白有着长期的了解,但潜在的融合机制仍然是神秘的。一种这样的先前鉴定的III型病毒融合蛋白是水疱性口炎病毒G蛋白(VSV-G)。先前的研究已揭示,酸性环境中的VSV-G触发的膜融合依赖于可逆的构象变化,构象变化在中性条件下恢复到原始状态。VSV-G和相关弹状病毒(例如,狂犬病病毒(rabies virus))的融合蛋白是子弹形病毒粒子上唯一的表面表达蛋白。它介导附着和低pH诱导的融合。
逆转录酶
在一些实施方案中,系统还包含逆转录酶。逆转录酶(RT)是用于由RNA模板生成互补DNA(cDNA)的酶,该过程称为逆转录。逆转录酶被逆转录病毒用于复制它们的基因组。它们还被逆转录转座子移动遗传元件用于在宿主基因组内增殖,被真核细胞用于在真核细胞的线性染色体末端延伸端粒,以及被一些非逆转录病毒(诸如乙型肝炎病毒(hepatitis Bvirus),它是嗜肝DNA病毒科(Hepadnaviridae)(其为dsDNA-RT病毒)的成员)使用。
逆转录病毒RT具有三种连续的生化活性:RNA依赖性DNA聚合酶活性、核糖核酸酶H、以及DNA依赖性DNA聚合酶活性。总的来说,这些活性允许酶将单链RNA转化为双链cDNA。在逆转录病毒和逆转录转座子中,这种cDNA然后可以整合到宿主基因组中,新的RNA副本可以通过宿主细胞转录从宿主基因组中产生。实验室中广泛使用相同的反应序列将RNA转化为DNA,以用于分子克隆、RNA测序、聚合酶链反应(PCR)或基因组分析。
HIV逆转录酶还具有在cDNA合成期间降解病毒RNA的核糖核酸酶活性,以及将有义cDNA链复制成反义DNA以形成双链病毒DNA中间体(vDNA)的DNA依赖性DNA聚合酶活性。
递送囊泡
在本发明的范围内还设想了一种递送囊泡,其包含在本文所述的工程化的递送系统中的一种或多种多核苷酸中编码的一种或多种组分。
如本文别处所述,此类组分包括但不一定限于编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的一种或多种多核苷酸。用于形成递送囊泡的一种或多种内源性逆转录病毒元件可包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
在一些实施方案中,逆转录病毒gag蛋白可以是内源性的。在一些实施方案中,逆转录病毒包膜蛋白可以是内源性的。在一些实施方案中,逆转录病毒gag蛋白和逆转录病毒包膜蛋白都是内源性的。如本文别处所述,逆转录病毒gag蛋白可含有NC和MA结构域。在一些实施方案中,逆转录病毒gag蛋白可以是gag同源蛋白。gag同源蛋白可以是Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。
在一些实施方案中,包膜蛋白来自γ逆转录病毒或δ逆转录病毒。在一些实施方案中,包膜蛋白选自envH1、envH2、envH3、envK1、envK2_1、envK2_2、envK3、envK4、envK5、envK6、envT、envW、envW1、envfrd、envR(b)、envR、envF(c)2或envF(c)1。
在一些实施方案中,如本文别处所述,递送囊泡引发差的免疫应答。
如本文别处所述,货物可包含核酸、蛋白质、它们的复合物或它们的组合。在具体实施方案中,货物包含核糖核蛋白。货物可包含遗传调节剂,其包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
基因编辑系统可以是CRISPR-Cas系统。如本文别处所述,CRISPR-Cas系统可以是II型、V型或VI型CRISPR-Cas系统。在具体实施方案中,II型CRISPR-Cas系统是CRISPR-Cas9,V型CRISPR-Cas系统是CRISPR-Cas12,并且VI型CRISPR-Cas系统是CRISPR-Cas13,然而,本发明不受这些实施方案限制。
在一些实施方案中,囊泡还包含逆转录酶。
在一些实施方案中,一种或多种捕获部分包含DNA结合部分、RNA结合部分、蛋白质结合部分或它们的组合。
在一些实施方案中,递送囊泡是病毒样颗粒。
在一些实施方案中,递送囊泡可包含靶向部分,其中靶向部分能够特异性结合靶细胞。
在一些实施方案中,细胞特异性靶向部分可包含膜融合蛋白。在一些实施方案中,如本文别处所述,膜融合蛋白是VSV-G。
在一些实施方案中,细胞特异性靶向部分靶向哺乳动物细胞。在一些实施方案中,哺乳动物细胞可以是癌细胞,如下文进一步描述。
在一些实施方案中,哺乳动物细胞被病原体感染。在一些实施方案中,病原体可以是病毒,如下文进一步描述。
在递送囊泡系统中负载货物分子的方法
可以通过病毒或假病毒颗粒的转导将尺寸小到足以被封闭在递送囊泡中的货物(例如核酸和/或多肽)引入细胞。将货物包装在病毒颗粒中的方法可以使用任何合适的病毒载体或载体系统来完成。此类病毒载体和载体系统在本文别处更详细地描述。如本文的上下文中所用,“转导”是指通过病毒或假病毒颗粒将外来核酸和/或蛋白质引入细胞(原核或真核)的过程。在病毒颗粒或假病毒颗粒中包装之后,病毒颗粒可以暴露于细胞(例如,体外、离体或体内),其中病毒或假病毒颗粒感染细胞并通过转导将货物递送至细胞。病毒和假病毒颗粒可以在暴露于靶细胞之前任选地浓缩。在一些实施方案中,可以获得含有病毒和/或假病毒颗粒的组合物的病毒滴度,并且可以使用指定滴度来转导细胞。
在一些实施方案中,病毒载体被配置以使得当货物被包装时,货物在衣壳或病毒颗粒的外部,即货物不在衣壳的内部(被衣壳包膜或涵盖)但在外部暴露,使得它可以接触靶基因组DNA。在一些实施方案中,配置病毒载体以使得所有货物在包装后都被包含在衣壳内。
一种用于将货物包装在囊泡内部的方法涉及使用一个或多个“生物反应器”,这些生物反应器产生并随后分泌一个或多个载货囊泡。生物反应器可包含细胞、微生物或无细胞系统。生物反应器通过以下方式生成:向细胞施用编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的一种或多种多核苷酸。还可向细胞施用靶向部分,其中靶向部分能够特异性结合靶细胞。因此,生物反应器可能够产生载货囊泡,其不仅将生物活性RNA分子递送至细胞外基质,还递送至指定细胞和组织。
在一些实施方案中,货物分子可以是多核苷酸或多肽,其可以单独的,或者当作为系统的一部分递送时,无论是否与系统的其它组分一起递送,都可以操作修饰它被递送至的细胞的基因组、表观基因组和/或转录组。此类系统包括但不限于CRISPR-Cas系统。其它基因修饰系统,例如TALEN、锌指核酸酶、Cre-Lox、吗啉代等是基因修饰系统的其它非限制性示例,它们的一种或多种组分可以由本文所述的工程化的AAV颗粒递送。
本发明提供核酸分子,具体地说多核苷酸,在一些实施方案中所述多核苷酸编码一种或多种目标肽或多肽。术语“核酸”在其广义上包括包含核苷酸聚合物的任何化合物和/或物质。这些聚合物常常被称为多核苷酸。
本发明的示例性核酸或多核苷酸包括但不限于:核糖核酸(RNA)、脱氧核糖核酸(DNA)、苏糖核酸(TNA)、乙二醇核酸(GNA)、肽核酸(PNA)、锁核酸(LNA,包括具有β-D-核糖构型的LNA、具有α-L-核糖构型的α-LNA(LNA的非对映体)、具有2’-氨基官能化的2’-氨基-LNA以及具有2’-氨基官能化的2’-氨基-α-LNA)、乙烯核酸(ENA)、环己烯基核酸(CeNA)或它们的杂交体或组合。
在一些实施方案中,本发明的多核苷酸可以是环形的。如本文所用,“环形多核苷酸”意指作用基本上类似于RNA并具有RNA性质的单链环形多核苷酸。术语“环形”还意图涵盖环形多核苷酸的任何二级或三级构型。
在一些实施方案中,多核苷酸包括约30至约100,000个核苷酸(例如,30至50、30至100、30至250、30至500、30至1,000、30至1,500、30至3,000、30至5,000、30至7,000、30至10,000、30至25,000、30至50,000、30至70,000、100至250、100至500、100至1,000、100至1,500、100至3,000、100至5,000、100至7,000、100至10,000、100至25,000、100至50,000、100至70,000、100至100,000、500至1,000、500至1,500、500至2,000、500至3,000、500至5,000、500至7,000、500至10,000、500至25,000、500至50,000、500至70,000、500至100,000、1,000至1,500、1,000至2,000、1,000至3,000、1,000至5,000、1,000至7,000、1,000至10,000、1,000至25,000、1,000至50,000、1,000至70,000、1,000至100,000、1,500至3,000、1,500至5,000、1,500至7,000、1,500至10,000、1,500至25,000、1,500至50,000、1,500至70,000、1,500至100,000、2,000至3,000、2,000至5,000、2,000至7,000、2,000至10,000、2,000至25,000、2,000至50,000、2,000至70,000和2,000至100,000个)。
由本文所述的生物反应器形成的囊泡可通过本领域已知的任何合适方法分离。例如,囊泡可包括可结合抗体或适体的标签。囊泡也可通过荧光激活细胞分选(FACS)或通过使用尺寸排除方法进行分离和分选。
使用递送囊泡递送货物的方法
在本发明的范围内还设想了一种使用本文所述的递送囊泡用于将货物递送至一个或多个细胞的方法。如所描述的,递送囊泡可将货物递送至受试者的一个或多个细胞。
本文所述的系统还可包含一种或多种能够特异性结合靶细胞的靶向部分。此类靶向部分可包括但不一定限于:膜融合蛋白、抗体、肽、环肽、小分子或能够通过与靶的结合而被指导的相关分子结构,包括非免疫球蛋白支架(包括纤连蛋白、脂质运载蛋白、蛋白A、锚蛋白、硫氧还蛋白等)。在一些实施方案中,膜融合蛋白可包括但不一定限于:水疱性口炎病毒的G包膜蛋白(VSV-G)、单纯疱疹病毒1gB(herpes simplex virus 1gB,HSV-1gB)、埃博拉病毒糖蛋白(ebolavirus glycoprotein)、SNARE蛋白家族的成员,以及合胞素蛋白家族的成员。
在一些实施方案中,货物可包含治疗剂。术语“治疗剂(therapeutic agent)”、“治疗能力剂(therapeutic capable agent)”或“治疗剂(treatment agent)”可互换使用,并且是指在向受试者施用时赋予某些有益效果的分子或化合物。有益效果包括:能够进行诊断确定;减轻疾病、症状、病症或病理病状;减少或防止疾病、症状、病症或疾患的发作;以及通常对抗疾病、症状、病症或病理病状。
靶细胞可包括但不一定限于哺乳动物细胞、癌细胞、被病原体(诸如病毒、细菌、真菌或寄生虫)感染的细胞。在一些实施方案中,本发明包括跨血脑屏障递送货物。如本领域技术人员可理解的,囊泡可以被工程化成对任何特定的期望细胞类型具有嗜性。
各种递送系统是已知的并且可用于施用药理学组合物,包括但不限于封装在脂质体、微粒、微胶囊中;微细胞;聚合物;胶囊;片剂;等等。在一个实施方案中,剂可以在囊泡中、特别是在脂质体中递送。在脂质体中,除其它药学上可接受的载体外,剂还与两亲剂(诸如脂质)组合,两亲剂在水溶液中以胶束、不溶性单层、液晶或层状层的聚集形式存在。适用于脂质体制剂的脂质包括但不限于:单甘油酯、甘油二酯、硫脂、溶血卵磷脂、磷脂、皂草苷、胆汁酸等等。此类脂质体制剂的制备在本领域技术水平之内,如例如美国专利号4,837,028和美国专利号4,737,323中所公开的。在又另一个实施方案中,药理学组合物可以在控释系统(包括但不限于递送泵)中递送(参见,例如,Saudek等人,New Engl.J.Med.321:574(1989)and a semi-permeable polymeric material(参见,例如,Howard等人,J.Neurosurg.71:105(1989))。另外,控释系统可以接近治疗靶(例如,肿瘤)放置,因此只需要全身剂量的一部分。参见,例如,Goodson,In:Medical Applications of ControlledRelease,1984.(CRC Press,Boca Raton,Fla.)。
应当理解,根据本发明的治疗实体可在合适的载剂、赋形剂和其它剂存在的情况下施用,所述载剂、赋形剂和其它剂被掺入制剂中以提供改善的转移、递送、耐受性等。在所有药剂师已知的处方中可找到多种适当的制剂:Remington's Pharmaceutical Sciences(15th ed,Mack Publishing Company,Easton,PA(1975)),特别是其中Blaug,Seymour的第87章。这些制剂包括例如粉剂、糊剂、软膏剂、凝胶剂、蜡剂、油剂、脂质、含脂质(阳离子或阴离子)的囊泡(诸如LipofectinTM)、DNA缀合物、无水吸收糊剂、水包油和油包水乳液、乳液聚乙二醇(各种分子量的聚乙二醇)、半固体凝胶剂和含有聚乙二醇的半固体混合物。任何前述混合物可适用于根据本发明的治疗和疗法,条件是制剂中的活性成分不被制剂灭活并且制剂在生理上相容并且对于施用途径是耐受的。还可参见Baldrick P.“Pharmaceuticalexcipient development:the need for preclinical guidance.”Regul.ToxicolPharmacol.32(2):210-8(2000),Wang W.“Lyophilization and development of solidprotein pharmaceuticals.”Int.J.Pharm.203(1-2):1-60(2000),Charman WN“Lipids,lipophilic drugs,and oral drug delivery-some emerging concepts.”J PharmSci.89(8):967-78(2000),Powell等人“Compendium of excipients for parenteralformulations”PDA J Pharm Sci Technol.52:238-311(1998)并且其中的引文用于获取与药物化学家熟知的制剂、赋形剂和载体有关的另外信息。
术语“受试者”、“个体”和“患者”在本文中可互换使用以指代脊椎动物,优选哺乳动物,更优选人。哺乳动物包括但不限于鼠、猿猴、人、农场动物、运动型动物和宠物。还包括在体内获得或在体外培养的生物实体的组织、细胞和其子代。
如本文所用,术语“需要治疗”或“有需要”是指由照顾者(在人的情况下是医师、护士、护理从业人员或个体;在动物(包括非人动物)的情况下是兽医)做出的受试者需要或将从治疗中受益的判断。作为可通过本发明化合物治疗的疾患的结果,这种判断是基于多种因素做出的,该多种因素在照顾者经验范围内,但是该多种因素包括对受试者是生病的或将生病的了解。
如本文的上下文中所用,“治疗”意指治愈、减轻、稳定、预防或降低至少一种症状或疾病、病理病状或病症的严重性。这个术语包括积极治疗,即治疗直接具体针对疾病、病理病状或病症的改善;并且还包括病因治疗,即治疗针对于去除相关疾病、病理病状或病症的病因。另外,这个术语包括舒减治疗,即治疗设计用来减轻症状,而不是治愈疾病、病理病状或病症;预防性治疗,即治疗针对于使相关疾病、病理病状或病症的发展减到最小或部分或完全抑制相关疾病、病理病状或病症的发展;和支持治疗,即治疗用以补充针对改善相关疾病、病理病状或病症的另一特定疗法。应当理解,治疗虽然旨在治愈、减轻、稳定或预防疾病、病理病状或病症,但不需要实际上导致治愈、减轻、稳定或预防。治疗效果可以如本文所述和本领域已知的适用于所涉及的疾病、病理病症或病症的方式测量或评估。这种测量和评估可以以定性和/或定量的方式进行。因此,例如,可以将疾病、病理病状或病症的特征(characteristic)或特征(feature)和/或疾病、病理病状或病症的症状降低至任何效果或任何量。
如本文所公开的组合物、剂、细胞或细胞群的施用可以任何方便的方式进行,包括通过气雾剂吸入、注射、摄取、输液、植入或移植。组合物可皮下、皮内、肿瘤内、结内、髓内、肌内、鞘内、通过静脉内或淋巴内注射或腹膜内向患者施用。
本发明的药物可通过任何合适的方式施用,该方式导致有效治疗或抑制(例如,通过延迟)疾病发展的化合物浓度。将化合物与合适的载体物质(例如,药学上可接受的赋形剂)混合,载体物质保留与其一起施用的化合物的治疗性质。一种示例性的药学上可接受的赋形剂是生理盐水。合适的载体物质通常以药物总重量的1至95重量%的量存在。药物可以适合施用的剂型提供。因此,药物可以是以以下形式,例如片剂、胶囊、丸剂、粉剂、颗粒、混悬液、乳剂、溶液、包括水凝胶的凝胶、糊剂、软膏剂、乳膏剂、膏药、药膏、递送设备、注射剂、植入物、喷雾剂或气雾剂。
向个体施用药理学组合物(包括激动剂、拮抗剂、抗体或其片段)的方法包括但不限于皮内、鞘内、肌内、腹膜内、静脉内、皮下、鼻内、硬膜外、通过吸入和口服途径。组合物可以通过任何方便的途径(例如,通过输注或弹丸式注射、通过由上皮或皮肤粘膜内层(例如,口腔粘膜、直肠和肠粘膜等等)、眼部等等的吸收)施用,并且可以与其它生物活性剂一起施用。施用可以是全身的或局部的。此外,通过任何合适的途径(包括心室内和鞘内注射)将组合物施用到中枢神经系统中可以是有利的。还可通过使用吸入器或喷雾器以及具有雾化剂的制剂采用肺部施用。向需要治疗的区域局部施用剂也可以是期望的;这可以通过,例如但不限于,手术期间的局部输注、局部应用、通过注射、通过导管的方式、通过栓剂的方式或通过植入物的方式来实现。
将有效治疗特定病症或疾患的剂的量将取决于病症或疾患的本质,并且可由本领域的技术人员通过标准临床技术确定。此外,可任选地采用体外测定来帮助确定最佳剂量范围。制剂物中待采用的精确剂量将还取决于施用途径以及疾病或病症的整体严重程度,并且应根据从业人员的判断和每一位患者的情况来决定。最终,主治医师将决定治疗每位个体患者的剂的量。在某些实施方案中,主治医师将施用低剂量的剂并观察患者的反应。可施用较大剂量的剂直到患者获得最佳治疗效果,并且在那时不再增加剂量。一般来讲,日剂量范围在每千克哺乳动物体重约0.001mg至约100mg的范围内,优选每千克0.01mg至约50mg,并且最优选每千克0.1mg至10mg,以单剂量或分剂量。另一方面,在一些情况下使用超出这些限制的剂量可能是必要的。在某些实施方案中,用于静脉内施用的剂的合适剂量范围通常为每千克(Kg)体重约5至500微克(μg)活性化合物。用于鼻内施用的合适剂量范围通常为约0.01pg/kg体重至1mg/kg体重。在某些实施方案中,含有本发明的剂的组合物作为单剂量以大约5至5000μg/人,优选大约5至500μg/人的剂量范围皮下注射到成年患者中。期望每日施用这种剂量1次至3次。有效剂量可从由体外或动物模型测试系统得到的剂量-反应曲线外推而来。栓剂通常含有按重量计0.5%至10%范围内的活性成分;口服制剂优选含有10%至95%的活性成分。最终,主治医师将决定使用本发明的组合物的疗法的适当持续时间。剂量也将根据个体患者的年龄、体重和反应而变化。
优选地,治疗剂可以治疗有效量的活性成分施用。术语“治疗有效量”是指可以在组织、系统、动物或人中引起研究人员、兽医、医生或其它临床医生所寻求的生物或医学反应并且特别可以预防或缓解正在治疗的疾病或疾患的局部或全身的症状或特征中的一种或多种的量。
在一些实施方案中,治疗剂可包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
实施例
实施例1-用内源性逆转录病毒包膜蛋白对慢病毒进行假分型
在HEK293T细胞中测试了各种单个env蛋白的表达(图1)。使用Envw1、Envk1和Envfrd(Envw2)实现了最佳表达。水疱性口炎病毒的糖蛋白(VSV-G)能够介导细胞附着并诱导细胞膜之间的直接融合。申请人比较了不同env蛋白与慢病毒DNA的假分型效率。使用Envk1、Envw1和Envfrd观察到有效的颗粒形成(图2)。
为了查看gag同源蛋白Pnma3是否在神经元细胞中表达,申请人将gag同源蛋白Pnma3与红色荧光报告蛋白(RFP)融合并测试gag同源蛋白Pnma3在小鼠和大鼠神经元中的表达。结果显示这种融合蛋白的表达与对照RFP-慢病毒构建体相当(图3)。
实施例2-筛选内源性gag蛋白候选物的形成衣壳、分泌蛋白质和传递信息的能力
鉴定并筛选了九种内源性gag蛋白候选物的在体外形成囊泡的能力(图4和图5)。在所测试的候选物中,除Asprv1之外的所有候选物都能够形成囊泡(图5和表2)。然而,只有六种能够从细胞中分泌(表3,图6)。
表2.gag蛋白候选物形成囊泡的能力
表3.gag蛋白候选物从细胞中分泌的能力
分泌性蛋白? | |
Asprv1 | - |
Pnma1 | + |
Pnma3 | - |
Pnma4 | + |
Pnma5 | + |
Pnma6 | + |
Pnma7 | - |
Peg10 | + |
Rtl1 | + |
申请人接下来测试了各种gag蛋白候选物将Cas9/gRNA复合物转移到另一个细胞的能力。在不存在膜融合蛋白的情况下(图7A),候选物均不能成功地促进这种过程。然而,包括VSV-G(图7B)对于实现将复合物递送至另一个细胞非常关键(表4)。
表4.gag蛋白候选物将信息递送至新细胞的能力
传递? | |
Asprv1 | - |
Pnma1 | - |
Pnma3 | - |
Pnma4 | + |
Pnma5 | - |
Pnma6 | - |
Pnma7 | - |
Peg10 | + |
Rtl1 | + |
使用PNMA4和RTL1形成的囊泡表现出将基因编辑复合物转移至新细胞和诱导插入缺失形成的最高能力(图10)。
为了评价gag候选物是否有利于从细胞分泌和随后将信息从一个细胞传递至另一个细胞,申请人还生成了在内源性gag蛋白上表达HA标签的敲入小鼠。编码示例性有HA标签的RTL1蛋白的DNA序列在图12中示出。
实施例3-工程化用于基因疗法的内源性载体
申请人着手创建一种可以在体内有效递送基因疗法的非免疫原性载体。虽然病毒载体是高效的,但它们会潜在地具有免疫原性,在靶细胞中针对载体本身引发不需要的免疫应答,从而使包含在其中的治疗剂无效。脂质纳米颗粒(LNP)易于生产,但它们的嗜性有限,并且通常只能递送它们的编码有效负载的约2%。外泌体潜在地是非免疫原性的,但具有复杂的生物学性质,并且它们的功效尚不清楚。申请人希望探索内源性信号传导系统的介导细胞间基因转移的潜力。例如,人类基因组中存在至少40,000个编码GAG,免疫原性潜力不同(图17)。一些高度表达的内源性GAG在图4中示出。
申请人分析了若干GAG自发形成囊泡的能力(图19、图20)。为了确定哪些GAG可以形成囊泡,有HA标签的GAG在HEK细胞中过表达并收集上清液。VLP级分使用PEG离心(图21)。申请人发现添加VSV-G融合剂改善了靶细胞对分泌的GAG的摄取和促进插入缺失的产生(图23A至23D、图24、图52和图53)。
在所测试的所有GAG中,申请人确定PEG10是介导转移和生成与HIV慢病毒同等水平的VLP的最佳候选物(图24)。为了优化PEG10的递送,申请人希望理解PEG10的精确生物学功能,以及PEG10可以重编程的程度。PEG10的基因包括编码不同同种型的相同转录物的两个重叠阅读框。较短的同种型具有CCHC型锌指基序,CCHC型锌指基序含有大多数逆转录病毒和一些逆转录转座子的gag蛋白的序列特征,并且它部分通过与TGF-β受体家族成员相互作用而发挥作用。较长的同种型具有pol蛋白的蛋白酶结构域的活性位点DSG共有序列。较长的同种型是在一些逆转录病毒中也可见到的-1翻译移码的结果(图25、图26)。
申请人用各种PEG10构建体转染细胞,并且通过免疫沉淀分析全细胞裂解液和VLP级分。结果显示,PEG10 VLP被加工,但这种加工的发生不需要蛋白酶结构域(图28)。申请人还发现,添加VSV-G提高了PEG10分泌并且允许靶细胞中的摄取(图29)。
为了提高递送效率,申请人在T225烧瓶中培养HEK293T细胞。细胞用各种递送组分转染,用45μm过滤器过滤,并用20%蔗糖缓冲超速离心。将VLP重悬在250μL的PBS中,并将悬浮液的10μL等分试样添加到20E3细胞中。然后在48小时后通过下一代测序检测插入缺失(图31)。这些实验揭示,PEG10是分泌型衣壳形成蛋白,并且VSV-G使PEG10能够将Cas9递送至靶细胞并介导插入缺失的生成。PEG10 VLP可能在C末端结构域被加工。申请人还发现,添加SGCE提高PEG10分泌,但不帮助提高进入(至少在HEK细胞中)。
申请人编译并克隆了可以充当潜在的融合剂的另外165个基因的列表(表5和表6)。这些中的每一个都将使用HIV、PEG10、Arc和Rtl1 GAG单独评价。
表5.
表6.
ADGRE5 | FBLN2 | MFAP2 | SLC27A6 | TMEM164 |
ANXA5 | Frdm3 | MTMR4 | SLC32A1 | TMEM18 |
ARHGAP20 | GABRA1 | NECTIN4 | SLC38A2 | tmem255a |
ARHGAP8 | GNA11 | OLFML2B | SLC39A14 | TMEM54 |
ATP1B1 | GNAS | OPCML | SLC4A2 | TRAF4 |
balap3 | HTR7 | OR5B17 | SNTA1 | ZCCHC14 |
cd63 | IL27RA | OSBPL6 | SOBP | Pnma6 |
Cldn1 | IRS4 | Pianp | SPATA13 | |
CLDN5 | izumo2 | PIGQ | ST3GAL4 | |
clmp | JCAD | PLA2G12A | st8sia4 | |
cpn2 | KIR2DL3 | PMEPA1 | TCIRG1 | |
CRISPLD2 | KLHDC10 | PTPRB | TESC | |
Egflam | LY6K | SLC13A5 | TGFBR3 | |
EML6 | LYNX1 | SLC14A1 | THSD4 | |
EXTL3 | LYPD5 | SLC22A3 | TMED8 |
申请人接下来确定在大脑中的血清和皮层神经元中都可以发现PEG10(图32)。与之前的报告一致,缺乏PEG10的敲除小鼠表现出早期胚胎致死性,这指明了这种基因在胚胎发育中的重要性图(33)。原代小鼠神经元的基因本体分析揭示了三组差异表达基因:1)涉及核染色质重塑的基因,2)涉及反面高尔基体网络(trans-golgi network)和胞吐作用的基因,和3)编码胞内体和跨膜蛋白的SNARE和其它基因。
为了弄清楚分泌性GAG是否是结合DNA而不是RNA的染色质修饰剂,申请人进行了DNA腺嘌呤甲基转移酶鉴定(DamID),这是一种用于绘制真核生物中的DNA结合蛋白和染色质结合蛋白的结合位点的方案。DamID通过将提议的DNA结合蛋白与DNA甲基转移酶一起表达为融合蛋白来鉴定结合位点。感兴趣的蛋白质与DNA的结合将甲基转移酶定位在结合位点的区域中。腺苷甲基化不在真核生物中天然发生,因此任何区域中的腺嘌呤甲基化都可以断定是已经由融合蛋白引起的,这意味着该区域位于结合位点附近(图36)。为实施此方案,申请人用仅切割甲基化GATC的DpnI消化基因组。然后将具有已知序列的双链衔接子连接至由DpnI生成的末端。使用切割非甲基化GATC的DpnII消化连接产物,以确保在随后的PCR中仅扩增侧翼为连续的甲基化GATC的片段。然后进行使用与衔接子匹配的引物的PCR,导致侧翼为甲基化GATC的基因组片段的特异性扩增(图37)。然后将通过DamID绘制获得的数据与ATAC测序数据交叉引用(图38)。申请人在N2A细胞中过表达PEG10和SGCE,超速离心VLP级分并通过质谱法分析沉淀的蛋白质。发现此级分中富含多种蛋白质,包括RNA代谢周转因子(RNA turnover factor)、转录因子和染色质重塑蛋白(chromatin remodeler)(图39)。申请人断定,PEG10有效地从细胞中分泌,并且它可以介导较大的大分子的递送。因为PEG10遍布全身,所以它可能结合DNA并且可能本身就是被传递至细胞、进入细胞并直接结合DNA的物质(图40)。
实施例4-PEG10的加工和加工结构域的功能性质
PEG10形成囊泡的能力导致了两个中心问题。1)PEG10是如何被加工的,和2)每个功能结构域有什么作用?为了回答第一个问题,申请人在HEK293FT细胞中过表达N末端和C末端有HA标签的小鼠PEG10,使用HA磁珠免疫沉淀PEG10,并通过蛋白质印迹分析条带。通过质谱法分析相应的考马斯(commassie)染色条带。结果显示该蛋白质被切割成所有分别的预测结构域(图56、图57A至57F、图58A和图58B)。
为了回答第二个问题,申请人将PEG10与先前鉴定的称为MYEF的蛋白质进行了比较,MYEF是结合3X重复中的非常特异性的10碱基对序列的DNA结合蛋白(如图59右侧所示)。申请人确定PEG10结合完全相同的序列,因此他们尝试包装表达该DNA序列的颗粒。当PEG10用含有此序列的质粒DNA过表达时,申请人注意到PEG10优先包装和封装该10碱基对DNA序列并分泌携带该序列的质粒。
为了量化有多少PEG10在血液中循环,申请人用PEG10抗体受体标签工程化小鼠,并确定PEG10在小鼠血浆中以约120pg/μL表达(图70)。
***
在不背离本发明的范围和精神的情况下,本发明的所描述的方法、药物组合物和试剂盒的各种修改和变化对于本领域技术人员将显而易见。虽然已结合具体优选的实施方案描述了本发明,但应理解的是,本发明能够进行进一步的修改并且要求保护的本发明不应不适当地局限于所述具体实施方案。事实上,对于本领域的技术人员来说显而易见的用于进行本发明的所描述模式的各种修改意图在本发明的范围内。本申请旨在涵盖总体上遵循本发明原理的本发明的任何变化、用途或改造,并且包括在本发明所属领域内已知惯常实践范围内并可以适用于以上阐述的基本特征的此类自本公开的偏离。
Claims (104)
1.一种工程化的递送系统,其包含编码用于形成递送囊泡的一种或多种内源性逆转录病毒元件和用于将货物包装在递送囊泡内的一种或多种捕获部分的一种或多种多核苷酸。
2.如权利要求1所述的系统,其中所述用于形成递送囊泡的一种或多种内源性逆转录病毒元件包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
3.如权利要求2所述的系统,其中所述逆转录病毒gag蛋白是内源性的。
4.如权利要求2所述的系统,其中所述逆转录病毒包膜蛋白是内源性的。
5.如权利要求2所述的系统,其中所述逆转录病毒gag蛋白和所述逆转录病毒包膜蛋白都是内源性的。
6.如权利要求2或3所述的系统,其中所述逆转录病毒gag蛋白含有NC和MA结构域。
7.如权利要求2至6中任一项所述的系统,其中所述逆转录病毒gag蛋白是gag同源蛋白。
8.如权利要求7所述的系统,其中所述gag同源蛋白是Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。
9.如权利要求8所述的系统,其中所述gag同源蛋白是PNMA4、PEG10或RTL1。
10.如权利要求9所述的系统,其中所述gag同源蛋白是PEG10。
11.如权利要求2至10中任一项所述的系统,其中所述包膜蛋白来自γ逆转录病毒或δ逆转录病毒。
12.如权利要求2至11中任一项所述的系统,其中所述包膜蛋白选自envH1、envH2、envH3、envK1、envK2_1、envK2_2、envK3、envK4、envK5、envK6、envT、envW、envW1、envfrd、envR(b)、envR、envF(c)2或envF(c)1。
13.如权利要求2至12中任一项所述的系统,其中所述包膜蛋白包含货物结合结构域。
14.如权利要求13所述的系统,其中所述货物结合结构域是发夹环结合元件。
15.如权利要求13所述的系统,其中所述发夹环结合元件是MS2适体。
16.如权利要求1至15中任一项所述的系统,其中所述递送系统引发差的免疫应答。
17.如权利要求1至16中任一项所述的系统,其中所述货物包含核酸、蛋白质、它们的复合物或它们的组合。
18.如权利要求1至17中任一项所述的系统,其中所述货物通过接头与一个或多个包膜蛋白连接。
19.如权利要求18所述的系统,其中所述接头是甘氨酸-丝氨酸接头。
20.如权利要求19所述的系统,其中所述甘氨酸-丝氨酸接头是(GGS)3。
21.如权利要求17所述的系统,其中所述货物包含核糖核蛋白。
22.如权利要求17所述的系统,其中所述核酸是DNA。
23.如权利要求1至22中任一项所述的系统,其中所述货物包含遗传调节剂。
24.如权利要求23所述的系统,其中所述遗传调节剂包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
25.如权利要求24所述的系统,其中所述基因编辑系统是CRISPR-Cas系统。
26.如权利要求25所述的系统,其中所述CRISPR-Cas系统是II型、V型或VI型CRISPR-Cas系统。
27.如权利要求26所述的系统,其中所述II型CRISPR-Cas系统包括CRISPR-Cas9。
28.如权利要求27所述的系统,其中所述V型CRISPR-Cas系统包括CRISPR-Cas12。
29.如权利要求26所述的系统,其中所述VI型CRISPR-Cas系统包括CRISPR-Cas13。
30.如权利要求25所述的系统,其中所述CRISPR-Cas系统的Cas蛋白被修饰以结合所述包膜蛋白的结合结构域。
31.如权利要求25所述的系统,其中所述CRISPR-Cas系统的引导分子被修饰以结合所述包膜蛋白的结合结构域。
32.如权利要求30所述的系统,其中所述修饰包括掺入与所述包膜蛋白上的发夹结合元件结合的发夹环。
33.如权利要求32所述的系统,其中所述发夹环被所述MS2适体识别。
34.如权利要求1至33中任一项所述的系统,其中所述系统还包含逆转录酶。
35.如权利要求1至34中任一项所述的系统,其中所述一种或多种捕获部分包含DNA结合部分、RNA结合部分、蛋白质结合部分或它们的组合。
36.如权利要求1至35中任一项所述的系统,其中所述递送囊泡是病毒样颗粒。
37.如权利要求1至36中任一项所述的系统,所述系统还包含靶向部分,其中所述靶向部分能够特异性结合靶细胞。
38.如权利要求37所述的系统,其中所述靶向部分包含膜融合蛋白。
39.如权利要求38所述的系统,其中所述膜融合蛋白是水疱性口炎病毒的G包膜蛋白(VSV-G)。
40.如权利要求38所述的系统,其中所述膜融合蛋白是SGCE。
41.如权利要求37所述的系统,其中所述靶细胞是哺乳动物细胞。
42.如权利要求41所述的系统,其中所述哺乳动物细胞是癌细胞。
43.如权利要求42所述的系统,其中所述哺乳动物细胞被病原体感染。
44.如权利要求43所述的系统,其中所述病原体是病毒。
45.一种递送囊泡,其包含在前述权利要求中任一项所述的工程化的递送系统中的所述一种或多种多核苷酸中编码的一种或多种组分。
46.如权利要求45所述的递送囊泡,其中所述一种或多种组分包含逆转录病毒gag蛋白、逆转录病毒包膜蛋白、逆转录病毒逆转录酶或它们的组合中的两种或更多种。
47.如权利要求46所述的递送囊泡,其中所述逆转录病毒gag蛋白是选自由以下组成的组的gag同源蛋白:Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1和ZCCHC12。
48.如权利要求47所述的递送囊泡,其中所述gag同源蛋白是PNMA4、PEG10或RTL1。
49.如权利要求48所述的递送系统,其中所述gag同源蛋白是PEG10。
50.如权利要求45至49中任一项所述的递送囊泡,其中所述囊泡包含细胞特异性靶向部分。
51.如权利要求50所述的递送囊泡,其中所述细胞特异性靶向部分靶向哺乳动物细胞。
52.如权利要求51所述的递送囊泡,其中所述细胞特异性靶向部分包含膜融合蛋白。
53.如权利要求52所述的递送囊泡,其中所述膜融合蛋白是VSV-G。
54.如权利要求52所述的递送囊泡,其中所述膜融合蛋白是SGCE。
55.如权利要求51所述的递送囊泡,其中所述哺乳动物细胞是癌细胞。
56.如权利要求51所述的递送囊泡,其中所述哺乳动物细胞被病原体感染。
57.如权利要求56所述的递送囊泡,其中所述病原体是病毒。
58.一种用于将货物递送至靶细胞的系统,其包含包裹货物和内源性逆转录酶的递送囊泡。
59.如权利要求58所述的系统,其中所述递送囊泡是病毒样颗粒。
60.如权利要求58或59所述的系统,其中所述递送囊泡由逆转录病毒gag蛋白和逆转录病毒包膜蛋白组成。
61.如权利要求60所述的系统,其中所述逆转录病毒gag蛋白源自人内源性逆转录病毒(HERV)。
62.如权利要求61所述的系统,其中所述逆转录病毒gag蛋白是Arc1、Asprv1、PNMA1、PNMA3、PNMA4、PNMA5、PNMA6、PNMA7、PEG10、RTL1、MOAP1或ZCCHC12。
63.如权利要求62所述的系统,其中所述逆转录病毒gag蛋白是PNMA4、PEG10或RTL1。
64.如权利要求63所述的系统,其中所述逆转录病毒gag蛋白是PEG10。
65.如权利要求58中任一项所述的系统,其中所述逆转录病毒包膜蛋白源自HERV。
66.如权利要求58所述的系统,其中所述逆转录病毒gag蛋白和所述逆转录病毒包膜蛋白源自HERV。
67.如权利要求60至66中任一项所述的系统,其中所述逆转录病毒包膜蛋白包含货物结合结构域。
68.如权利要求67所述的系统,其中所述货物结合结构域是发夹环结合元件。
69.如权利要求68所述的系统,其中所述发夹环结合元件是MS2适体。
70.如权利要求58至69中任一项所述的系统,其中所述货物包含核酸、蛋白质、它们的复合物或它们的组合。
71.如权利要求70所述的系统,其中所述核酸是DNA。
72.如权利要求70所述的系统,其中所述货物包含核糖核蛋白。
73.如权利要求58至72中任一项所述的系统,其中所述货物包含遗传调节剂。
74.如权利要求73所述的系统,其中所述遗传调节剂包含基因编辑系统的一种或多种组分和/或编码其的多核苷酸。
75.如权利要求74所述的系统,其中所述基因编辑系统是CRISPR-Cas系统。
76.如权利要求75所述的系统,其中所述CRISPR-Cas系统是II型、V型或VI型CRISPR-Cas系统。
77.如权利要求76所述的系统,其中所述II型CRISPR-Cas系统包括CRISPR-Cas9。
78.如权利要求76所述的系统,其中所述V型CRISPR-Cas系统包括CRISPR-Cas12。
79.如权利要求76所述的系统,其中所述VI型CRISPR-Cas系统包括CRISPR-Cas13。
80.如权利要求58至79中任一项所述的系统,其中所述货物通过接头与一个或多个包膜蛋白连接。
81.如权利要求80所述的系统,其中所述接头是甘氨酸-丝氨酸接头。
82.如权利要求81所述的系统,其中所述甘氨酸-丝氨酸接头是(GGS)3。
83.如权利要求76所述的系统,其中所述CRISPR-Cas系统的Cas蛋白被修饰以结合所述包膜蛋白的结合结构域。
84.如权利要求76所述的系统,其中所述CRISPR-Cas系统的引导分子被修饰以结合所述包膜蛋白的结合结构域。
85.如权利要求83所述的系统,其中所述修饰包括掺入与所述包膜蛋白上的发夹结合元件结合的发夹环。
86.如权利要求85所述的系统,其中所述发夹环被所述MS2适体识别。
87.如权利要求58至86中任一项所述的系统,其还包括膜融合蛋白。
88.如权利要求87所述的系统,其中所述膜融合蛋白是VSV-G。
89.如权利要求87所述的系统,其中所述膜融合蛋白是SGCE。
90.如权利要求58至89中任一项所述的系统,其中所述靶细胞是哺乳动物细胞。
91.如权利要求90所述的系统,其中所述哺乳动物细胞是癌细胞。
92.如权利要求90所述的系统,其中所述哺乳动物细胞被病原体感染。
93.如权利要求92所述的系统,其中所述病原体是病毒。
94.一种用于将货物分子负载到递送囊泡系统中的方法,其包括将货物分子和权利要求1至43中任一项所述的工程化的的递送系统与一种或多种生物反应器一起孵育。
95.如权利要求94所述的方法,其中所述一种或多种生物反应器是细胞、微生物或无细胞系统。
96.一种用于递送货物分子的方法,其包括将权利要求45至57所述的递送囊泡递送至靶细胞或细胞群。
97.如权利要求96所述的方法,其中递送是体内的。
98.如权利要求96所述的方法,其中递送是离体的。
99.如权利要求96所述的方法,其中递送是体外的。
100.如权利要求96至99中任一项所述的方法,其中所述货物包含核酸、蛋白质、它们的复合物或它们的组合。
101.如权利要求100所述的方法,其中所述核酸是DNA。
102.如权利要求100所述的方法,其中所述货物包含核糖核蛋白。
103.如权利要求100至102中任一项所述的方法,其中所述货物包含遗传调节剂。
104.如权利要求96至103中任一项所述的方法,其中递送跨血脑屏障发生。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962903127P | 2019-09-20 | 2019-09-20 | |
US62/903,127 | 2019-09-20 | ||
US202063003409P | 2020-04-01 | 2020-04-01 | |
US63/003,409 | 2020-04-01 | ||
PCT/US2020/051637 WO2021055855A1 (en) | 2019-09-20 | 2020-09-18 | Compositions and methods for delivering cargo to a target cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114616336A true CN114616336A (zh) | 2022-06-10 |
Family
ID=72744893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080075648.9A Pending CN114616336A (zh) | 2019-09-20 | 2020-09-18 | 用于将货物递送至靶细胞的组合物和方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20220389451A1 (zh) |
EP (1) | EP4031561A1 (zh) |
JP (1) | JP2022548308A (zh) |
KR (1) | KR20220083688A (zh) |
CN (1) | CN114616336A (zh) |
AU (1) | AU2020348872A1 (zh) |
CA (1) | CA3151620A1 (zh) |
WO (1) | WO2021055855A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220088224A1 (en) | 2018-09-18 | 2022-03-24 | Vnv Newco Inc. | Arc-based capsids and uses thereof |
WO2023133425A1 (en) * | 2022-01-04 | 2023-07-13 | The Broad Institute, Inc. | Compositions and methods for delivering cargo to a target cell |
CN118696125A (zh) * | 2022-01-30 | 2024-09-24 | 北京因诺惟康医药科技有限公司 | 全人源内源基因递送系统 |
WO2023158487A1 (en) * | 2022-02-15 | 2023-08-24 | The Broad Institute, Inc. | Cell-type specific membrane fusion proteins |
WO2024026295A1 (en) * | 2022-07-27 | 2024-02-01 | Aera Therapeutics, Inc. | Endogenous gag-based and pnma family capsids and uses thereof |
WO2024031000A2 (en) * | 2022-08-03 | 2024-02-08 | H. Lee Moffitt Cancer Center And Research Institute Inc. | Secreted rna therapeutics for nuclear delivery |
WO2024039760A2 (en) * | 2022-08-19 | 2024-02-22 | University Of Maryland, Baltimore | Treatment of alzheimer's disease with vascular progenitor-derived exosomes enriched with micrornas or thioredoxin |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016149426A1 (en) * | 2015-03-16 | 2016-09-22 | The Broad Institute, Inc. | Constructs for continuous monitoring of live cells |
WO2017068077A1 (en) * | 2015-10-20 | 2017-04-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and products for genetic engineering |
FR3051197A1 (fr) * | 2016-05-13 | 2017-11-17 | Vectalys | Particule virale pour le transfert d'arns dans les cellules impliquees dans la reponse immune |
CN109153990A (zh) * | 2015-12-21 | 2019-01-04 | 浙江大学 | 用于基因编辑的组合物和方法 |
WO2019086351A1 (en) * | 2017-10-30 | 2019-05-09 | Miltenyi Biotec Gmbh | Adapter-based retroviral vector system for the selective transduction of target cells |
CN109890424A (zh) * | 2016-07-05 | 2019-06-14 | 约翰霍普金斯大学 | 用于治疗视网膜变性的基于crispr/cas9的组合物和方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501B1 (zh) | 1970-05-19 | 1975-01-06 | ||
US4737323A (en) | 1986-02-13 | 1988-04-12 | Liposome Technology, Inc. | Liposome extrusion method |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5989886A (en) * | 1991-01-02 | 1999-11-23 | The Johns Hopkins University | Method for the inhibition and prevention of viral replication using fusions of a virus protein and a destructive enzyme |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
CN100342008C (zh) | 1997-10-24 | 2007-10-10 | 茵维特罗根公司 | 利用具重组位点的核酸进行重组克隆 |
AU2002336760A1 (en) | 2001-09-26 | 2003-06-10 | Mayo Foundation For Medical Education And Research | Mutable vaccines |
JP2008078613A (ja) | 2006-08-24 | 2008-04-03 | Rohm Co Ltd | 窒化物半導体の製造方法及び窒化物半導体素子 |
WO2008149176A1 (en) | 2007-06-06 | 2008-12-11 | Cellectis | Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof |
CA2742954C (en) | 2008-11-07 | 2018-07-10 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US20110027239A1 (en) | 2009-07-29 | 2011-02-03 | Tissue Genesis, Inc. | Adipose-derived stromal cells (asc) as delivery tool for treatment of cancer |
WO2011028929A2 (en) | 2009-09-03 | 2011-03-10 | The Regents Of The University Of California | Nitrate-responsive promoter |
US8771985B2 (en) | 2010-04-26 | 2014-07-08 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using zinc-finger nucleases |
US9193827B2 (en) | 2010-08-26 | 2015-11-24 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
PL2691443T3 (pl) | 2011-03-28 | 2021-08-30 | Massachusetts Institute Of Technology | Sprzężone lipomery i ich zastosowania |
KR20150001710A (ko) | 2012-04-18 | 2015-01-06 | 애로우헤드 리서치 코오포레이션 | In Vivo 핵산 전달용 폴리(아크릴레이트) 고분자 |
BR112015013784A2 (pt) | 2012-12-12 | 2017-07-11 | Massachusetts Inst Technology | aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas |
WO2014118272A1 (en) | 2013-01-30 | 2014-08-07 | Santaris Pharma A/S | Antimir-122 oligonucleotide carbohydrate conjugates |
US9693958B2 (en) | 2013-03-15 | 2017-07-04 | Cureport, Inc. | Methods and devices for preparation of lipid nanoparticles |
-
2020
- 2020-09-18 CN CN202080075648.9A patent/CN114616336A/zh active Pending
- 2020-09-18 CA CA3151620A patent/CA3151620A1/en active Pending
- 2020-09-18 WO PCT/US2020/051637 patent/WO2021055855A1/en unknown
- 2020-09-18 AU AU2020348872A patent/AU2020348872A1/en active Pending
- 2020-09-18 KR KR1020227011472A patent/KR20220083688A/ko unknown
- 2020-09-18 JP JP2022517921A patent/JP2022548308A/ja active Pending
- 2020-09-18 US US17/761,641 patent/US20220389451A1/en active Pending
- 2020-09-18 EP EP20786164.2A patent/EP4031561A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016149426A1 (en) * | 2015-03-16 | 2016-09-22 | The Broad Institute, Inc. | Constructs for continuous monitoring of live cells |
WO2017068077A1 (en) * | 2015-10-20 | 2017-04-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and products for genetic engineering |
CN109153990A (zh) * | 2015-12-21 | 2019-01-04 | 浙江大学 | 用于基因编辑的组合物和方法 |
FR3051197A1 (fr) * | 2016-05-13 | 2017-11-17 | Vectalys | Particule virale pour le transfert d'arns dans les cellules impliquees dans la reponse immune |
CN109890424A (zh) * | 2016-07-05 | 2019-06-14 | 约翰霍普金斯大学 | 用于治疗视网膜变性的基于crispr/cas9的组合物和方法 |
WO2019086351A1 (en) * | 2017-10-30 | 2019-05-09 | Miltenyi Biotec Gmbh | Adapter-based retroviral vector system for the selective transduction of target cells |
Non-Patent Citations (6)
Title |
---|
ABED M等: "The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification", 《PLOS ONE》, vol. 14, no. 04, pages 1 - 18 * |
LYU P等: "Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient \'hit-and-run\' genome editing", 《NUCLEIC ACIDS RES》, vol. 47, no. 17, pages 1 - 13 * |
MONTAGNA C: "VSV-G-Enveloped Vesicles for Traceless Delivery of CRISPR-Cas9", 《MOL THER NUCLEIC ACIDS》, vol. 12, pages 453 - 462, XP055530474, DOI: 10.1016/j.omtn.2018.05.010 * |
PASTUZYN ED等: "The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer", 《CELL》, vol. 172, no. 1, pages 275 - 288 * |
何治尧等: "CRISPR/Cas9技术在生物医学领域的非病毒及病毒载体", 《中国科学:生命科学》, vol. 47, no. 11, pages 1141 - 1150 * |
李根等: "CRISPR-Cas9应用于病毒性传染病防控的研究进展", 《生物化学与生物物理进展》, vol. 45, no. 10, pages 1006 - 1025 * |
Also Published As
Publication number | Publication date |
---|---|
AU2020348872A1 (en) | 2022-04-14 |
US20220389451A1 (en) | 2022-12-08 |
JP2022548308A (ja) | 2022-11-17 |
CA3151620A1 (en) | 2021-03-25 |
EP4031561A1 (en) | 2022-07-27 |
WO2021055855A1 (en) | 2021-03-25 |
KR20220083688A (ko) | 2022-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220389451A1 (en) | Compositions and methods for delivering cargo to a target cell | |
Rinoldi et al. | Nanotechnology‐Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID‐19 Vaccines | |
US20210214724A1 (en) | Novel nucleic acid modifiers | |
US20170349894A1 (en) | Escorted and functionalized guides for crispr-cas systems | |
US20240084330A1 (en) | Compositions and methods for delivering cargo to a target cell | |
JP2017503485A (ja) | 遺伝子産物の発現、構造情報、及び誘導性モジュラーcas酵素を変更するためのcrispr−cas系並びに方法 | |
CA2915845A1 (en) | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells | |
WO2018191750A2 (en) | Novel delivery of large payloads | |
KR20210113260A (ko) | 캡슐화된 rna 폴리뉴클레오타이드 및 사용 방법 | |
US20200347100A1 (en) | Non-naturally occurring capsids for delivery of nucleic acids and/or proteins | |
JP6484223B2 (ja) | バクテリオファージ | |
US9801953B2 (en) | Nanoparticles carrying nucleic acid cassettes for expressing RNA | |
Loomis et al. | Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs | |
KR20200136978A (ko) | 치료제의 표적화된 전달을 위한 엑소좀의 용도 | |
CN115151277A (zh) | 负载核酸的红细胞细胞外囊泡 | |
US20210369858A1 (en) | Use of exosomes for targeted delivery of therapeutic agents | |
Penumarthi et al. | Hitching a ride: enhancing nucleic acid delivery into target cells through nanoparticles | |
KR20220117091A (ko) | 생체내 세포에서 합성 및 분비되고 세포로 투과하는 관심 폴리펩타이드를 코딩하는 발현카세트 및 이의 용도 | |
Keates et al. | TransKingdom RNA interference: a bacterial approach to challenges in RNAi therapy and delivery | |
Misra et al. | Breaking the Barrier of Polynucleotide Size, Type, and Topology in Smad2 Antisense Therapy Using a Cationic Cholesterol Dimer with Flexible Spacer | |
JP2022523806A (ja) | 閉端dna(cedna)および免疫調節化合物 | |
Kapoor et al. | Targeted delivery of nucleic acid therapeutics via nonviral vectors | |
Röder et al. | Sequence-defined shuttles for targeted nucleic acid and protein delivery | |
Avlani et al. | Magnet-guided nanovectors as agents for magnetofection in therapeutic management of solid tumors | |
WO2024006988A2 (en) | Engineered delivery vesicles and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |