CN114604818A - A kind of MEMS infrared light source based on porous silicon and preparation method thereof - Google Patents
A kind of MEMS infrared light source based on porous silicon and preparation method thereof Download PDFInfo
- Publication number
- CN114604818A CN114604818A CN202210506016.4A CN202210506016A CN114604818A CN 114604818 A CN114604818 A CN 114604818A CN 202210506016 A CN202210506016 A CN 202210506016A CN 114604818 A CN114604818 A CN 114604818A
- Authority
- CN
- China
- Prior art keywords
- porous silicon
- light source
- infrared light
- silicon
- mems infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021426 porous silicon Inorganic materials 0.000 title claims abstract description 65
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 45
- 239000010703 silicon Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 230000005457 Black-body radiation Effects 0.000 claims abstract description 27
- 238000005530 etching Methods 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000010408 film Substances 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 11
- 238000009713 electroplating Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 238000001017 electron-beam sputter deposition Methods 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 abstract description 11
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0083—Temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00087—Holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00349—Creating layers of material on a substrate
- B81C1/0038—Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
- B81C1/00531—Dry etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
- B81C1/00539—Wet etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/04—Optical MEMS
- B81B2201/047—Optical MEMS not provided for in B81B2201/042 - B81B2201/045
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/03—Static structures
- B81B2203/0353—Holes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
Abstract
本发明涉及半导体光电元器件技术领域,具体公开了一种基于多孔硅的MEMS红外光源及其制备方法,该MEMS红外光源包括由下到上依次设置的硅衬底、介质薄膜、加热电阻和黑体辐射层,所述加热电阻通过金属剥离工艺形成图形结构,所述黑体辐射层位于加热电阻的中间区域,所述硅衬底正面位于黑体辐射层的下方通过刻蚀形成多孔硅结构,所述硅衬底背面位于多孔硅结构下方通过刻蚀形成背洞区域。本发明所公开的MEMS红外光源及其制备方法在加工光源前首先在硅衬底上制作多孔硅结构,然后在多孔硅结构上面沉积介质薄膜、加热电阻和黑体辐射层,多孔硅结构具有低热导率,机械强度高等优点,极大地提高了MEMS红外光源的可靠性。
The invention relates to the technical field of semiconductor optoelectronic components, and specifically discloses a porous silicon-based MEMS infrared light source and a preparation method thereof. The MEMS infrared light source includes a silicon substrate, a dielectric film, a heating resistor and a black body sequentially arranged from bottom to top Radiation layer, the heating resistor forms a pattern structure through a metal lift-off process, the black body radiation layer is located in the middle area of the heating resistor, the front side of the silicon substrate is located below the black body radiation layer, and a porous silicon structure is formed by etching, the silicon The backside of the substrate is located under the porous silicon structure to form a back hole region by etching. The MEMS infrared light source and its preparation method disclosed in the present invention firstly make a porous silicon structure on a silicon substrate before processing the light source, and then deposit a dielectric film, a heating resistor and a black body radiation layer on the porous silicon structure, and the porous silicon structure has low thermal conductivity. The advantages of high efficiency and high mechanical strength greatly improve the reliability of the MEMS infrared light source.
Description
技术领域technical field
本发明涉及半导体光电元器件技术领域,特别涉及一种基于多孔硅的MEMS红外光源及其制备方法。The invention relates to the technical field of semiconductor optoelectronic components, in particular to a MEMS infrared light source based on porous silicon and a preparation method thereof.
背景技术Background technique
MEMS红外光源是根据热辐射原理,通过对MEMS薄膜加热,向外辐射宽谱红外光。MEMS红外光源基本组成由衬底、支撑薄膜、加热层和辐射层组成。衬底用于支撑整个薄膜及加热层和辐射层结构。支撑薄膜是加热层和辐射层的支撑结构。加热层是用导电金属组成,通过施加一定电压,将电转换成热能。由于辐射层辐射产生的红外光谱取决于辐射温度,光源在正常工作时薄膜区域升温到几百度。然后通过热辐射原理,向外辐射宽谱红外光。The MEMS infrared light source is based on the principle of thermal radiation, by heating the MEMS film to radiate broad-spectrum infrared light. The basic composition of MEMS infrared light source is composed of substrate, supporting film, heating layer and radiation layer. The substrate is used to support the entire thin film as well as the heating and radiating layer structures. The support film is the support structure for the heating layer and the radiation layer. The heating layer is composed of conductive metal, which converts electricity into heat energy by applying a certain voltage. Since the infrared spectrum produced by the radiation of the radiative layer depends on the radiation temperature, the thin film region of the light source heats up to several hundred degrees during normal operation. Then through the principle of thermal radiation, broad-spectrum infrared light is radiated outward.
目前,MEMS红外光源是通过半导体工艺加工制作的,起始于硅晶圆衬底,然后在硅晶圆上沉积起支撑作用的薄膜结构,然后再通过在薄膜上制作加热层和辐射层。但是在光源工作的过程中,光源正常的工作温度为几百摄氏度,这样薄膜会由于其自身的热膨胀,产生较大的热应力,热应力会使得薄膜变得不稳定,使得薄膜发生破裂等现象。而且在光源开关过程中,伴随着薄膜温度的升高和降低,会减小其机械强度,降低光源的稳定性。At present, MEMS infrared light source is manufactured by semiconductor process, starting from a silicon wafer substrate, then depositing a supporting film structure on the silicon wafer, and then fabricating a heating layer and a radiation layer on the film. However, during the working process of the light source, the normal working temperature of the light source is several hundred degrees Celsius, so the film will generate a large thermal stress due to its own thermal expansion, and the thermal stress will make the film unstable and cause the film to rupture and other phenomena . Moreover, in the process of switching the light source, along with the increase and decrease of the temperature of the film, its mechanical strength will be reduced, and the stability of the light source will be reduced.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种基于多孔硅的MEMS红外光源及其制备方法,以达到使光源结构具有更高的机械强度,提高MEMS红外光源可靠性的目的。In order to solve the above technical problems, the present invention provides a MEMS infrared light source based on porous silicon and a preparation method thereof, so as to make the light source structure have higher mechanical strength and improve the reliability of the MEMS infrared light source.
为达到上述目的,本发明的技术方案如下:For achieving the above object, technical scheme of the present invention is as follows:
一种基于多孔硅的MEMS红外光源,包括由下到上依次设置的硅衬底、介质薄膜、加热电阻和黑体辐射层,所述加热电阻通过金属剥离工艺形成图形结构,所述黑体辐射层位于加热电阻的中间区域,所述硅衬底正面位于黑体辐射层的下方通过刻蚀形成多孔硅结构,所述硅衬底背面位于多孔硅结构下方通过刻蚀形成背洞区域。A MEMS infrared light source based on porous silicon, comprising a silicon substrate, a dielectric film, a heating resistor and a black body radiation layer sequentially arranged from bottom to top, the heating resistor forms a pattern structure through a metal lift-off process, and the black body radiation layer is located in the In the middle area of the heating resistor, the front surface of the silicon substrate is located below the black body radiation layer to form a porous silicon structure by etching, and the backside of the silicon substrate is located below the porous silicon structure to form a back hole area by etching.
上述方案中,所述介质薄膜材质选自二氧化硅、氮化硅、氮氧化硅中的至少一种。In the above solution, the material of the dielectric thin film is selected from at least one of silicon dioxide, silicon nitride, and silicon oxynitride.
上述方案中,所述加热电阻为铂金材质。In the above solution, the heating resistor is made of platinum.
上述方案中,所述黑体辐射层材质为铂黑、碳纳米管或多孔硅。In the above solution, the material of the black body radiation layer is platinum black, carbon nanotubes or porous silicon.
一种基于多孔硅的MEMS红外光源的制备方法,包括如下步骤:A preparation method of a porous silicon-based MEMS infrared light source, comprising the following steps:
S1、选自一张硅晶圆作为硅衬底;S1, select a silicon wafer as a silicon substrate;
S2、使用电化学刻蚀方法对硅衬底正面中间区域进行刻蚀,形成多孔硅结构;S2, using an electrochemical etching method to etch the front middle region of the silicon substrate to form a porous silicon structure;
S3、在形成多孔硅结构的硅衬底上使用薄膜生长技术沉积一层介质薄膜;S3, depositing a dielectric thin film on the silicon substrate forming the porous silicon structure by using the thin film growth technology;
S4、在介质薄膜上沉积加热电阻,并通过金属剥离工艺形成图形结构;S4, depositing a heating resistor on the dielectric film, and forming a pattern structure through a metal stripping process;
S5、在加热电阻的中间区域沉积黑体辐射层;S5, deposit a black body radiation layer in the middle area of the heating resistor;
S6、对硅衬底背面多孔硅结构下方进行刻蚀,形成背洞区域。S6 , etching the bottom of the porous silicon structure on the backside of the silicon substrate to form a back hole region.
上述方案中,步骤S2中,所述电化学刻蚀方法中用一定体积分数的HF和无水乙醇按照1:1的体积比混合后进行刻蚀。In the above scheme, in step S2, in the electrochemical etching method, a certain volume fraction of HF and anhydrous ethanol are mixed in a volume ratio of 1:1 and then etched.
上述方案中,步骤S3中,所述薄膜生长技术为PECVD方法。In the above solution, in step S3, the thin film growth technology is a PECVD method.
上述方案中,步骤S4中,使用电子束蒸镀或者溅射工艺沉积加热电阻。In the above solution, in step S4, the heating resistor is deposited by electron beam evaporation or sputtering process.
上述方案中,步骤S5中,通过电镀的方法沉积黑体辐射层。In the above scheme, in step S5, the black body radiation layer is deposited by the method of electroplating.
上述方案中,步骤S6中,采用ICP干法刻蚀技术进行刻蚀形成背洞区域。In the above solution, in step S6, the ICP dry etching technique is used to etch to form the back hole region.
通过上述技术方案,本发明提供的一种基于多孔硅的MEMS红外光源及其制备方法具有如下有益效果:Through the above technical solutions, a porous silicon-based MEMS infrared light source and a preparation method thereof provided by the present invention have the following beneficial effects:
本发明的MEMS红外光源通过在硅衬底上加工成红外光源。在加工光源前首先在硅衬底上制作多孔硅结构,然后在多孔硅结构上面沉积介质薄膜、加热电阻和黑体辐射层,多孔硅结构具有低热导率,机械强度高等优点,极大地提高了MEMS红外光源的可靠性。The MEMS infrared light source of the present invention is processed into an infrared light source on a silicon substrate. Before processing the light source, a porous silicon structure is first fabricated on a silicon substrate, and then a dielectric film, a heating resistor and a black body radiation layer are deposited on the porous silicon structure. The porous silicon structure has the advantages of low thermal conductivity and high mechanical strength, which greatly improves MEMS. Reliability of infrared light sources.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are required in the description of the embodiments or the prior art.
图1为本发明实施例所公开的一种基于多孔硅的MEMS红外光源正视剖面图;1 is a front cross-sectional view of a porous silicon-based MEMS infrared light source disclosed in an embodiment of the present invention;
图2为本发明实施例所公开的一种基于多孔硅的MEMS红外光源俯视图;2 is a top view of a porous silicon-based MEMS infrared light source disclosed in an embodiment of the present invention;
图3为本发明实施例所公开的一种基于多孔硅的MEMS红外光源的制备方法工艺流程图;3 is a process flow diagram of a method for preparing a porous silicon-based MEMS infrared light source disclosed in an embodiment of the present invention;
图4为1mW激光扫描多孔硅样品不同温度下的拉曼峰;Figure 4 shows the Raman peaks of 1mW laser scanning porous silicon samples at different temperatures;
图5为多孔硅结构温度与拉曼峰值的对应关系图;Figure 5 is a graph showing the correspondence between the temperature of the porous silicon structure and the Raman peak;
图6为黑体辐射层吸收率测试结果。Figure 6 shows the test results of the absorptivity of the black body radiation layer.
图中,1、硅衬底;2、介质薄膜;3、加热电阻;4、黑体辐射层;5、背洞区域;6、多孔硅结构。In the figure, 1, silicon substrate; 2, dielectric film; 3, heating resistor; 4, black body radiation layer; 5, back hole region; 6, porous silicon structure.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
本发明提供了一种基于多孔硅的MEMS红外光源,如图1和图2所示,包括由下到上依次设置的硅衬底1、介质薄膜2、加热电阻3和黑体辐射层4,加热电阻3通过金属剥离工艺形成图形结构,黑体辐射层4位于加热电阻3的中间区域,硅衬底1正面位于黑体辐射层4的下方通过刻蚀形成多孔硅结构6,硅衬底1背面位于多孔硅结构6下方通过刻蚀形成背洞区域5。The present invention provides a MEMS infrared light source based on porous silicon, as shown in FIG. 1 and FIG. 2 , including a
本实施例中,介质薄膜2材质选自二氧化硅、氮化硅、氮氧化硅中的至少一种。In this embodiment, the material of the
加热电阻3为铂金材质,黑体辐射层4材质为铂黑、碳纳米管或多孔硅。The
一种基于多孔硅的MEMS红外光源的制备方法,如图3所示,包括如下步骤:A preparation method of a porous silicon-based MEMS infrared light source, as shown in Figure 3, includes the following steps:
S1、选自一张硅晶圆作为硅衬底1。S1. Select a silicon wafer as the
S2、首先对硅衬底1正面使用LPCVD方法沉积一层氮化硅薄膜作为刻蚀掩膜,然后对硅衬底1进行涂胶、曝光、显影、刻蚀等操作步骤,形成中间区域多孔硅刻蚀窗口,使用电化学刻蚀方法对硅衬底1正面中间区域进行刻蚀,形成多孔硅结构6;电化学刻蚀方法中用体积分数为49%的氢氟酸和无水乙醇按照1:1的体积比混合后进行刻蚀,在刻蚀过程中对硅衬底1施加恒定电流,通过称重方法,得到制备的多孔硅结构6的孔隙率为68.44%。S2. First, use the LPCVD method to deposit a layer of silicon nitride film on the front side of the
S3、在形成多孔硅结构6的硅衬底1上使用薄膜生长技术(如PECVD)沉积一层介质薄膜2,并使用椭偏仪测量沉积介质薄膜2的厚度。S3 , depositing a layer of dielectric
S4、对生长介质薄膜2后的硅衬底1正面进行涂覆负性光刻胶、曝光、显影等步骤形成图形结构,使用电子束蒸镀或者溅射工艺沉积一层很薄的钛金属作为过渡层,然后再沉积铂金属,并通过金属剥离工艺形成加热电阻3。S4, the front side of the
S5、对形成加热电阻3结构后的硅衬底1正面进行涂胶、曝光、显影等操作形成黑体辐射层4的电镀窗口,将形成电镀窗口的硅衬底1放入到电镀溶液中,并将硅衬底1接入到电源负极,最后通过恒定电流电镀的方法在加热电阻3的中间区域沉积黑体辐射层4。S5, performing operations such as gluing, exposing, developing, etc. on the front side of the
S6、利用双面对准光刻技术对硅衬底1背面进行涂胶、曝光、显影等操作步骤,形成与正面多孔硅结构6相对应的背面刻蚀窗口,然后采用ICP干法刻蚀技术对晶圆进行刻蚀,形成背洞区域5。S6, using the double-sided alignment photolithography technology to perform the operation steps of gluing, exposing, developing and the like on the back of the
本发明在加工光源前首先在硅衬底1正面制作多孔硅结构6,然后在多孔硅结构6上面沉积介质薄膜2、加热电阻3和黑体辐射层4,通过使用电化学刻蚀方法,将多孔硅制备工艺与半导体加工方法相结合,制备了高机械强度的多孔硅支撑结构,极大地提高了MEMS红外光源的可靠性。In the present invention, before processing the light source, a
在本实施例中,使用拉曼光谱仪测试了所制备的多孔硅结构6的导热系数,拉曼光谱测试热导率的基本原理是拉曼光谱峰值会随着所测物质温度的变化而向左偏移,而拉曼光谱仪的激光器会使对应位置的多孔硅发生温度升高,根据温升与光谱峰值的对应关系可以推导出多孔硅的热导率。多孔硅局部温升与其导热系数的关系:In the present embodiment, the thermal conductivity of the prepared
(1) (1)
其中,为多孔硅的导热系数,P为引起温升的激光功率,a为激光束光斑的直径,为激光引起的温升,为多孔硅结构6温度。 in, is the thermal conductivity of porous silicon, P is the laser power that causes the temperature rise, a is the diameter of the laser beam spot, for the temperature rise caused by the laser, is the temperature of 6 for the porous silicon structure.
使用温控台依次将多孔硅结构6加热至35℃、135℃、235℃、335℃。再用功率为1
mW的激光功率依次对以上温度进行拉曼峰的扫描如图4所示。由此得到拉曼峰y与多孔硅结
构6温度x的对应关系如图5所示,关系曲线为:y=-0.0245x+519.46,并以此计算出的值。最
终根据公式(1)计算得到多孔硅结构6的导热系数为3.5 W/(mK)。
The
使用傅里叶光谱仪(FTIR)测试黑体辐射层4的吸收率,从而推导其辐射效率,测试结果如图6所示,可以看出,在电流密度相同时,电镀时间越长,电镀铂黑辐射层的吸收率也越高,测试结果显示黑体辐射层4在光谱波长2-14μm范围内吸收率大于99%,极大提高了MEMS红外光源的辐射效率。The absorption rate of the black
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210506016.4A CN114604818A (en) | 2022-05-11 | 2022-05-11 | A kind of MEMS infrared light source based on porous silicon and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210506016.4A CN114604818A (en) | 2022-05-11 | 2022-05-11 | A kind of MEMS infrared light source based on porous silicon and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114604818A true CN114604818A (en) | 2022-06-10 |
Family
ID=81869806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210506016.4A Pending CN114604818A (en) | 2022-05-11 | 2022-05-11 | A kind of MEMS infrared light source based on porous silicon and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114604818A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1798799A1 (en) * | 2005-12-16 | 2007-06-20 | STMicroelectronics S.r.l. | Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication |
CN104155472A (en) * | 2014-07-18 | 2014-11-19 | 苏州能斯达电子科技有限公司 | Hot-film wind speed and wind direction sensor and preparation method thereof |
CN104591076A (en) * | 2015-01-07 | 2015-05-06 | 厦门大学 | Nanostructure-based infrared light source chip |
CN106276773A (en) * | 2016-08-31 | 2017-01-04 | 中国科学院微电子研究所 | MEMS infrared light source with suspension structure and preparation method thereof |
CN106374019A (en) * | 2016-08-31 | 2017-02-01 | 中国科学院微电子研究所 | MEMS infrared light source with integrated nano structure and preparation method thereof |
CN113336184A (en) * | 2021-06-04 | 2021-09-03 | 微集电科技(苏州)有限公司 | MEMS infrared light source with closed membrane structure and preparation method thereof |
CN113979402A (en) * | 2021-09-30 | 2022-01-28 | 山东大学 | A kind of MEMS infrared light source and preparation method thereof |
-
2022
- 2022-05-11 CN CN202210506016.4A patent/CN114604818A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1798799A1 (en) * | 2005-12-16 | 2007-06-20 | STMicroelectronics S.r.l. | Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication |
CN104155472A (en) * | 2014-07-18 | 2014-11-19 | 苏州能斯达电子科技有限公司 | Hot-film wind speed and wind direction sensor and preparation method thereof |
CN104591076A (en) * | 2015-01-07 | 2015-05-06 | 厦门大学 | Nanostructure-based infrared light source chip |
CN106276773A (en) * | 2016-08-31 | 2017-01-04 | 中国科学院微电子研究所 | MEMS infrared light source with suspension structure and preparation method thereof |
CN106374019A (en) * | 2016-08-31 | 2017-02-01 | 中国科学院微电子研究所 | MEMS infrared light source with integrated nano structure and preparation method thereof |
CN113336184A (en) * | 2021-06-04 | 2021-09-03 | 微集电科技(苏州)有限公司 | MEMS infrared light source with closed membrane structure and preparation method thereof |
CN113979402A (en) * | 2021-09-30 | 2022-01-28 | 山东大学 | A kind of MEMS infrared light source and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5111507B2 (en) | Method for metallizing semiconductor elements and use thereof | |
CN110862088B (en) | Preparation method of silicon nanoneedle array with ultra-high depth-to-width ratio | |
CN105987935A (en) | Mems gas sensor and manufacturing method thereof | |
CN114604818A (en) | A kind of MEMS infrared light source based on porous silicon and preparation method thereof | |
CN114890373B (en) | A self-supporting MEMS infrared light source and its preparation method | |
JP4213964B2 (en) | Method for promoting reforming reaction by selective heating of radiation gas, wavelength selective heat radiation material and method for producing the same | |
JP4560652B2 (en) | Substrate having anti-reflection layer and manufacturing method thereof | |
CN110182754A (en) | A kind of micro-heater and preparation method thereof with micro-nano structure enhancing | |
CN109399612B (en) | Suspended carbon nanotube array and preparation method thereof | |
CN104882378B (en) | A kind of nanometer dielectric layer preparation method based on oxygen plasma body technology | |
TW200529274A (en) | Characterizing an electron beam treatment apparatus | |
CN114804007B (en) | A MEMS vacuum gauge based on porous silicon insulation layer and its preparation method | |
CN205222679U (en) | Calibrate black matrix light source | |
CN109216535A (en) | A kind of measurement fuel cell local temperature film thermocouple production method | |
CN112103385A (en) | Structure for enhancing photoelectric effect and preparation method thereof | |
CN103091692B (en) | Based on the impedance type nickel film calorimeter and preparation method thereof of laser etching method | |
CN106841285A (en) | A kind of simple novel film thermal property test structure | |
TWI739993B (en) | Surface source black body | |
CN106299123A (en) | A kind of method being patterned with machine electrode PEDOT:PSS | |
JPH10335312A (en) | Patterning method using radical reaction | |
CN101126730A (en) | Electrode part of a gas sensitive sensor element and its manufacturing method | |
Daud et al. | Image Reversal Resist Photolithography of Silicon-Based Platinum and Silver Microelectrode Pattern | |
CN106653952B (en) | A kind of preparation method of the middle infrared antireflective micro-structure of silicon | |
TWI577038B (en) | Production method of light and heat sensor and its product | |
TW202415963A (en) | Calibration method of temperature of graphene heating wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220610 |