CN114600771B - Landscape type moss spore large-scale mutagenesis screening method - Google Patents

Landscape type moss spore large-scale mutagenesis screening method Download PDF

Info

Publication number
CN114600771B
CN114600771B CN202210278946.9A CN202210278946A CN114600771B CN 114600771 B CN114600771 B CN 114600771B CN 202210278946 A CN202210278946 A CN 202210278946A CN 114600771 B CN114600771 B CN 114600771B
Authority
CN
China
Prior art keywords
moss
landscape
culture
mutant
spores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210278946.9A
Other languages
Chinese (zh)
Other versions
CN114600771A (en
Inventor
刘莉
陈刘柱
章慧青
陈则希
段柳
温从发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202210278946.9A priority Critical patent/CN114600771B/en
Publication of CN114600771A publication Critical patent/CN114600771A/en
Application granted granted Critical
Publication of CN114600771B publication Critical patent/CN114600771B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/30Moss
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H11/00Bryophytes, e.g. mosses, liverworts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N3/00Spore forming or isolating processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Abstract

The invention provides a landscape moss spore large-scale mutagenesis screening method, and belongs to the technical field of biological engineering. The landscape moss mutants are screened by taking landscape moss spores as materials and carrying out mutagenesis in a mode of soaking the moss spores by using EMS mutagen solution and observing and comparing the phenotypes of the mutants with data. The landscape new variety with stable inheritance can be obtained in a laboratory for 4 months, the breeding time is greatly shortened, the method is more suitable for moss landscape construction and three-dimensional greening landscape construction with complex patterns, and the method has important guiding significance for new character cultivation of landscape moss plants. The mutant obtained by the method has the advantages of graceful plant type, higher appreciation value, landscape moss application potential, normal growth and development of the mutant and normal completion of life history. In addition, the method disclosed by the invention is simple to operate, accurate, stable and reliable in identification result, capable of realizing batch screening and rapid detection of the mutants and high in mutation efficiency.

Description

Landscape type moss spore large-scale mutagenesis screening method
Technical Field
The invention belongs to the technical field of bioengineering, and particularly relates to a landscape moss spore large-scale mutagenesis screening method.
Background
There are a large number of bryophytes worldwide, about 23000 species, including about 15000 mosses, more than 8000 species and more than 100 species of horny moss. Most of the moss plants are tiny in individuals, simple in structure and different in form, and the growth characteristics of moss are combined with gardening landscaping art, so that a novel natural and beautiful moss landscape can be created. In addition, the moss has strong adaptability, basically has no plant diseases and insect pests, is emerald and evergreen, grows regularly without trimming, and the landscape after landscaping can be kept for a long time. The moss plant is used as a new landscape plant, and brings new ornamental feelings and is different from the unique application prospect of other plants due to the unique morphological characteristics of the moss plant. However, a good new species of landscape moss is lacked in the current market of bryophytes, a perfect planting and culturing system is lacked, and a large amount of wild moss is excessively utilized under the drive of economic benefits, so that the survival of bryophytes and the sustainable utilization of bryophyte resources are seriously threatened. The method is suitable for only a few commercial moss, deeply excavates moss resources, improves the existing moss variety, and has important significance for protecting the diversity of wild moss germplasm resources and the healthy and rapid development of the moss industry by breeding new varieties of moss which are more suitable for commercial application.
Physcomitrella patens (Physcomitrella patens) belongs to the family of Dictamaceae, the genus Physcomitrella, and is distributed in Europe, asia, africa and oceania, and in Zhang Jiajie region of Hunan province in China. The physcomitrella patens are short, yellow-green, glossy and sparse. Its stem is thin and short. The blades are in the shape of an oval or a lance, the blades at the base of the stem are smaller, and the middle rib is single and slender. The physcomitrella patens is applied to the market of moss at present, and is usually planted around 'mountain stones', 'plains', 'waterfalls' and the like of a moss wall to be used as a main scene or a spot.
Ethyl Methylsulfonate (EMS) is a chemical mutagen with wide application, and has high mutagenesis efficiency and good mutagenesis effect. The application of EMS mutagenesis in plant breeding can break through the traditional plant breeding mode, and the obtained mutation population has important significance in cultivating new plant varieties and enriching plant germplasm resources. At present, EMS mutagenesis of plant seeds is mainly used in the field, related research of mutagenesis of moss spores by EMS is not available, and moss is a gardening plant and a landscape plant, so how to quickly obtain a moss mutant material with excellent properties in a large scale so as to meet market demands, and a suitable method does not exist at present.
Disclosure of Invention
In view of the above, the invention aims to provide a landscape type moss spore large-scale mutagenesis screening method, which can greatly shorten breeding time and obtain moss mutant materials with excellent properties on a large scale, and the moss mutant materials are more suitable for moss landscaping and three-dimensional greening landscaping with complex patterns.
In order to achieve the above object, the present invention provides the following technical solutions:
the invention provides a landscape moss spore large-scale mutagenesis screening method, which comprises the following steps: EMS mutagen solution with the concentration of 2% -4% is adopted to soak and process the moss spores for mutagenesis; after the mutagenized spores develop protonema, carrying out independent culture, carrying out phenotype observation and datamation comparison on the mutants obtained by culture, and screening materials with obvious difference from wild types in the aspect of phenotype.
Preferably, the EMS mutagen solution is soaked for 60-90 min.
Preferably, the moss comprises Physcomitrella patens.
Preferably, the method for obtaining the moss spores comprises the following steps: transferring the gametophyte of the moss to a substrate for culture, and culturing the gametophyte of the moss with the photoperiod of 8h day/16 h night and the light intensity of 60-80 mu mol phosns m -2 s -1 Moss spores are induced at the culture temperature of 16 ℃ for 60-90 days.
Preferably, the method further comprises the following steps: screening to obtain a material with obvious difference in phenotype with a wild type, carrying out subculture treatment on the material to obtain a subculture mutant, carrying out phenotype observation and datamation comparison on the subculture mutant, and screening the material with obvious difference in phenotype with the wild type.
Preferably, the method of the subculture processing comprises the following steps: mixing the newly grown protonema with sterile water, grinding and crushing the protonema to obtain a moss suspension, and inoculating the moss suspension to a culture medium for culture.
Preferably, the phenotypic observation and data comparison includes plant height, leaf angle, leaf extension distance (the vertical distance from the leaf tip to the plant stem), and leaf length.
Preferably, the medium used for the culture is BCDAT medium.
Preferably, the temperature of the culture is 25 ℃ and the light intensity is 60-80 mu mol phosns m -2 s -1 The photoperiod was 16h light/8 h dark.
The invention also provides application of the moss obtained by the method in greening landscaping.
The invention has the beneficial effects that:
the invention provides a landscape moss spore large-scale mutagenesis screening method, which is characterized in that EMS mutagenesis technology is firstly applied to breeding of a new gardening ornamental plant moss, and stable and inherited landscape new species can be obtained in a laboratory for 4 months by combining physcomitrella patens tissue culture technology, so that breeding time is greatly shortened, and breeding efficiency is improved. Compared with wild physcomitrella patens, the mutant obtained by the method has obvious differences in the characters such as plant height, leaf angle, leaf stretching distance, leaf length and the like, the selected mutant has beautiful plant type, higher appreciation value and landscape moss application potential, and the mutant grows normally and can normally complete life history.
In addition, the method is simple to operate, the mutation efficiency is high, the obtained mutant has stable and reliable character heredity, and batch screening and rapid detection of the mutant can be realized.
Drawings
Fig. 1 shows the results of comparing the data of mutant plants Pp73, pp23 with wild type plants (WT) in terms of plant height, leaf angle, leaf extension distance, leaf length, wherein a is the significance analysis of the three in terms of leaf extension distance, B is the significance analysis of plant height, C is the significance analysis of leaf angle, D is the significance analysis of leaf length, ns represents P >0.05 with no significant difference,. Indicates P <0.05,. Indicates P <0.01,. Indicates P <0.001,. Indicates P <0.0001;
FIG. 2 is the observation results of the appearance characteristics of the mutant plants Pp73 and Pp23 and the wild type plants, wherein A is the wild type, B is the mutant Pp73, and C is the mutant Pp23;
FIG. 3 is the result of observing the appearance characteristics of the mutant plants obtained by screening in different embodiments, wherein A is the wild type, B is the mutant Pp73, C is the mutant Pp23, D is the mutant Pp38, E is the mutant Pp59, F is the mutant Pp72, G is the mutant Pp76, and H is the mutant Pp87;
FIG. 4 shows the results of mutagenic germination rates of 1% EMS mutagen at different times;
FIG. 5 shows the results of mutagenic germination rates of 4% EMS mutagen at different times.
Detailed Description
The invention provides a landscape moss spore scale mutagenesis screening method, which comprises the following steps: EMS mutagen solution with the concentration of 2% -4% is adopted to soak and process the moss spores for mutagenesis; after the mutagenized spores develop protofilament, independent culture is carried out, phenotype observation and data comparison are carried out on the mutants obtained by culture, and materials with obvious difference with wild types in the aspect of phenotype are screened.
The specific source of the EMS mutagen is not particularly limited, the concentration of the EMS mutagen solution is preferably 3% -4%, more preferably 4%, and the soaking treatment time by using the EMS mutagen solution is preferably 60min-90min, more preferably 70min-80min. In the present invention, the EMS mutagen solution is preferably prepared by diluting the EMS mutagen with phosphate buffer, and the concentration of the phosphate buffer is preferably 0.1mol/ml.
In the present invention, the moss preferably includes physcomitrella patens. The method adopts EMS mutagen solution to soak and treat the bryophyte spores for mutagenesis, and the preferred method for obtaining the bryophyte spores comprises the following steps: transferring the gametophyte of the moss to a substrate for culture, and culturing the gametophyte of the moss with the photoperiod of 8h day/16 h night and the light intensity of 60-80 mu mol phosns m -2 s -1 The moss spores are induced at the culture temperature of 16 ℃ for 60-90 days. Wherein the light intensity is preferably 65-75 μmolphototons m -2 s -1 . ObtainAfter the moss spores are obtained, the moss spores with basically consistent size and better spore shape are preferably selected as the mutagenic material.
After mutagenesis of spores, bryophyte spore explants are sterilized, then added into double distilled water, spores are punctured in a liquid environment, and the mixed solution is sucked into a culture medium for culture. The specific method for sterilizing the moss spore explants is not particularly limited, and the moss spore explants are preferably sterilized by using a NaCl solution, the concentration of the NaCl solution is preferably 10%, and the sterilization time is preferably 4-6min, and more preferably 5min. After the mutagenized spores develop protonema, carrying out independent culture, carrying out phenotype observation and datamation comparison on the mutants obtained by culture, and screening materials with obvious difference from wild types in the aspect of phenotype.
In the present invention, the phenotypic observation and datamation preferably includes plant height, leaf angle, leaf extension distance and leaf length. In the present invention, the leaf extension distance refers to the vertical distance from the leaf tip to the plant stem. Comparing the characters with wild type bryophytes, and if one character has obvious difference with the wild type bryophyte, the mutation success can be shown.
In the present invention, in order to obtain mutant material with a more stable inheritance of a trait, it is preferable to further include the steps of: screening to obtain a material with obvious difference in phenotype from a wild type, carrying out subculture treatment on the material to obtain a subculture mutant, carrying out phenotype observation and data comparison on the subculture mutant, and screening the material with obvious difference in phenotype from the wild type. The specific characteristics of the secondary mutant subjected to phenotype observation and data comparison are the same as above, and are not described herein again.
The number of the secondary treatments is not particularly limited, and the interval between the two secondary treatments is preferably 6 to 8 days, and more preferably 7 days. The method of the subculture preferably comprises the steps of: mixing the newly grown protonema with sterile water, grinding and crushing the protonema to obtain a moss suspension, and inoculating the moss suspension to a culture medium for culture.
In the method of the invention, after the spores are cultured to grow protofilaments, the protofilaments are culturedThe bodies are cultured independently, the culture medium used in the steps is preferably BCDAT culture medium, the specific proportion of the BCDAT culture medium is not particularly limited in the invention, and the BCDAT culture medium preferably comprises Stock B, stock C, stock D, alternative TES, agar, water and CaCl 2 ·2H 2 And (O). The culture conditions in the above-mentioned culture step are preferably at 25 ℃ and 60 to 80. Mu. Mol of phosns m -2 s -1 Light intensity, 16h light/8 h dark light period, preferably 65-75 μmol photons m -2 s -1
The invention also provides application of the moss obtained by adopting the method in greening landscaping.
The technical solutions provided by the present invention are described in detail below with reference to examples, but they should not be construed as limiting the scope of the present invention.
Example 1
Transferring gametophyte of Physcomitrella patens to matrix (compressed matrix block of Seifenfy imported Norway) for culture, with photoperiod of 8h day/16 h night and light intensity of 60-80 μmol photons m -2 s -1 Inducing physcomitrella patens spores at the culture temperature of 16 ℃ for 60-90 days, and collecting the spores with basically consistent sizes and better spore shapes as mutagenesis materials. Diluting EMS mutagen (SIGMA M0880-25G Ethyl Methanesulfonate) with 0.2mol/ml phosphate buffer solution (pH 7.0) to EMS mutagen concentration of 4% to obtain EMS mutagen solution, and soaking the physcomitrella patens spores in the EMS mutagen solution with 4% of volume at 25 ℃ for mutagenesis for 90min.
After mutagenesis, the bryophyte spores are subjected to explant sterilization by using NaCl solution with the concentration of 10% (diluted by double distilled water) for 5min, the spores are washed by using the double distilled water for 6-8 times, then 1ml of double distilled water is added, the spores are punctured in a liquid environment, and the mixed solution is sucked into a BCDAT culture medium (the proportion of the BCDAT culture medium is shown in tables 1 and 2) for culture. And (5) counting the mutagenic germination rate after 7 days of culture.
After the spores developed protonema, picking seedlings and culturing the seedlings separately to obtain mutant plants Pp73 and Pp23. The culture conditions in the above steps are all as follows: the temperature is 25 ℃, and the light intensity is 60-80 mu mol photons m -2 s -1 And the photoperiod is 16h, and the light is 8h and dark.
TABLE 1 BCDAT Medium formulation
Figure BDA0003552852670000051
Figure BDA0003552852670000061
TABLE 2 BCDAT culture medium mother liquor preparation formula
Figure BDA0003552852670000062
Observation of mutant plants from wild type plants (WT) (wild type plants means repeating the above experiment process except replacing EMS mutagen solution with ddH 2 O), leaf angle, leaf extension distance, leaf length, and the numerical values of the above properties were compared, and the results are shown in FIG. 1, and the overall appearance of the mutant plants and wild-type plants is shown in FIG. 2.
As can be seen from FIG. 1, the differences between the mutant Pp73 and the WT in leaf extension distance and leaf length are very significant, the plant height is different, and no obvious difference exists in leaf angle. The differences of the mutant Pp23 and WT in leaf extension distance, plant height and leaf length are very obvious, and the leaf angle is also different. As can be seen from FIG. 2, the appearance characteristics of the mutants Pp73 and Pp23 were very different from those of WT.
Example 2
The mutant material obtained by screening in the embodiment 1 is ground and subcultured once every 7 days, and grinding subculture is carried out for three times, wherein the grinding subculture for each time comprises the following specific steps: scraping the protonema newly grown on the culture dish by using sterile forceps, mixing the protonema with 10mL of sterile water, grinding and crushing the protonema by using a grinder, preparing the protonema into a moss suspension, inoculating the moss suspension to a BCDAT culture medium for culture, and placing the inoculated culture dish in a light incubator for culture. The culture conditions in the above steps are all as follows: the culture temperature is 25 ℃, the light intensity is 60-80 mu mol photons m -2 s -1 And the photoperiod is 16h, and the light is 8h and dark. Continuously grinding and subculturing to obtain the mutant material with stable inheritance of characters.
And (3) performing phenotype observation on the mutant capable of being stably inherited, observing the plant height, the leaf angle, the leaf stretching distance and the leaf length of the mutant plant and a wild plant (WT), comparing the numerical values of the characters, and screening the landscape type physcomitrella patens mutant with novel phenotype (compared with the WT, the physcomitrella patens mutant is considered to be novel no matter which character is obviously different) as a physcomitrella patens landscape application new strain.
Example 3
The difference from example 1 is that in the EMS mutagenesis treatment, the time for soaking the EMS mutagen solution in mutagenesis is 60min, and the rest is the same as example 1.
Example 4
The difference from example 1 is that in EMS mutagenesis treatment, the concentration of EMS mutagen solution used is 3%, and the mutagenesis soaking time is 60min, and the rest is the same as example 1.
Example 5
The difference from example 1 is that in EMS mutagenesis treatment, the EMS mutagen solution is used at a concentration of 2%, and the mutagenesis soaking time is 90min, and the rest is the same as example 1.
The appearance characteristics of the mutant plants obtained by screening in examples 1 and 3-5 are shown in FIG. 3.
Comparative example 1
The difference from example 1 is that in EMS mutagenesis treatment, the concentration of EMS mutagen solution is 1%, and the mutagenesis soaking time is 10min, 1h and 2h respectively, and the rest is the same as example 1. And (5) counting the mutagenic germination rate after 7 days of culture. In contrast to wild type Physcomitrella patens (WT), the WT group was constructed using ddH 2 The procedure of example 1 was repeated except for soaking. The results are shown in FIG. 4. Although the mutation treatment of the EMS mutagen with low concentration can obtain higher mutagenic germination rate, the mutation efficiency is low, and finally, a more ideal mutant plant cannot be obtained.
Comparative example 2
The difference from example 1 is that in the EMS mutagenesis treatment, the time for soaking the EMS mutagen solution in mutagenesis is 10min, and the rest is the same as example 1.
Comparative example 3
The difference from example 1 is that in the EMS mutagenesis treatment, the time for soaking the EMS mutagen solution in mutagenesis is 30min, and the rest is the same as example 1.
Comparative example 4
The difference from example 1 is that in EMS mutagenesis treatment, the time for mutagenesis soaking of EMS mutagen solution is 120min, and the rest is the same as example 1.
The mutagenic germination rate results of examples 1 and 3 and comparative examples 2 to 4 were compared, wherein the WT group was performed using ddH 2 The procedure of example 1 was repeated except for O-immersion. The results are shown in FIG. 5. Although a high mutagenic germination rate can be obtained by performing the mutagenesis treatment in a 4% EMS mutagen solution for a short time (10 min, 30 min), a desirable mutant plant cannot be obtained in the end.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.

Claims (2)

1. A landscape moss spore scale mutagenesis screening method is characterized by comprising the following steps: EMS mutagen solution with the concentration of 2% -4% is adopted to soak and process the moss spores for mutagenesis; after the mutagenized spores develop protofilaments, performing independent culture, performing phenotype observation and datamation comparison on the mutants obtained by culture, and screening materials with obvious difference with wild types in the aspect of phenotypes;
the EMS mutagen solution is soaked for 60-90 min;
the moss is physcomitrella patens;
the phenotype observation and data comparison comprises plant height, leaf included angle, leaf extending distance and leaf length;
the method for obtaining the moss spores comprises the following steps: culturing gametophyte of moss in matrix with photoperiod of 8h day/16 h night and light intensity of 60-80 μmol photons m -2 s -1 Inducing moss spores at the culture temperature of 16 ℃ for 60-90 d;
also comprises the following steps: screening to obtain a material with obvious difference in phenotype from a wild type, carrying out subculture treatment on the material to obtain a subculture mutant, carrying out phenotype observation and data comparison on the subculture mutant, wherein the phenotype observation and data comparison comprise plant height, leaf included angle, leaf extension distance and leaf length, and screening the material with obvious difference in phenotype from the wild type;
the method for the subculture processing comprises the following steps of: mixing the newly grown protonema with sterile water, grinding and crushing the protonema to obtain a moss suspension, and inoculating the moss suspension to a culture medium for culture;
the culture medium used for culturing is BCDAT culture medium;
the temperature of the culture is 25 ℃, and the light intensity is 60-80 mu mol phosns m -2 s -1 The photoperiod was 16h light/8 h dark.
2. Use of moss obtained by the process of claim 1 for landscaping.
CN202210278946.9A 2022-03-18 2022-03-18 Landscape type moss spore large-scale mutagenesis screening method Active CN114600771B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210278946.9A CN114600771B (en) 2022-03-18 2022-03-18 Landscape type moss spore large-scale mutagenesis screening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210278946.9A CN114600771B (en) 2022-03-18 2022-03-18 Landscape type moss spore large-scale mutagenesis screening method

Publications (2)

Publication Number Publication Date
CN114600771A CN114600771A (en) 2022-06-10
CN114600771B true CN114600771B (en) 2023-03-14

Family

ID=81864815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210278946.9A Active CN114600771B (en) 2022-03-18 2022-03-18 Landscape type moss spore large-scale mutagenesis screening method

Country Status (1)

Country Link
CN (1) CN114600771B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020064816A1 (en) * 1999-12-16 2002-05-30 Jens Lerchl Moss genes from physcomitrella patens encoding proteins involved in the synthesis of carbohydrates
CN109089882B (en) * 2018-08-30 2022-02-08 云南省农业科学院花卉研究所 Moss tissue culture and seedling culture method directly induced by spores
CN109937881A (en) * 2019-04-21 2019-06-28 中国科学院昆明植物研究所 A kind of rapid propagation method of bright leaf moss protonema and gametophyte
CN111944736B (en) * 2020-07-06 2022-06-24 深圳大学 Physcomitrella patens protoplast and preparation method thereof
CN112335508B (en) * 2020-11-06 2021-05-18 中国科学院成都生物研究所 Application method of moss sporophyte suspension containing chitosan/glucan in bare land greening
CN113349052A (en) * 2021-07-12 2021-09-07 中国海洋大学 Method for constructing laver mutant library
CN113528535B (en) * 2021-07-13 2023-01-31 丽水市润生苔藓科技有限公司 Orphan gene PpDRO for improving stress resistance of plants and application thereof
CN113475394B (en) * 2021-07-19 2022-09-30 丽水市润生苔藓科技有限公司 Cultivation method of polyploid of Moss patens

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"THE INDUCTION OF BIOCHEMICAL AND MORPHOLOGICAL :MUTANTS IN THE M:OSS PHYSCOMITRELLA PATENSl";Engel;《Amer.J.Bot.》;19681231;第55卷(第4期);第438-446页 *
化学诱变剂EMS对小麦条锈菌夏孢子萌发率的影响;王国芬等;《西北农林科技大学学报(自然科学版)》;20040725(第07期);全文 *
植物分子生物学研究极具前景的模式系统――小立碗藓;赵奂等;《植物学通报》;20040430(第02期);全文 *
苔藓植物的组织培养;高永超等;《植物生理学通讯》;20021220(第06期);全文 *

Also Published As

Publication number Publication date
CN114600771A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
US20220369648A1 (en) Endophytic falciphora oryzae fo-r20 and its application
CN102907318B (en) A kind of method utilizing the fast numerous pseudo-ginseng regeneration plant of bioreactor culture somatic embryo
CN108849528A (en) A method of obtaining eremochloa ophiuroides mutant
CN115537346B (en) Mucillus mucilaginosus for promoting growth and differentiation of sansevieria trifasciata and application thereof
CN109247238A (en) A kind of five leaflet maple tissue culture outside sprout-cultivating-bottle radication methods
CN106417011A (en) Wild bletilla striata tissue culture rapid propagation method
CN109937881A (en) A kind of rapid propagation method of bright leaf moss protonema and gametophyte
CN107864865A (en) A kind of efficient hardening technology and domesticating cultivation method of haw ginseng tissue-cultured seedling
CN101124892B (en) Cymbidium edaphic orchids seed aseptic seeding growing seedlings method
CN101180950B (en) Tissue cultivation rapid breeding method of spring dendrobium stem
CN109294930A (en) A method of obtaining dendrobium candidum plantlet stage mycorrhizal fungi
CN105145366B (en) A kind of method of dwarf lilyturf EMS homogeneous mutant library rapid build
CN108243959A (en) It is a kind of using yellow fine strain of millet wood stem section as the highly efficient regeneration method of explant
CN109601387B (en) Tissue culture propagation method of osmunda vachellii with GGB route induced by juvenile sporocyst group
CN114600771B (en) Landscape type moss spore large-scale mutagenesis screening method
CN108651284B (en) Method for inducing fast callus of machilus thunbergii
CN107173225B (en) The method for carrying out androgenesis with Sweet Potato Leaf
CN114350546B (en) Pseudomonas bacteria and their use in promoting plant growth, flowering and fruit setting
CN109348952A (en) A method of improving dry land willow salt resistant character
CN105638188B (en) A kind of method for culturing seedlings of new pteris fern
CN101606489B (en) Cultivating method for inducing variation plant variety by using strawberry petal in remote mountains
CN110178733B (en) Seedling rapid propagation culture medium and seedling rapid propagation method for cymbidium sinense protocorm
CN113475394A (en) Cultivation method of polyploid of mosses of Ming Dynasty
CN112616663A (en) Method for greatly shortening planting period of lilium davidii var davidii and rapidly propagating seedlings
CN102499084B (en) Quick-breeding method of directly inducing and mycorrhizal seedlings of ledum plant mycorrhizal in test tube

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant