CN114600765A - Method for creating weak light sensitive japonica rice germplasm - Google Patents

Method for creating weak light sensitive japonica rice germplasm Download PDF

Info

Publication number
CN114600765A
CN114600765A CN202210281245.0A CN202210281245A CN114600765A CN 114600765 A CN114600765 A CN 114600765A CN 202210281245 A CN202210281245 A CN 202210281245A CN 114600765 A CN114600765 A CN 114600765A
Authority
CN
China
Prior art keywords
ser
gly
leu
asp
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210281245.0A
Other languages
Chinese (zh)
Other versions
CN114600765B (en
Inventor
孙立亭
林添资
龚红兵
杨军
景德道
余波
李闯
钱华飞
曾生元
杜灿灿
胡庆峰
巫章平
周义文
费云燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Institute of Agricultural Sciences Jiangsu Hilly Area
Original Assignee
Zhenjiang Institute of Agricultural Sciences Jiangsu Hilly Area
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Institute of Agricultural Sciences Jiangsu Hilly Area filed Critical Zhenjiang Institute of Agricultural Sciences Jiangsu Hilly Area
Priority to CN202210281245.0A priority Critical patent/CN114600765B/en
Publication of CN114600765A publication Critical patent/CN114600765A/en
Application granted granted Critical
Publication of CN114600765B publication Critical patent/CN114600765B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Abstract

The invention provides a method for creating weak light sensitive japonica rice germplasm, which comprises the following steps: (1) selecting a japonica rice strain 1 with the genotype of Hd1+ Ehd1+ SDG725 and a japonica rice strain 2 with the genotype of Hd1+ Ehd1+ SDG725 as parents at the heading stage of rice; (2) performing continuous selfing after hybridization, and obtaining a recombinant inbred line population by using a single-seed transmission method; (3) the homozygous family lines with different genotype combinations are screened by using a molecular marker technology, the family lines with small variation in the period of the full-length sowing period (days from sowing to heading) and yield increasing potential under the conditions of long sunlight and short sunlight are selected, and the new japonica rice line with the heading period genotype of hd1+ ehd1+ SDG725 (late-maturing line) or hd1+ ehd1+ SDG725 (early-maturing line) is obtained. The weakly sensitive japonica rice line cultivated by the method can improve the planting adaptability in the rice region in the south, and can selectively meet the intricate stubble requirements in different popularization areas. In addition, the method is beneficial to phenotype selection of important agronomic traits in shuttle breeding and high-throughput genotyping of target genes Ehd1 and SDG725, and the breeding efficiency is improved.

Description

Method for creating weak light sensitive japonica rice germplasm
Technical Field
The invention belongs to the field of crop genetic breeding, and particularly relates to a method for creating weak light-sensitive japonica rice germplasm.
Background
The area of japonica rice in China is about 1.5 hundred million mu throughout the year, and almost 100 percent of japonica rice directly guarantees the safety of grains; the method is mainly distributed in a northeast rice region and a Jianghuai rice region, and the planting areas of the three provinces of the northeast and Jiangsu respectively account for 43.0 percent and 26.0 percent of the total area of japonica rice in China. With the economic development and the improvement of the living standard of people, the consumption area of polished round-grained rice is rapidly expanded from the original northeast, Jingjin Shanghai and Jiangzhe to the large and medium cities in the middle south, south China and the like, and the south China becomes the largest polished round-grained rice consumption area in China. In order to better meet the increasing demand of people in south for high-quality polished round-grained rice consumption, China proposes a 'north polished round-grained south movement' project which is mainly used for improving the quality of rice.
The proper growth period is the first condition for ensuring the regional adaptability in the introduction of the north japonica south shift. Compared with indica rice subspecies, most japonica rice varieties have stronger photoperiod sensitivity in the heading stage, and if the varieties bred in Jianghuai rice areas are introduced to southern low-latitude rice areas, the growth period is shortened, the biological yield is reduced, and the yield is finally influenced. Meanwhile, with the expanding application of simplified planting modes (machine transplanting and direct seeding rice), compared with the traditional artificial transplanting, the sowing period is delayed to different degrees due to previous stubbles, the whole growth period is correspondingly shortened, and the yield potential of varieties is limited. The photoperiod insensitive japonica rice variety is bred and popularized, and the temperature and light adaptability under the time-space transformation can be better solved; genes in the heading stage are accurately regulated and controlled from a molecular level, weak light sensitive japonica rice germplasm is created, and germplasm and a method can be provided for efficiently breeding photoperiod insensitive japonica rice varieties.
Hd1 and Ehd1 are two major genes for regulating the heading stage of rice. The combination of different genotypes of the two genes plays an important role in the rice planting adaptability. Hd1 shows the expression of circadian rhythm, Ehd1 is induced and expressed by blue light, and research shows that Hd1 gene function deficiency can enhance the adaptability of the japonica rice variety in temperate regions to tropical regions; the natural mutant with single nucleotide substitution from G to A in the GARP motif of the Ehd1 gene generates Ehd1 non-functional allele, Ehd1 gene makes japonica rice varieties in some ecoregions adapt to low-latitude short-day climatic conditions, and has good yield traits.
However, only creating a simple germplasm of japonica rice containing hd1+ ehd1 with weak photosensitivity cannot meet the complex crop rotation requirements in different popularization areas, such as the more specific requirements of local farming systems, safe heading stages and optimal filling stages on the heading stage of a variety, and the more precise molecular regulation and control of the heading stage (heading stage) are required.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the problems in the prior art, the invention aims to provide a method for creating weak light sensitive japonica rice germplasm.
The technical scheme is as follows: the purpose of the invention can be realized by the following technical scheme:
a method for creating weak light sensitive japonica rice germplasm comprises the following steps:
(1) selecting japonica rice line 1 with the genotype of Hd1+ Ehd1+ SDG725 and japonica rice line 2 with the genotype of Hd1+ Ehd1+ SDG725 at the heading stage of rice as parents;
(2) continuously selfing after hybridization, preferably continuously selfing for 8 generations, and obtaining a recombinant inbred line population by using a single-seed transmission method;
(3) the molecular marker technology is utilized to screen homozygous families with different genotype combinations, and the families with small amplitude and yield increasing potential in the full-calendar period are selected under the conditions of long sunlight and short sunlight, so that the new japonica rice line with the heading period genotype of hd1+ ehd1+ SDG725 or hd1+ ehd1+ SDG725 is obtained.
Preferably:
in the step (1), the japonica rice line 1 is Zhenjing 2400; the japonica rice line 2 is Jiahe 218.
In the step (1), the CDS sequence of the Hd1 allele is shown as SEQ ID NO.1 or SEQ ID NO. 2; the CDS sequence of the Ehd1 allele is shown as SEQ ID NO.3 or SEQ ID NO. 4; the CDS sequence of the SDG725 allele is shown in SEQ ID NO.5 or SEQ ID NO. 6.
In the step (1), the amino acid sequence coded by the Hd1 allele is shown as SEQ ID NO.7 or SEQ ID NO. 8; the amino acid sequence coded by the Ehd1 allele is shown as SEQ ID NO.9 or SEQ ID NO. 10; the amino acid sequence encoded by the SDG725 allele is shown in SEQ ID NO.11 or SEQ ID NO. 12.
In the step (3), the Hd1 molecule is marked as H1, the sequence of the forward primer is shown as SEQ ID NO.13, and the sequence of the reverse primer is shown as SEQ ID NO. 14.
In the step (3), the functional marker Ehd1 is H10 and is a KASP marker, the sequence of the forward primer Ehd1-F-G is shown as SEQ ID NO.15, the sequence of the forward primer Ehd1-F-A is shown as SEQ ID NO.16, and the sequence of the reverse universal primer Ehd1-R is shown as SEQ ID NO. 17.
Further preferably, the 5 'end of the forward primer Ehd1-F-G is added with a fluorescence signal label of carboxyfluorescein FAM, and the 5' end of the forward primer Ehd1-F-A is added with a fluorescence signal label of hexachlorofluorescein phosphoramidate HEX.
In the step (3), the functional label of SDG725 is H11 and is KASP label, the sequence of forward primer SDG725-F-A is shown as SEQ ID NO.18, the sequence of forward primer SDG725-F-G is shown as SEQ ID NO.19, and the sequence of reverse universal primer SDG725-R is shown as SEQ ID NO. 20.
Further preferably, the fluorescent signal label of hexachlorofluorescein phosphoramidate HEX is added to the 5 'end of the forward primer SDG725-F-A, and the fluorescent signal label of carboxyfluorescein FAM is added to the 5' end of the forward primer SDG 725-F-G.
In the step (3), the new japonica rice line with the heading stage genotype of hd1+ ehd1+ SDG725 (late maturing line) or hd1+ ehd1+ SDG725 (early maturing line) shows photoperiod insensitivity, and the hd1+ ehd1+ SDG725 family is matured for three days earlier than the hd1+ ehd1+ SDG725 family, so that the complicated stubble requirements in different popularization areas can be met, and the precise regulation and control on the heading stage can be realized on a molecular level.
The invention aims to precisely regulate and control the micro-effect gene to adapt to an intricate and complex farming system (stubble) in the genetic background of Hd1 and Ehd1 functional deletion types. In a plurality of breeding schemes, by means of the hybridization combination of Zhenjun 2400 (the preservation numbers are CCTCC NO: P201810, Hd1 and Ehd1 are both of loss-of-function type, and SDG725 is of variant type) and variety Jiahe 218, the strain with the genotype of Hd1+ Ehd1+ SDG725 or Hd1+ Ehd1+ SDG725 is screened by means of a high-flux molecular marking technology, and the creation of weakly-sensitive japonica rice variety (germplasm) can be effectively realized.
The micro-effect gene SDG725 for regulating heading stage in rice encodes H3K36 methyltransferase which can promote rice flowering, and regulates heading stage of rice by H3K36me2/3 mediated flowering related gene activation. The invention constructs a homozygous family of different genotype combinations of Hd1, Ehd1 and SDG725, and discovers that Hd1 delays heading and Ehd1 promotes heading under the long-day condition; under short day conditions, Hd1 promoted scion, Ehd1 also appeared to promote scion; the two families with the loss of gene functions are not influenced by the length of sunshine and show the insensitive photoperiod. Under the condition that the genes Hd1 and Ehd1 are both of a loss-of-function type (Hd1+ Ehd1), compared with a SDG725 mutant family, the SDG725 normal type family has the advantages that the flowering is promoted (3 days earlier) and is not influenced by the length of sunshine, one or both of the two genes Hd1 and Ehd1 are functional, and the flowering promoting effect of the SDG725 is not obvious (0.5 days earlier). This indicates that the heading stage of the SDG725 is regulated and controlled under the background that the genes Hd1 and Ehd1 are both in a loss-of-function type (Hd1+ Ehd1), and the difference of the heading stage of the Hd1+ Ehd1+ SDG725 family and the heading stage of the Hd1+ Ehd1+ SDG725 family is 3 days, so that the complex crop rotation requirements in different popularization areas can be met, and the precise regulation and control of the heading stage are realized on a molecular level.
Has the advantages that: compared with the prior art, the invention has the following advantages:
(1) contributes to the selection of important agronomic trait phenotypes in shuttle breeding (Hainan additive generation). Due to the action of the weakly-sensitized gene hd1+ ehd1, the growth period is prolonged in the added generation of south China complex, the growth quantity is increased, the phenotypic difference between shuttle breeding regions is reduced, the accurate selection of important agronomic characters is facilitated, meanwhile, genetically recombinant individuals with small phenotypic variation of the important agronomic characters are indirectly reserved, and a genetic basis is laid for better adapting to different ecological regions.
(2) The micro-effect gene is used for accurately regulating and controlling the heading stage so as to adapt to the crop rotation requirement. Because the strain of the hd1+ ehd1 genotype shows photoperiod insensitivity, the micro-effect gene SDG725 is expressed depending on the genetic background of the hd1+ ehd1, and the micro-effect gene SDG725 is used for micro-adjusting and controlling the sowing to complete the 3 days in the calendar period, thereby meeting the requirements of different crops on the growth period.
(3) The KASP molecular marker developed and designed by the invention can be used for high-throughput detection, and the detection efficiency is obviously improved. Compared with dCAPS labeling, the complex enzyme digestion and other processes are omitted, the Ehd1 and SDG725 genes in rice germplasm resources or breeding groups can be identified quickly and accurately, high-throughput detection of a plurality of samples can be realized, and the selection efficiency is improved.
Drawings
FIG. 1: schematic sequence variation of coding regions of Hd1, Ehd1 and SDG725 genes of Zhenju 2400 and Jiahe 218; wherein, the black-frame white-bottom region represents 5 'and 3' ends, the black and gray regions represent exons, the region marked with an arc line at the bottom represents the corresponding structural domain, ATG represents an initiation codon, TAA and TGA represent a stop codon, 1-5 of Hd1 gene structure represents 1-5 variant positions, G655A of Ehd1 gene structure represents that the 655bp locus Zhenju 2400 at the CDS of the gene is A, Jiahe 218 is G, 1-10 of SDG725 gene structure represents 1-10 variant positions, and the specific variant information listed in the table is as follows: hd1, 1:248 indicates that the first mutation is the 248bp site of CDS, the base in Zhenju 2400 is A, the amino acid is His, the base in Jiahe 218 is G, the amino acid is Arg, and so on.
FIG. 2: h1 molecular marker detects Hd1 genotype in the recombinant inbred line population; wherein M is Marker, 1 is Jiahe 218, 2 is Zhenju 2400, and 3-48 are the families of the recombinant inbred line group.
FIG. 3: KASP molecular markers H10 and H11 are used for detecting genotypes of a recombinant inbred line population Ehd1 and an SDG725 respectively; wherein, the dots near the Y axis (without arrow) in the Ehd1 diagram represent the Ehd1 gene homozygote carrying the A allelic variation in Zhenju 2400, the dots near the X axis (without arrow) represent the Ehd1 gene homozygote carrying the G allelic variation in Jiahe 218, the dots in the middle of the X, Y axis (black circle inside box) represent the heterozygote carrying the G/A allelic variation Ehd1 gene, and the dots indicated by the arrow represent the negative control; in the diagram of the SDG725, dots (without arrows) near the Y axis represent the SDG725 gene homozygote of the A allelic variation in Zhenju 2400, dots (without arrows) near the X axis represent the SDG gene homozygote of the SDG725 gene carrying the G allelic variation in Jiahe 218, dots (black oval box dots) in the middle of the X, Y axis represent the SDG725 gene heterozygote carrying the G/A allelic variation at the same time, and dots indicated by arrows represent negative controls.
Detailed Description
The present invention is further illustrated by the following examples, which are intended to be purely exemplary and are not intended to limit the scope of the invention, as various equivalent modifications of the invention will occur to those skilled in the art after reading the present invention and fall within the scope of the appended claims.
Example 1 selection and verification of heading date-related genes of parent Zhenju 2400 and Jiahe 218
1. Rice material
The Zhenju 2400 rice strain is obtained by mutation of a Zhenju breeding material MNU (methyl nitrosourea), is completely named as Zhenju 2400(Oryza sativa L. Japonica 2400) of Gramineae, is classified in the Gramineae, is preserved in China center for type culture collection, and has a preservation number of CCTCC NO: p201810, the preservation date is 1 month and 17 days 2018, the preservation address is Wuhan university, Wuhan, China, zip code 430072. Jiahe 218 is early-maturing late japonica rice cultivated by agriculture science research institute in Jiaxing city and Chinese rice institute.
2. Hd1, Ehd1 and SDG725 Gene sequencing primer design
The Hd1 allele in Zhenju 2400 shows photoperiod insensitivity, and compared with the Hd1 gene in Jiahe 218, the 123bp insertion of the allele exists at the 517bp position of the first exon, and a functional marker H1 is designed according to the variation (a photoperiod insensitivity Hd1 allele and a molecular marker and application thereof, the invention patent number is ZL 201811041527.3). Subsequently, we extract DNAs of Zhenjun 2400 and Jiahe 218, perform whole genome mutation site detection (detected by Beijing Nuo Yuan science and technology Co., Ltd.), screen InDel or SNP mutation with mutation at the position of the related gene functional domain at heading stage, find that Ehd1 and SDG725 genes are different, and then develop and design Ehd1 gene and SDG725 gene amplification primers for verification, wherein the gene amplification primers used in the text are shown in table 1:
TABLE 1 Ehd1 and SDG725 Gene amplification primer sequence information
Figure BDA0003556954170000051
Figure BDA0003556954170000061
3. Hd1 and Ehd1 gene structure alignment analysis
(1) The conventional SDS method is used for extracting the genome DNA of Zhenjun 2400 and Jiahe 218.
(2) The PCR amplification system is as follows: mu.l of genomic DNA, 0.5. mu.l of 2mM forward primer, 0.5. mu.l of 2mM reverse primer, 1.2. mu.l of 10 XTaq Buffer, 0.3. mu.l of 1mM dNTP, 0.1. mu.l of 1000U Taq DNA polymerase, ddH2O to 10. mu.l. The procedure for PCR amplification was: pre-denaturation at 95 ℃ for 5 min; denaturation at 94 ℃ for 30s, annealing at 55 ℃ for 30s, extension at 72 ℃ (run for each primer extension time in the table), run for 33 cycles; finally, the extension is carried out for 10min at 72 ℃ and the product is stored at 4 ℃. And (3) carrying out electrophoresis on the amplification product by using 1.5% agarose gel for 1 hour under the constant voltage of 100V, turning off a power supply, taking out the gel, and imaging the gel after GelRed (Biotium) staining.
(3) And (3) sequence alignment analysis: the PCR amplification product is sent to Nanjing Jinsri Biotechnology GmbH for sequencing, the cDNA sequences and amino acid sequences of Hd1, Ehd1 and SDG725 of Zhengjing 2400 and Jiahe 218 are obtained by splicing by taking the sequence of Sichuan hui 498 allele as reference, DNMAN 8 software is used for sequence alignment, and the on-line tool Exon-Intron Graphic Maker is used for drawing the structural elements of Hd1, Ehd1 and SDG725 genes, as shown in FIG. 1, the details are as follows:
hd1 gene: compared with the Jiang rice 2400 and the Jiahe 218, the first exon of Hd1 has 5 mutations, wherein the 1 st to 4 mutations are SNP (single nucleotide polymorphism), specifically, the 1 st mutation of the coding region of the Hd1 gene is at the 248 th base, the Zheng rice 2400 is A, the corresponding amino acid is His, the Jiahe 218 is G, and the corresponding amino acid is Arg; the 2 nd mutation is at the 440 th base, G is in Zhenju 2400, the corresponding amino acid is Gly, A is in Jiahe 218, and the corresponding amino acid is Asp; the 3 rd mutation is at 466 nd base, A is in Zhenju 2400, the corresponding amino acid is Ile, C is in Jiahe 218, and the corresponding amino acid is Leu; the 4 th mutation is at the 469 th base, A is in Zhenju 2400, the corresponding amino acid is Ile, C is in Jiahe 218, and the corresponding amino acid is Leu; the 5 th mutation is an insertion of 123bp at the 515bp position of the coding region.
Ehd1 gene: compared with the Jiahe 218, the Zhengjing 2400 has a G-A variation at 655bp of the coding region of the Ehd1 gene, the Jiahe 218 is G, and the Zhengjing 2400 is A, so that the glycine (Gly) in the Jianjing 218 is changed into the arginine (Arg) in the Zhengjing 2400.
SDG725 gene: compared with the Jiang rice 2400 and the Jiahe 218, 10 SNP variations occur in the coding region of the SDG725 gene, specifically, the 1 st variation of the coding region of the SDG725 gene is at the base of the 1727 th site, the Zheng rice 2400 is T, the corresponding amino acid is Ile, the Jiahe 218 is C, and the corresponding amino acid is Thr; the 2 nd mutation is at the 2027 th base, wherein Zhenju 2400 is A, the corresponding amino acid is Tyr, Jiahe 218 is G, and the corresponding amino acid is Cys; the 3 rd mutation is at the 2080 th base, Zhenju 2400 is C, the corresponding amino acid is Leu, Jiahe 218 is A, and the corresponding amino acid is Ile; the 4 th mutation is at the 2698 th base, wherein Zhenju 2400 is C, the corresponding amino acid is Pro, Jiahe 218 is T, and the corresponding amino acid is Ser; the 5 th mutation is at the 3106 th base, wherein Zhenju 2400 is G, the corresponding amino acid is Glu, Jiahe 218 is A, and the corresponding amino acid is Lys; the 6 th mutation is at a 3445 th base, wherein Zhenju 2400 is C, the corresponding amino acid is Arg, Jiahe 218 is T, and the corresponding amino acid is Cys; the 7 th mutation is at the 3892 th base, wherein the Zhenju 2400 is A, the corresponding amino acid is Asn, the Jiahe 218 is G, and the corresponding amino acid is Asp; the 8 th mutation is at the 4724 th base, wherein the Zhenju 2400 is T, the corresponding amino acid is Val, the Jiahe 218 is A, and the corresponding amino acid is Asp; the 9 th variation is at a base position 5015, wherein Zhenju 2400 is A, the corresponding amino acid is Tyr, Jiahe 218 is T, and the corresponding amino acid is Phe; the 10 th mutation is at the 5125 th base, Zhenju 2400 is T, the corresponding amino acid is Trp, Jiahe 218 is C, and the corresponding amino acid is Arg. Wherein the 7 th mutation occurs in the CW-type zinc-finger domain.
In conclusion, the genotype of Zhenju 2400 is Hd1+ Ehd1+ SDG725, and the genotype of Jiahe 218 is Hd1+ Ehd1+ SDG 725.
Example 2 screening of different genotype combination homozygous inbred lines from Zhenju 2400/Jiahe 218 recombinant inbred line
1. Construction of populations and phenotypic identification
(1) Using Zhenjing 2400 as female parent and Jiahe 218 as male parent to make hybrid F1Then continuous selfing is carried out, and a recombinant inbred line population containing 247F is constructed by using a single seed transmission method8And (5) strain.
(2) Planting the constructed recombinant inbred line population under the conditions of long sunshine (Jiangsu) and short sunshine (Hainan), investigating the ear-leveling date, calculating the sowing period (days from sowing to ear-leveling) and carrying out phenotype identification, wherein the method comprises the following steps:
the rice material is planted for two seasons in one year, the first season is planted in a fragrance test base of Zhenjiang agricultural science research institute in Jiangsu hilly area, sowing is carried out for 5 months and 15 days, transplanting is carried out for 6 months and 15 days, single seedling planting and conventional water and fertilizer management are carried out; planting in the test base of the south Hainan Ling water in the second season, sowing in 20 days in 12 months, transplanting in 20 days in 1 month, and managing local fertilizer and water. Recording the heading date of each stable family and calculating the sowing duration.
2. Screening stable homozygous family by Hd1 and Ehd1 gene function markers
(1) DNA of each family (each family selects 6 leaf samples) in Zhenjun 2400, Jiahe 218 and the recombinant inbred line population is extracted by a conventional SDS method.
(2) Hd1 function marker H1, the forward sequence is: CCTCTCCAAAGATTCC (SEQ ID NO.13), the reverse sequence being: GCTCCCACAACTCCATA (SEQ ID NO. 14); the molecular marking method comprises the following steps: the PCR amplification system is as follows: mu.l of genomic DNA, 0.5. mu.l of 2mM forward primer, 0.5. mu.l of 2mM reverse primer, 1.2. mu.l of 10 XTaq Buffer, 0.3. mu.l of 1mM dNTP, 0.1. mu.l of 1000U Taq DNA polymerase, ddH2O to 10. mu.l. The procedure for PCR amplification was: pre-denaturation at 95 ℃ for 5 min; denaturation at 94 ℃ for 30s, annealing at 55 ℃ for 30s, extension at 72 ℃ for 40s, and running for 33 cycles; finally, extension is carried out for 10min at 72 ℃. The amplified products were detected by 8% polyacrylamide gel electrophoresis using a DNA Marker (100 bp-I DNA ladder) as a molecular weight control, and electrophoresed at a constant voltage of 240V for 1 hour. Silver staining shows DNA bands, and observation was performed using a light box with fluorescent lamps.
(3) The KASP marker H10 and H11 are used for detecting Ehd1 and SDG725 genes: when KASP molecular marker primers of the Ehd1 gene are synthesized, a fluorescence signal label of carboxyl Fluorescein (FAM) is added to the 5 'end of the forward primer Ehd1-F-G, and a fluorescence signal label of hexachlorofluorescein phosphoramidate (HEX) is added to the 5' end of the forward primer Ehd1-F-A, wherein the sequence of the forward primer Ehd1-F-G is as follows:
5'-GAAGGTGACCAAGTTCATGCTTCATTGCAGCAGTGAACCACCTCG-3' (SEQ ID NO.15), and the sequence of the forward primer Ehd1-F-A is:
5'-GAAGGTCGGAGTCAACGGATTTTCATTGCAGCAGTGAACCACCTCA-3' (SEQ ID NO.16), and the reverse universal primer Ehd1-R has the sequence:
5'-AAAGAAGTTTAATTTGATCACTCACTGTC-3' (SEQ ID NO. 17). When the KASP molecular marker primer of the SDG725 gene is synthesized, a fluorescent signal label of carboxyl Fluorescein (FAM) is added to the 5 'end of the forward primer SDG725-F-G, a fluorescent signal label of hexachlorofluorescein phosphoramidate (HEX) is added to the 5' end of the forward primer SDG725-F-A, and specifically, the sequence of the forward primer SDG725-F-A is as follows:
5'-GAAGGTCGGAGTCAACGGATTAAAACGAAGATAAGACATTTGCCA-3' (SEQ ID NO.18), and the forward primer SDG725-F-G has the sequence:
5'-GAAGGTGACCAAGTTCATGCTAAACGAAGATAAGACATTTGCCG-3' (SEQ ID NO.19), and the reverse general primer SDG725-R has the sequence:
5'-TCTCATCATCTGTCTTCTCTTGTGG-3' (SEQ ID NO. 20). The molecular marking method comprises the following steps: adding KASP labeled primers into the same PCR reaction system, setting 2 ultrapure water to replace sample DNA as blank control, and amplifying on a fluorescent quantitative PCR instrument, wherein a 10-microliter amplification system is as follows: 1.0. mu.l of genomic DNA, 0.1. mu.l of fluorescent primer mix, 5.0. mu.l of 2 XKASP reaction mixture, and 3.9. mu.l of ultrapure water. The PCR amplification procedure was: the first step is as follows: pre-denaturation at 94 ℃ for 15 min; the second step: denaturation at 94 ℃ for 30s, third step: annealing at an annealing temperature (55-65 ℃) for 60s (0.7 ℃ per cycle), and a fourth step: returning to the second step for 10 cycles; the fifth step: denaturation at 94 ℃ for 30s, sixth step: 55-65 annealing for 60s, and a seventh step: go back to the fifth step, 27 cycles. Judging according to the color and the position of the data map, dots (without arrows) close to the Y axis in the Ehd1 map represent a Ehd1 gene homozygote carrying the A allelic variation in Zhenju 2400, dots (without arrows) close to the X axis represent a homozygote carrying the G allelic variation in Jiahe 218 in Ehd1 gene homozygote, dots (black circular boxes) in the middle of the X, Y axis represent a heterozygote carrying the G/A allelic variation Ehd1 gene at the same time, and dots indicated by arrows represent negative controls; in the graph of the SDG725, dots (without arrows) near the Y axis represent the SDG725 gene homozygote of the A allelic variation in Zhenju 2400, dots (without arrows) near the X axis represent the SDG725 gene homozygote carrying the G allelic variation in Jiahe 218, dots (black oval box dots) in the middle of the X, Y axis represent the SDG725 gene heterozygote carrying the G/A allelic variation at the same time, and dots indicated by arrows represent negative controls.
(3) Screening out 8 homozygous families with different genotype combinations of Hd1 and Ehd1, which are as follows: hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725, Hd1+ Ehd1+ SDG725 and Hd1+ Ehd1+ SDG725
3. Main agronomic traits, heading date survey and screening of hd1+ ehd1+ SDG725 or hd1+ ehd1+ SDG725 genotype japonica rice lines
Under the conditions of long sunshine (Jiangsu) and short sunshine (Hainan), the planting specification is that the planting distance is 16.7cm, the row spacing is 25.0cm, 1.6 ten thousand holes per mu, and the agronomic characters of the double-affinity genotypes are investigated in the field as follows: effective ears, the number of grains per ear, the setting percentage and the thousand grain weight, 5 plants are investigated for each family, and the calculation formula is as follows: yield per plant, effective ear, grain per ear, thousand grain weight, set percentage/1000. Since the SDG725 gene is a spike-heading-stage micro-activity gene, field investigation found that the domestic yield of the SDG725 has insignificant variation from the normal type in allelic variation in the background of the consensus of major genes Hd1 and Ehd1, and therefore the yield (reduced acre) data are presented herein only for different genotype combinations of Hd1 and Ehd1 (Table 2). The method comprises the following specific steps: under long-day conditions, the yields of genotypes Hd1+ Ehd1 and Hd1+ Ehd1 are 625.05 kg/mu and 638.43 kg/mu respectively, and the yields are not significantly different from each other, but are significantly higher than those of families Hd1+ Ehd1(573.92 kg/mu) and Hd1+ Ehd1(507.21 kg/mu); under the condition of short day, the yields of the genotypes Hd1+ Ehd1 and Hd1+ Ehd1 are 522.24 kg/mu and 509.28 kg/mu respectively, the difference between the two is not significant, but the yields are all significantly higher than those of the families Hd1+ Ehd1(452.96 kg/mu) and Hd1+ Ehd1(458.24 kg/mu), and under the conditions of long day and short day, the yield is the optimal family which is Hd1+ Ehd 1. Broadcast calendar period calculation: the days from sowing to ear alignment are taken as the sowing period, more than 80% of single plants in the family are taken as the ear alignment period, the sowing period of parents and the family is taken as the sowing period of 3 d, the Zhengjing 2400 is taken as 100d under the long-day condition, the variation coefficient is 3.54% under the short-day condition is 105d, the photoperiod blunted feeling is shown, the Jiahe 218 is taken as 108d under the long-day condition, and the variation coefficient is 12.73% under the short-day condition is taken as the photoperiod sensitive feeling. The families were varied as follows: families showing heading ahead under short-day conditions are Hd1+ Ehd1(SDG725/SDG725) and Hd1+ Ehd1(SDG725/SDG725), the coefficients of variation are 9.57%, 9.55% and 6.83% and 6.73% respectively, and the systems are all shown to be photoperiod sensitive; the families for delaying heading under the short-day condition are hd1+ Ehd1(SDG725/SDG725) and hd1+ Ehd1(SDG725/SDG725), the variation coefficients are respectively 6.24%, 6.17%, 2.03% and 2.34%, the variation coefficients are all represented as photoperiod insensitivity, and the family with the minimum amplitude is hd1+ Ehd1(SDG725/SDG 725). By combining the yield data, the family with yield-increasing potential and showing photoperiod passivity is the hd1+ ehd1(SDG725/SDG725) family, wherein the sowing period of the hd1+ ehd1+ SDG725 family is 96.13 days under the long-day condition, and the sowing period of the hd 3838 + SDG725 family is 99.38 days under the short-day condition; the sowing period of the family of Hd1+ Ehd1+ SDG725 is 99.86 days under long-day conditions and 103.29 days under short-day conditions, and the sowing period of the family of Hd1+ Ehd1+ SDG725 is about 3 days earlier than that of the family of Hd1+ Ehd1+ SDG725 under both long-day and short-day conditions, and the difference is very significant, while the sowing period of the family of SDG725 and the family of SDG725 is not significantly different under the three main effect gene backgrounds of Hd1+ Ehd1, Hd1+ Ehd1 and Hd1+ Ehd 1. Therefore, the heading period of the SDG725 is regulated and controlled under the background that the genes Hd1 and Ehd1 are both in a functional deletion type (Hd1+ Ehd1), and the Hd1+ Ehd1+ SDG725 family is three days earlier than the Hd1+ Ehd1+ SDG725 family, so that the complex stubble requirements in different popularization areas can be met, and the precise regulation and control of the heading period can be realized on a molecular level.
TABLE 2 yields of the double affinity families under long and short day conditions
Figure BDA0003556954170000101
Figure BDA0003556954170000111
Remarking: the yield data are mean values ± standard error; the upper right corners a, b and c indicate significant levels of P.ltoreq.0.05 for Duncan tests of different genotypes in the same environment (Jiangsu for long day; Hainan for short day).
TABLE 3 broadcast calendar season of parents and families under long-day and short-day conditions
Figure BDA0003556954170000112
Remarking: the broadcast date of the full calendar period is the average value plus or minus standard error; the variation coefficient of the broadcasting period is (standard deviation SD/Mean value) multiplied by 100%; indicates that pedigree hd1+ ehd1+ SDG725 differed significantly from hd1+ ehd1+ SDG725 at the 0.01 level after t-test.
Sequence listing
<110> institute of agricultural science of Zhenjiang in Jiangsu hilly area
<120> creation method of weak light-sensitive japonica rice germplasm
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1449
<212> DNA
<213> functional deletion type rice (Oryza sativa) with Hd1
<400> 1
atgaattata attttggtgg caacgtgttc gaccaggagg ttggagttgg aggcgaagga 60
ggaggaggag gagaggggag cggctgccca tgggcgcggc cgtgcgacgg gtgccgcgcg 120
gcgccgagcg tggtgtactg ccgcgcggac gcggcgtacc tgtgcgcgtc gtgcgacgcg 180
cgggtgcacg cggccaaccg cgtggcgtcc cgccacgagc gcgtgcgggt gtgcgaggcc 240
tgcgagcacg ccccggccgc gctcgcgtgc cgcgccgacg ccgccgcgct gtgcgtggcg 300
tgcgacgtgc aggtgcactc cgcgaacccg ctcgccaggc gccaccagcg cgtccccgtc 360
gcgccgctcc cggccatcac catcccggcc acctccgtcc tcgctgaggc ggtggtggcc 420
accgccaccg tcctcggcgg caaggacgag gaggtggact cttggattat cctctccaaa 480
gattccgaca acaacaacaa caataacaac aacaacgcag caacaacggc atgtattttg 540
gtgaagtcga tgagtacttt gatcttgtca ggtacaattc gtactacgac aacaacaata 600
acgacaacag caacagcaac agcagcaaca acgacaacgg acaacgacaa taaggacaac 660
aacaacagca acagcagcaa caacggcatg tattttggtg aagtcgatga gtactttgat 720
cttgtcgggt acaattcgta ctacgacaac cgcatcgaaa acaaccaaga tcagcagtat 780
gggatgcatg aacagcaaga gcagcagcag cagcagcagg agatgcaaaa ggagtttgca 840
gagaaggaag ggagcgagtg tgtggtacct tcacagatca caatgctgag tgagcagcag 900
catagtggtt atggagttgt gggagcagac caggccgcct ccatgaccgc cggcgtcagt 960
gcttacacag attccatcag caacagcata tctttctcat caatggaggc gggtatagta 1020
ccagacagca cggtgataga tatgccaaat tccagaatcc tgacacctgc tggagcaatc 1080
aatctcttct caggtccctc gcttcagatg tcccttcact tcagctccat ggacagggag 1140
gccagggtgc tcaggtacag ggagaagaag aaggccagga agtttgagaa gacaatacgt 1200
tatgaaacaa ggcgtatgca gaggcacgac cccggatcaa gggccgtttc gccaagagat 1260
cagatgtgca gatcgaagtg gaccagatgt tctccactgc agctctatct gacggtagct 1320
atggtactgt tccatggttc tgatgggact catgagacgc tatcttatag gcatatatat 1380
ggggacttac tgagtagcaa taacatcgat ccagtgggag tagttctaga caatctgtgt 1440
tatgaataa 1449
<210> 2
<211> 1326
<212> DNA
<213> Hd1 functional Rice (Oryza sativa)
<400> 2
atgaattata attttggtgg caacgtgttc gaccaggagg ttggagttgg aggcgaagga 60
ggaggaggag gagaggggag cggctgccca tgggcgcggc cgtgcgacgg gtgccgcgcg 120
gcgccgagcg tggtgtactg ccgcgcggac gcggcgtacc tgtgcgcgtc gtgcgacgcg 180
cgggtgcacg cggccaaccg cgtggcgtcc cgccacgagc gcgtgcgggt gtgcgaggcc 240
tgcgagcgcg ccccggccgc gctcgcgtgc cgcgccgacg ccgccgcgct gtgcgtggcg 300
tgcgacgtgc aggtgcactc cgcgaacccg ctcgccaggc gccaccagcg cgtccccgtc 360
gcgccgctcc cggccatcac catcccggcc acctccgtcc tcgctgaggc ggtggtggcc 420
accgccaccg tcctcggcga caaggacgag gaggtggact cttggcttct cctctccaaa 480
gattccgaca acaacaacaa caataacaac aacaacgaca acgacaataa ggacaacaac 540
aacagcaaca gcagcaacaa cggcatgtat tttggtgaag tcgatgagta ctttgatctt 600
gtcgggtaca attcgtacta cgacaaccgc atcgaaaaca accaagatca gcagtatggg 660
atgcatgaac agcaagagca gcagcagcag cagcaggaga tgcaaaagga gtttgcagag 720
aaggaaggga gcgagtgtgt ggtaccttca cagatcacaa tgctgagtga gcagcagcat 780
agtggttatg gagttgtggg agcagaccag gccgcctcca tgaccgccgg cgtcagtgct 840
tacacagatt ccatcagcaa cagcatatct ttctcatcaa tggaggcggg tatagtacca 900
gacagcacgg tgatagatat gccaaattcc agaatcctga cacctgctgg agcaatcaat 960
ctcttctcag gtccctcgct tcagatgtcc cttcacttca gctccatgga cagggaggcc 1020
agggtgctca ggtacaggga gaagaagaag gccaggaagt ttgagaagac aatacgttat 1080
gaaacaaggc gtatgcagag gcacgacccc ggatcaaggg ccgtttcgcc aagagatcag 1140
atgtgcagat cgaagtggac cagatgttct ccactgcagc tctatctgac ggtagctatg 1200
gtactgttcc atggttctga tgggactcat gagacgctat cttataggca tatatatggg 1260
gacttactga gtagcaataa catcgatcca gtgggagtag ttctagacaa tctgtgttat 1320
gaataa 1326
<210> 3
<211> 1026
<212> DNA
<213> Ehd1 functional deletion type rice (Oryza sativa)
<400> 3
atggatcacc gagagctgtg gccttatgga ctaagagttc tggtcatcga tgacgactgt 60
tcatacttgt cagtcatgga agatttactt ctgaagtgca gctacaaggt tacaacgtat 120
aagaacgtca gagaagctgt gcctttcata ttggacaatc cacaaatagt tgacctagta 180
atcagtgatg cgttctttcc taccgaagat ggtttgctca ttctgcaaga agtaacctcc 240
aagtttggca tacctacagt gattatggct tcaagtggag acacaaatac agtgatgaaa 300
tatgttgcaa atggcgcttt tgatttcctg ctaaaacctg tgaggatcga agagctgagc 360
aacatttggc agcacatatt ccgaaagcaa atgcaagatc acaagaacaa taacatggtt 420
ggaaatctcg aaaaacccgg tcatcctcca tcaatattag ccatggctcg tgctactccg 480
gctaccacca gatcaacggc caccgaagct tcgctagcgc ctctagaaaa tgaggtgaga 540
gatgacatgg tcaactacaa tggcgagatc acggacatac gagacctcgg aaagtccagg 600
ctgacctgga ccacgcagtt gcaccgtcag ttcattgcag cagtgaacca cctcagagaa 660
gacaaggcag ttccaaagaa gatactaggg ataatgaagg tcaaacattt gacaagagag 720
caagttgcca gtcatctgca gaaatacagg atgcaactga agaaatcgat tccaacaaca 780
agcaaacacg gagcgacttt gtcatccacc gctctcgaca aaacacaaga ccacccttca 840
agatcgcagt atttcaatca agacggatgc atggaaatca tggactactc tttaccgaga 900
gatgacctct caagtggctc agagtgcatg cttgaagaac tgaacgatta ctcatccgaa 960
ggtttccaag atttccgatg ggattcagac aaacaggaat atggaccatg tttttggaat 1020
ttctag 1026
<210> 4
<211> 1026
<212> DNA
<213> Ehd1 functional type rice (Oryza sativa)
<400> 4
atggatcacc gagagctgtg gccttatgga ctaagagttc tggtcatcga tgacgactgt 60
tcatacttgt cagtcatgga agatttactt ctgaagtgca gctacaaggt tacaacgtat 120
aagaacgtca gagaagctgt gcctttcata ttggacaatc cacaaatagt tgacctagta 180
atcagtgatg cgttctttcc taccgaagat ggtttgctca ttctgcaaga agtaacctcc 240
aagtttggca tacctacagt gattatggct tcaagtggag acacaaatac agtgatgaaa 300
tatgttgcaa atggcgcttt tgatttcctg ctaaaacctg tgaggatcga agagctgagc 360
aacatttggc agcacatatt ccgaaagcaa atgcaagatc acaagaacaa taacatggtt 420
ggaaatctcg aaaaacccgg tcatcctcca tcaatattag ccatggctcg tgctactccg 480
gctaccacca gatcaacggc caccgaagct tcgctagcgc ctctagaaaa tgaggtgaga 540
gatgacatgg tcaactacaa tggcgagatc acggacatac gagacctcgg aaagtccagg 600
ctgacctgga ccacgcagtt gcaccgtcag ttcattgcag cagtgaacca cctcggagaa 660
gacaaggcag ttccaaagaa gatactaggg ataatgaagg tcaaacattt gacaagagag 720
caagttgcca gtcatctgca gaaatacagg atgcaactga agaaatcgat tccaacaaca 780
agcaaacacg gagcgacttt gtcatccacc gctctcgaca aaacacaaga ccacccttca 840
agatcgcagt atttcaatca agacggatgc atggaaatca tggactactc tttaccgaga 900
gatgacctct caagtggctc agagtgcatg cttgaagaac tgaacgatta ctcatccgaa 960
ggtttccaag atttccgatg ggattcagac aaacaggaat atggaccatg tttttggaat 1020
ttctag 1026
<210> 5
<211> 5556
<212> DNA
<213> SDG725 allelic variant Rice (Oryza sativa)
<400> 5
atggaggagc ctgacgggga agcgcgtggg cgggaggacc atgctgcggt tgggcggttg 60
ggaggagagg agggtgctgt tggcggcggt ggcctggctt tgctcgctgt tcctgagatt 120
ggcggtgagc tcggtgatgg tgggaaggtc tgcggtggtc aggagaggcg cctgcccaca 180
gaggaagatg gagtccgaga taatggaggt ggctccgctg cagaattggt ggaatctgct 240
gtgaatgttt ctaccccttt tgaaggaagg ggtcagattg gtggtgagaa ggagtctagt 300
atgcaggagg ggtctatgaa catggcggga gagaagcatg gcagttatca tgtggaatct 360
gctgaaccca gcaatttgca gacgtgtcat gcgcccaatg gcggggtatc gaataagaca 420
ttatttgctc ccttcagcga agttttctcc agtgataaca gccatatgcg ttacttgctg 480
gacaaagcga cagaggggag catttgtgag catggtgatt tggcggacag taaagatgat 540
ttgggtggcg caacggacgt aaagacaaac acagaagatt tacagatggt ttgcacgaaa 600
ccacattgtg atagcgaggg tttgtcggat ttgcataatg acagtgagcg atggccacaa 660
gtggttgatg gggtgggatt tacgataaag ggtaataatg agctgaaaca agttgatttg 720
ataccaaaaa ttgaagctga agtctctagg tcggtggagg atgattcaat cccttctttt 780
tctggtggta ttgatgattc tttacgcaag gcaggttgtg cgtgtgaaac tctcaatgat 840
atggggatgt ctcatatggc caatggtgat ttgtggtgca atgttttata tgcccctctt 900
agtgaaggat gccagtccaa ggatgctcga cacatagcag tcatggggaa caaggtgaca 960
caggggagtc aatgcgggca gggtgatttg gcgtgtgatg gaattgtttt gcgaggtggg 1020
gtagatgtag agaaaagtct agatgattta cagatgtgtt ccaaggaacc acaatgtgat 1080
aacaagggct ttccatattt gacagaattt ggtgtccagc agccatcata tggcatgaat 1140
gtcatatgtt cgaagacaga tcctaaccat cagctggaaa aggatgaatt gttgacaaat 1200
actagaggag agttctctag ttctatccat gaggattcag ttccttcaat ttctgtgagc 1260
tctgttgatt ttacttttga tggcaacgct ggtcagattg gtaaaacatc tgagcataga 1320
gcaatcatgg agaaagtgtc gcatggttca cagcgaggag gtgtactttc ctgtgagagt 1380
aggtctttaa aggagtctca tgcagatgag aatcagagtt ccacattgga ggttaagaca 1440
tgtgaagagg gcttacagac aggtcaagtg gaaccatgcc acagcatcgt agctttgtcg 1500
gattcaggga agtatggcac cgacatatta ccacgtggtg gtgacggtct gagatcgatg 1560
actggtgcta accatgagct ggtaaaggat gattttcatc caaaaagtga tgtagtggtc 1620
tcctgtccag tggatgaggc atcgattccc tctaactata atagccccat tgatgttctt 1680
ttatacaaag aggatggttt agttggtgag atatctgaaa atagaattgg tgtggagaaa 1740
ttggctcatg atttgctcgg agaagttatg ctttcatttg acagcaggcc tcagactgag 1800
gcttctggag atgagaatca acacttctgg atggatgttc caaagggttc aactgcatct 1860
gtttgtgaag tagaaaatac aggcactaga agatcttgtg atccctgtgc tgaaatagag 1920
tttccactcc aacaaagtcg tgaaaagcat gtgatctctg aatccccccc agagagagat 1980
ctgactagtt cgtcccataa cctaccttgt gaaaatgaac cttgttatag tggcagggaa 2040
acacccgcct tctgcctagg ccatcaagat tctgctggtc ttggactgga atcttcagac 2100
tgtttggtac aagagctcaa tacgtgtact tccactgatg acaaagcttg ctctgttgat 2160
tttgttgaga atggtaatgg ttctcataac caaaaggaag tgccggtgat tttcttcagg 2220
cggaggaatc cagtaagagc tgcctcttca agaaattcta attttgagaa gtgtgaccag 2280
ataaacaaat caggtaatag tacacgcaaa tctaagaagg ttgacagtgt aagctcatta 2340
cttaaaagca ccatgattaa gttcccaaac aaaaccacaa agggaagaag tggcatcaat 2400
aggccattga actcttctgc ttggggcagc ctacaaaagc taatggatgg tttcaatcag 2460
aactgtggtc cttcgacttc tcgttctcat caaacttgtt tgggaaaaga aatatcaaat 2520
agaggatcta gcgagaaaaa acagctatct attcggaaaa ttcgaacttc aagatgttca 2580
aaatataaaa acacatcact ttctgatatt ggatatttag caggtgaatt gaatggccaa 2640
ccgacctgtt cagtgaggat tgatactaat gtttcttctg atgcattgtt caattctccg 2700
aatggtgctc acaaagctgc acagtgtgtt gaaggtaatc atactctaaa attaacatct 2760
agcctgactg acatacaaca gtttggcttg gagaatgtta ctcaagaaac atgccctggg 2820
tacatccatg gagagtgtgg tacttcaact tctgaacgtt ctctaaataa tatagttggg 2880
ttttcaccag actctgtttt ggatatagct tctgttacat gtgaaagcaa cacttctgca 2940
acccttgatg ttatagtgca tgaaaaccca tcttgtcctg gtggattgat tggaggtggt 3000
cttcgtgcat ctgctttatc tacttctcat tgtgaaaatc atcatgcttc atcattgatg 3060
gatttggagc agcaggtcaa aactgtgagg gagaacgaca tgggagagga agatgtcatt 3120
ccatcacatg ccatgatgta caatgatatt ggtgaaggaa agcaaacttt agcgaagtcc 3180
aatacgatga ggaaaggtag aaatgtggga aagcaggaat gccgaaagaa agatggaaag 3240
aagggaaaaa acataaacaa aaatagaagt tccaccaaaa tttcatctag tgaagcttca 3300
aaactcgtgt ccttttctaa tgattcacct tcacttgatc catctgagtt gctgcttcat 3360
acgagacctc caaagtttgg ttcttgttct aaggtcgtaa cttctgccat acatgatgtt 3420
ggtatgcatg gatatgacaa tatgcgtcct tttggaattg acaatgatga cgaagggagt 3480
gcatttgaca atgtgaaatc actaaggcgc aagaaaaagg atagtcatgg aggaaagaag 3540
ggtaaggtgc gggatccaca tgggaagggc agaagcaaga agaaaaatat agctgataac 3600
acctacggtt tgccggctca gttaactgac ctgtcagaac ctcgcatgaa taaacagagt 3660
gatcttattc ctgctgctga acttgtattc aagaactctt ctgccgtatc tgttgaatta 3720
cctgcagttg ttgcttgcaa aactgatggt gcatctgtac caccagcacc tgcttgggtt 3780
tgttgtgatg attgcgaaaa atggcgctgc ataccaactg aactggcaga taaaatctca 3840
aaagaaaatc tcagatggac ttgtaaggaa aacgaagata agacatttgc caattgctct 3900
ataccacaag agaagacaga tgatgagatc aatgcagagc ttgggctttc agatgcttct 3960
gctgatgaag ctaatggcga tggatcaaac tcgaaagctt ctggagaacc aaactttgca 4020
cttctcaggt caaacttgtt tctacatcgt aaccgcagga cacaatccat tgatgagagc 4080
atggtatgca attgtaagcc gcctcacgat gaccgaatgg gttgtagaga tggttgcttg 4140
aacaggatac tcaacattga atgcaccaaa cgtacatgtc catgtgggga gcactgttcc 4200
aatcagcagt tccaaaggcg cacctatgca aaacttggta agttccatac tggtaaaaag 4260
ggctatggat tgcaattgaa ggaagatgta tctgaaggac gattcctcat tgaatatgtt 4320
ggagaggtcc ttgatataac ggcttatgaa tcccgccaaa ggtattatgc ctctaaaggc 4380
cagaagcatt tctatttcat ggcacttaat ggtggtgagg tgatagatgc ttgtactaaa 4440
ggaaacttgg gccggttcat caatcatagc tgcagtccta attgccgtac agagaagtgg 4500
atggtcaatg gtgaagtctg cattggaata tttgctatga ggaacatcaa gaagggtgaa 4560
gaattgacgt ttgattacaa ctatgttcgt gtatctggtg ctgctcctca gaaatgcttt 4620
tgcggtactg ccaaatgccg gggttacatc ggtggtgaca tatcaggcgc tgatatgatt 4680
actcaagatg atgctgaagc agggactttc gaacctatgg ctgttcagga ggatgctgag 4740
gaagtacttg gtgcaaatgg tttgtcctct catggcacac atctagatat tgtcgaccat 4800
gaagcttcca ctaaaacaga agattcaaat gattgcccat ctgtgaaccc accagagtta 4860
gaatctgagc aacaaacttc aggaacctta tttgacacaa gtgagccaga aaattcctta 4920
gaagcattga gcccacagga tgatgaagat gtcgtccgca cacctgtcca tgtgtcccgg 4980
acagttgaga gtacgtcgcg gcagtttcca gaattaggta ctcggtcatc agaaattttg 5040
caaagggctc catgcacact ggatggacca aaggttccaa gcacaacaaa tggaattccg 5100
cctagttccg atttggggag ccactgggta ccaggtttcc acgctaataa gaaaaccaat 5160
gtaaaacatc atttgattct gaatccatca tcagctccta ttgacagtga gcacattttg 5220
ggagttgaag gaagattgaa cagcttgctt gatgtaaatg gaggtattag caaacgaaaa 5280
gacgcaacaa atggatactt gaagcttctc cttgtgactg cagcggaagg tgacaatgct 5340
gggggcacgt ctaaaagtgt aagggatctt tcgttaattc ttgatgcact tctgaaaaca 5400
agatccaatt ctgtcctgtt ggatatcatc aataagaatg gactgcaaat gcttcacaat 5460
atattaaagc agaataaaag cgatttccat aggataccta taataagaaa gcttgtgaag 5520
cttcagggag tcgatgttgg gcttgttaag gcataa 5556
<210> 6
<211> 5556
<212> DNA
<213> SDG725 Normal type Rice (Oryza sativa)
<400> 6
atggaggagc ctgacgggga agcgcgtggg cgggaggacc atgctgcggt tgggcggttg 60
ggaggagagg agggtgctgt tggcggcggt ggcctggctt tgctcgctgt tcctgagatt 120
ggcggtgagc tcggtgatgg tgggaaggtc tgcggtggtc aggagaggcg cctgcccaca 180
gaggaagatg gagtccgaga taatggaggt ggctccgctg cagaattggt ggaatctgct 240
gtgaatgttt ctaccccttt tgaaggaagg ggtcagattg gtggtgagaa ggagtctagt 300
atgcaggagg ggtctatgaa catggcggga gagaagcatg gcagttatca tgtggaatct 360
gctgaaccca gcaatttgca gacgtgtcat gcgcccaatg gcggggtatc gaataagaca 420
ttatttgctc ccttcagcga agttttctcc agtgataaca gccatatgcg ttacttgctg 480
gacaaagcga cagaggggag catttgtgag catggtgatt tggcggacag taaagatgat 540
ttgggtggcg caacggacgt aaagacaaac acagaagatt tacagatggt ttgcacgaaa 600
ccacattgtg atagcgaggg tttgtcggat ttgcataatg acagtgagcg atggccacaa 660
gtggttgatg gggtgggatt tacgataaag ggtaataatg agctgaaaca agttgatttg 720
ataccaaaaa ttgaagctga agtctctagg tcggtggagg atgattcaat cccttctttt 780
tctggtggta ttgatgattc tttacgcaag gcaggttgtg cgtgtgaaac tctcaatgat 840
atggggatgt ctcatatggc caatggtgat ttgtggtgca atgttttata tgcccctctt 900
agtgaaggat gccagtccaa ggatgctcga cacatagcag tcatggggaa caaggtgaca 960
caggggagtc aatgcgggca gggtgatttg gcgtgtgatg gaattgtttt gcgaggtggg 1020
gtagatgtag agaaaagtct agatgattta cagatgtgtt ccaaggaacc acaatgtgat 1080
aacaagggct ttccatattt gacagaattt ggtgtccagc agccatcata tggcatgaat 1140
gtcatatgtt cgaagacaga tcctaaccat cagctggaaa aggatgaatt gttgacaaat 1200
actagaggag agttctctag ttctatccat gaggattcag ttccttcaat ttctgtgagc 1260
tctgttgatt ttacttttga tggcaacgct ggtcagattg gtaaaacatc tgagcataga 1320
gcaatcatgg agaaagtgtc gcatggttca cagcgaggag gtgtactttc ctgtgagagt 1380
aggtctttaa aggagtctca tgcagatgag aatcagagtt ccacattgga ggttaagaca 1440
tgtgaagagg gcttacagac aggtcaagtg gaaccatgcc acagcatcgt agctttgtcg 1500
gattcaggga agtatggcac cgacatatta ccacgtggtg gtgacggtct gagatcgatg 1560
actggtgcta accatgagct ggtaaaggat gattttcatc caaaaagtga tgtagtggtc 1620
tcctgtccag tggatgaggc atcgattccc tctaactata atagccccat tgatgttctt 1680
ttatacaaag aggatggttt agttggtgag atatctgaaa atagaactgg tgtggagaaa 1740
ttggctcatg atttgctcgg agaagttatg ctttcatttg acagcaggcc tcagactgag 1800
gcttctggag atgagaatca acacttctgg atggatgttc caaagggttc aactgcatct 1860
gtttgtgaag tagaaaatac aggcactaga agatcttgtg atccctgtgc tgaaatagag 1920
tttccactcc aacaaagtcg tgaaaagcat gtgatctctg aatccccccc agagagagat 1980
ctgactagtt cgtcccataa cctaccttgt gaaaatgaac cttgttgtag tggcagggaa 2040
acacccgcct tctgcctagg ccatcaagat tctgctggta ttggactgga atcttcagac 2100
tgtttggtac aagagctcaa tacgtgtact tccactgatg acaaagcttg ctctgttgat 2160
tttgttgaga atggtaatgg ttctcataac caaaaggaag tgccggtgat tttcttcagg 2220
cggaggaatc cagtaagagc tgcctcttca agaaattcta attttgagaa gtgtgaccag 2280
ataaacaaat caggtaatag tacacgcaaa tctaagaagg ttgacagtgt aagctcatta 2340
cttaaaagca ccatgattaa gttcccaaac aaaaccacaa agggaagaag tggcatcaat 2400
aggccattga actcttctgc ttggggcagc ctacaaaagc taatggatgg tttcaatcag 2460
aactgtggtc cttcgacttc tcgttctcat caaacttgtt tgggaaaaga aatatcaaat 2520
agaggatcta gcgagaaaaa acagctatct attcggaaaa ttcgaacttc aagatgttca 2580
aaatataaaa acacatcact ttctgatatt ggatatttag caggtgaatt gaatggccaa 2640
ccgacctgtt cagtgaggat tgatactaat gtttcttctg atgcattgtt caattcttcg 2700
aatggtgctc acaaagctgc acagtgtgtt gaaggtaatc atactctaaa attaacatct 2760
agcctgactg acatacaaca gtttggcttg gagaatgtta ctcaagaaac atgccctggg 2820
tacatccatg gagagtgtgg tacttcaact tctgaacgtt ctctaaataa tatagttggg 2880
ttttcaccag actctgtttt ggatatagct tctgttacat gtgaaagcaa cacttctgca 2940
acccttgatg ttatagtgca tgaaaaccca tcttgtcctg gtggattgat tggaggtggt 3000
cttcgtgcat ctgctttatc tacttctcat tgtgaaaatc atcatgcttc atcattgatg 3060
gatttggagc agcaggtcaa aactgtgagg gagaacgaca tgggaaagga agatgtcatt 3120
ccatcacatg ccatgatgta caatgatatt ggtgaaggaa agcaaacttt agcgaagtcc 3180
aatacgatga ggaaaggtag aaatgtggga aagcaggaat gccgaaagaa agatggaaag 3240
aagggaaaaa acataaacaa aaatagaagt tccaccaaaa tttcatctag tgaagcttca 3300
aaactcgtgt ccttttctaa tgattcacct tcacttgatc catctgagtt gctgcttcat 3360
acgagacctc caaagtttgg ttcttgttct aaggtcgtaa cttctgccat acatgatgtt 3420
ggtatgcatg gatatgacaa tatgtgtcct tttggaattg acaatgatga cgaagggagt 3480
gcatttgaca atgtgaaatc actaaggcgc aagaaaaagg atagtcatgg aggaaagaag 3540
ggtaaggtgc gggatccaca tgggaagggc agaagcaaga agaaaaatat agctgataac 3600
acctacggtt tgccggctca gttaactgac ctgtcagaac ctcgcatgaa taaacagagt 3660
gatcttattc ctgctgctga acttgtattc aagaactctt ctgccgtatc tgttgaatta 3720
cctgcagttg ttgcttgcaa aactgatggt gcatctgtac caccagcacc tgcttgggtt 3780
tgttgtgatg attgcgaaaa atggcgctgc ataccaactg aactggcaga taaaatctca 3840
aaagaaaatc tcagatggac ttgtaaggaa aacgaagata agacatttgc cgattgctct 3900
ataccacaag agaagacaga tgatgagatc aatgcagagc ttgggctttc agatgcttct 3960
gctgatgaag ctaatggcga tggatcaaac tcgaaagctt ctggagaacc aaactttgca 4020
cttctcaggt caaacttgtt tctacatcgt aaccgcagga cacaatccat tgatgagagc 4080
atggtatgca attgtaagcc gcctcacgat gaccgaatgg gttgtagaga tggttgcttg 4140
aacaggatac tcaacattga atgcaccaaa cgtacatgtc catgtgggga gcactgttcc 4200
aatcagcagt tccaaaggcg cacctatgca aaacttggta agttccatac tggtaaaaag 4260
ggctatggat tgcaattgaa ggaagatgta tctgaaggac gattcctcat tgaatatgtt 4320
ggagaggtcc ttgatataac ggcttatgaa tcccgccaaa ggtattatgc ctctaaaggc 4380
cagaagcatt tctatttcat ggcacttaat ggtggtgagg tgatagatgc ttgtactaaa 4440
ggaaacttgg gccggttcat caatcatagc tgcagtccta attgccgtac agagaagtgg 4500
atggtcaatg gtgaagtctg cattggaata tttgctatga ggaacatcaa gaagggtgaa 4560
gaattgacgt ttgattacaa ctatgttcgt gtatctggtg ctgctcctca gaaatgcttt 4620
tgcggtactg ccaaatgccg gggttacatc ggtggtgaca tatcaggcgc tgatatgatt 4680
actcaagatg atgctgaagc agggactttc gaacctatgg ctgatcagga ggatgctgag 4740
gaagtacttg gtgcaaatgg tttgtcctct catggcacac atctagatat tgtcgaccat 4800
gaagcttcca ctaaaacaga agattcaaat gattgcccat ctgtgaaccc accagagtta 4860
gaatctgagc aacaaacttc aggaacctta tttgacacaa gtgagccaga aaattcctta 4920
gaagcattga gcccacagga tgatgaagat gtcgtccgca cacctgtcca tgtgtcccgg 4980
acagttgaga gtacgtcgcg gcagtttcca gaatttggta ctcggtcatc agaaattttg 5040
caaagggctc catgcacact ggatggacca aaggttccaa gcacaacaaa tggaattccg 5100
cctagttccg atttggggag ccaccgggta ccaggtttcc acgctaataa gaaaaccaat 5160
gtaaaacatc atttgattct gaatccatca tcagctccta ttgacagtga gcacattttg 5220
ggagttgaag gaagattgaa cagcttgctt gatgtaaatg gaggtattag caaacgaaaa 5280
gacgcaacaa atggatactt gaagcttctc cttgtgactg cagcggaagg tgacaatgct 5340
gggggcacgt ctaaaagtgt aagggatctt tcgttaattc ttgatgcact tctgaaaaca 5400
agatccaatt ctgtcctgtt ggatatcatc aataagaatg gactgcaaat gcttcacaat 5460
atattaaagc agaataaaag cgatttccat aggataccta taataagaaa gcttgtgaag 5520
cttcagggag tcgatgttgg gcttgttaag gcataa 5556
<210> 7
<211> 482
<212> PRT
<213> functional deletion type rice (Oryza sativa) with Hd1
<400> 7
Met Asn Tyr Asn Phe Gly Gly Asn Val Phe Asp Gln Glu Val Gly Val
1 5 10 15
Gly Gly Glu Gly Gly Gly Gly Gly Glu Gly Ser Gly Cys Pro Trp Ala
20 25 30
Arg Pro Cys Asp Gly Cys Arg Ala Ala Pro Ser Val Val Tyr Cys Arg
35 40 45
Ala Asp Ala Ala Tyr Leu Cys Ala Ser Cys Asp Ala Arg Val His Ala
50 55 60
Ala Asn Arg Val Ala Ser Arg His Glu Arg Val Arg Val Cys Glu Ala
65 70 75 80
Cys Glu His Ala Pro Ala Ala Leu Ala Cys Arg Ala Asp Ala Ala Ala
85 90 95
Leu Cys Val Ala Cys Asp Val Gln Val His Ser Ala Asn Pro Leu Ala
100 105 110
Arg Arg His Gln Arg Val Pro Val Ala Pro Leu Pro Ala Ile Thr Ile
115 120 125
Pro Ala Thr Ser Val Leu Ala Glu Ala Val Val Ala Thr Ala Thr Val
130 135 140
Leu Gly Gly Lys Asp Glu Glu Val Asp Ser Trp Ile Ile Leu Ser Lys
145 150 155 160
Asp Ser Asp Asn Asn Asn Asn Asn Asn Asn Asn Asn Ala Ala Thr Thr
165 170 175
Ala Cys Ile Leu Val Lys Ser Met Ser Thr Leu Ile Leu Ser Gly Thr
180 185 190
Ile Arg Thr Thr Thr Thr Thr Ile Thr Thr Thr Ala Thr Ala Thr Ala
195 200 205
Ala Thr Thr Thr Thr Asp Asn Asp Asn Lys Asp Asn Asn Asn Ser Asn
210 215 220
Ser Ser Asn Asn Gly Met Tyr Phe Gly Glu Val Asp Glu Tyr Phe Asp
225 230 235 240
Leu Val Gly Tyr Asn Ser Tyr Tyr Asp Asn Arg Ile Glu Asn Asn Gln
245 250 255
Asp Gln Gln Tyr Gly Met His Glu Gln Gln Glu Gln Gln Gln Gln Gln
260 265 270
Gln Glu Met Gln Lys Glu Phe Ala Glu Lys Glu Gly Ser Glu Cys Val
275 280 285
Val Pro Ser Gln Ile Thr Met Leu Ser Glu Gln Gln His Ser Gly Tyr
290 295 300
Gly Val Val Gly Ala Asp Gln Ala Ala Ser Met Thr Ala Gly Val Ser
305 310 315 320
Ala Tyr Thr Asp Ser Ile Ser Asn Ser Ile Ser Phe Ser Ser Met Glu
325 330 335
Ala Gly Ile Val Pro Asp Ser Thr Val Ile Asp Met Pro Asn Ser Arg
340 345 350
Ile Leu Thr Pro Ala Gly Ala Ile Asn Leu Phe Ser Gly Pro Ser Leu
355 360 365
Gln Met Ser Leu His Phe Ser Ser Met Asp Arg Glu Ala Arg Val Leu
370 375 380
Arg Tyr Arg Glu Lys Lys Lys Ala Arg Lys Phe Glu Lys Thr Ile Arg
385 390 395 400
Tyr Glu Thr Arg Arg Met Gln Arg His Asp Pro Gly Ser Arg Ala Val
405 410 415
Ser Pro Arg Asp Gln Met Cys Arg Ser Lys Trp Thr Arg Cys Ser Pro
420 425 430
Leu Gln Leu Tyr Leu Thr Val Ala Met Val Leu Phe His Gly Ser Asp
435 440 445
Gly Thr His Glu Thr Leu Ser Tyr Arg His Ile Tyr Gly Asp Leu Leu
450 455 460
Ser Ser Asn Asn Ile Asp Pro Val Gly Val Val Leu Asp Asn Leu Cys
465 470 475 480
Tyr Glu
<210> 8
<211> 441
<212> PRT
<213> Hd1 functional Rice (Oryza sativa)
<400> 8
Met Asn Tyr Asn Phe Gly Gly Asn Val Phe Asp Gln Glu Val Gly Val
1 5 10 15
Gly Gly Glu Gly Gly Gly Gly Gly Glu Gly Ser Gly Cys Pro Trp Ala
20 25 30
Arg Pro Cys Asp Gly Cys Arg Ala Ala Pro Ser Val Val Tyr Cys Arg
35 40 45
Ala Asp Ala Ala Tyr Leu Cys Ala Ser Cys Asp Ala Arg Val His Ala
50 55 60
Ala Asn Arg Val Ala Ser Arg His Glu Arg Val Arg Val Cys Glu Ala
65 70 75 80
Cys Glu Arg Ala Pro Ala Ala Leu Ala Cys Arg Ala Asp Ala Ala Ala
85 90 95
Leu Cys Val Ala Cys Asp Val Gln Val His Ser Ala Asn Pro Leu Ala
100 105 110
Arg Arg His Gln Arg Val Pro Val Ala Pro Leu Pro Ala Ile Thr Ile
115 120 125
Pro Ala Thr Ser Val Leu Ala Glu Ala Val Val Ala Thr Ala Thr Val
130 135 140
Leu Gly Asp Lys Asp Glu Glu Val Asp Ser Trp Leu Leu Leu Ser Lys
145 150 155 160
Asp Ser Asp Asn Asn Asn Asn Asn Asn Asn Asn Asn Asp Asn Asp Asn
165 170 175
Lys Asp Asn Asn Asn Ser Asn Ser Ser Asn Asn Gly Met Tyr Phe Gly
180 185 190
Glu Val Asp Glu Tyr Phe Asp Leu Val Gly Tyr Asn Ser Tyr Tyr Asp
195 200 205
Asn Arg Ile Glu Asn Asn Gln Asp Gln Gln Tyr Gly Met His Glu Gln
210 215 220
Gln Glu Gln Gln Gln Gln Gln Gln Glu Met Gln Lys Glu Phe Ala Glu
225 230 235 240
Lys Glu Gly Ser Glu Cys Val Val Pro Ser Gln Ile Thr Met Leu Ser
245 250 255
Glu Gln Gln His Ser Gly Tyr Gly Val Val Gly Ala Asp Gln Ala Ala
260 265 270
Ser Met Thr Ala Gly Val Ser Ala Tyr Thr Asp Ser Ile Ser Asn Ser
275 280 285
Ile Ser Phe Ser Ser Met Glu Ala Gly Ile Val Pro Asp Ser Thr Val
290 295 300
Ile Asp Met Pro Asn Ser Arg Ile Leu Thr Pro Ala Gly Ala Ile Asn
305 310 315 320
Leu Phe Ser Gly Pro Ser Leu Gln Met Ser Leu His Phe Ser Ser Met
325 330 335
Asp Arg Glu Ala Arg Val Leu Arg Tyr Arg Glu Lys Lys Lys Ala Arg
340 345 350
Lys Phe Glu Lys Thr Ile Arg Tyr Glu Thr Arg Arg Met Gln Arg His
355 360 365
Asp Pro Gly Ser Arg Ala Val Ser Pro Arg Asp Gln Met Cys Arg Ser
370 375 380
Lys Trp Thr Arg Cys Ser Pro Leu Gln Leu Tyr Leu Thr Val Ala Met
385 390 395 400
Val Leu Phe His Gly Ser Asp Gly Thr His Glu Thr Leu Ser Tyr Arg
405 410 415
His Ile Tyr Gly Asp Leu Leu Ser Ser Asn Asn Ile Asp Pro Val Gly
420 425 430
Val Val Leu Asp Asn Leu Cys Tyr Glu
435 440
<210> 9
<211> 341
<212> PRT
<213> Ehd1 functional deletion type rice (Oryza sativa)
<400> 9
Met Asp His Arg Glu Leu Trp Pro Tyr Gly Leu Arg Val Leu Val Ile
1 5 10 15
Asp Asp Asp Cys Ser Tyr Leu Ser Val Met Glu Asp Leu Leu Leu Lys
20 25 30
Cys Ser Tyr Lys Val Thr Thr Tyr Lys Asn Val Arg Glu Ala Val Pro
35 40 45
Phe Ile Leu Asp Asn Pro Gln Ile Val Asp Leu Val Ile Ser Asp Ala
50 55 60
Phe Phe Pro Thr Glu Asp Gly Leu Leu Ile Leu Gln Glu Val Thr Ser
65 70 75 80
Lys Phe Gly Ile Pro Thr Val Ile Met Ala Ser Ser Gly Asp Thr Asn
85 90 95
Thr Val Met Lys Tyr Val Ala Asn Gly Ala Phe Asp Phe Leu Leu Lys
100 105 110
Pro Val Arg Ile Glu Glu Leu Ser Asn Ile Trp Gln His Ile Phe Arg
115 120 125
Lys Gln Met Gln Asp His Lys Asn Asn Asn Met Val Gly Asn Leu Glu
130 135 140
Lys Pro Gly His Pro Pro Ser Ile Leu Ala Met Ala Arg Ala Thr Pro
145 150 155 160
Ala Thr Thr Arg Ser Thr Ala Thr Glu Ala Ser Leu Ala Pro Leu Glu
165 170 175
Asn Glu Val Arg Asp Asp Met Val Asn Tyr Asn Gly Glu Ile Thr Asp
180 185 190
Ile Arg Asp Leu Gly Lys Ser Arg Leu Thr Trp Thr Thr Gln Leu His
195 200 205
Arg Gln Phe Ile Ala Ala Val Asn His Leu Arg Glu Asp Lys Ala Val
210 215 220
Pro Lys Lys Ile Leu Gly Ile Met Lys Val Lys His Leu Thr Arg Glu
225 230 235 240
Gln Val Ala Ser His Leu Gln Lys Tyr Arg Met Gln Leu Lys Lys Ser
245 250 255
Ile Pro Thr Thr Ser Lys His Gly Ala Thr Leu Ser Ser Thr Ala Leu
260 265 270
Asp Lys Thr Gln Asp His Pro Ser Arg Ser Gln Tyr Phe Asn Gln Asp
275 280 285
Gly Cys Met Glu Ile Met Asp Tyr Ser Leu Pro Arg Asp Asp Leu Ser
290 295 300
Ser Gly Ser Glu Cys Met Leu Glu Glu Leu Asn Asp Tyr Ser Ser Glu
305 310 315 320
Gly Phe Gln Asp Phe Arg Trp Asp Ser Asp Lys Gln Glu Tyr Gly Pro
325 330 335
Cys Phe Trp Asn Phe
340
<210> 10
<211> 341
<212> PRT
<213> Ehd1 functional type rice (Oryza sativa)
<400> 10
Met Asp His Arg Glu Leu Trp Pro Tyr Gly Leu Arg Val Leu Val Ile
1 5 10 15
Asp Asp Asp Cys Ser Tyr Leu Ser Val Met Glu Asp Leu Leu Leu Lys
20 25 30
Cys Ser Tyr Lys Val Thr Thr Tyr Lys Asn Val Arg Glu Ala Val Pro
35 40 45
Phe Ile Leu Asp Asn Pro Gln Ile Val Asp Leu Val Ile Ser Asp Ala
50 55 60
Phe Phe Pro Thr Glu Asp Gly Leu Leu Ile Leu Gln Glu Val Thr Ser
65 70 75 80
Lys Phe Gly Ile Pro Thr Val Ile Met Ala Ser Ser Gly Asp Thr Asn
85 90 95
Thr Val Met Lys Tyr Val Ala Asn Gly Ala Phe Asp Phe Leu Leu Lys
100 105 110
Pro Val Arg Ile Glu Glu Leu Ser Asn Ile Trp Gln His Ile Phe Arg
115 120 125
Lys Gln Met Gln Asp His Lys Asn Asn Asn Met Val Gly Asn Leu Glu
130 135 140
Lys Pro Gly His Pro Pro Ser Ile Leu Ala Met Ala Arg Ala Thr Pro
145 150 155 160
Ala Thr Thr Arg Ser Thr Ala Thr Glu Ala Ser Leu Ala Pro Leu Glu
165 170 175
Asn Glu Val Arg Asp Asp Met Val Asn Tyr Asn Gly Glu Ile Thr Asp
180 185 190
Ile Arg Asp Leu Gly Lys Ser Arg Leu Thr Trp Thr Thr Gln Leu His
195 200 205
Arg Gln Phe Ile Ala Ala Val Asn His Leu Gly Glu Asp Lys Ala Val
210 215 220
Pro Lys Lys Ile Leu Gly Ile Met Lys Val Lys His Leu Thr Arg Glu
225 230 235 240
Gln Val Ala Ser His Leu Gln Lys Tyr Arg Met Gln Leu Lys Lys Ser
245 250 255
Ile Pro Thr Thr Ser Lys His Gly Ala Thr Leu Ser Ser Thr Ala Leu
260 265 270
Asp Lys Thr Gln Asp His Pro Ser Arg Ser Gln Tyr Phe Asn Gln Asp
275 280 285
Gly Cys Met Glu Ile Met Asp Tyr Ser Leu Pro Arg Asp Asp Leu Ser
290 295 300
Ser Gly Ser Glu Cys Met Leu Glu Glu Leu Asn Asp Tyr Ser Ser Glu
305 310 315 320
Gly Phe Gln Asp Phe Arg Trp Asp Ser Asp Lys Gln Glu Tyr Gly Pro
325 330 335
Cys Phe Trp Asn Phe
340
<210> 11
<211> 1851
<212> PRT
<213> SDG725 allelic variant Rice (Oryza sativa)
<400> 11
Met Glu Glu Pro Asp Gly Glu Ala Arg Gly Arg Glu Asp His Ala Ala
1 5 10 15
Val Gly Arg Leu Gly Gly Glu Glu Gly Ala Val Gly Gly Gly Gly Leu
20 25 30
Ala Leu Leu Ala Val Pro Glu Ile Gly Gly Glu Leu Gly Asp Gly Gly
35 40 45
Lys Val Cys Gly Gly Gln Glu Arg Arg Leu Pro Thr Glu Glu Asp Gly
50 55 60
Val Arg Asp Asn Gly Gly Gly Ser Ala Ala Glu Leu Val Glu Ser Ala
65 70 75 80
Val Asn Val Ser Thr Pro Phe Glu Gly Arg Gly Gln Ile Gly Gly Glu
85 90 95
Lys Glu Ser Ser Met Gln Glu Gly Ser Met Asn Met Ala Gly Glu Lys
100 105 110
His Gly Ser Tyr His Val Glu Ser Ala Glu Pro Ser Asn Leu Gln Thr
115 120 125
Cys His Ala Pro Asn Gly Gly Val Ser Asn Lys Thr Leu Phe Ala Pro
130 135 140
Phe Ser Glu Val Phe Ser Ser Asp Asn Ser His Met Arg Tyr Leu Leu
145 150 155 160
Asp Lys Ala Thr Glu Gly Ser Ile Cys Glu His Gly Asp Leu Ala Asp
165 170 175
Ser Lys Asp Asp Leu Gly Gly Ala Thr Asp Val Lys Thr Asn Thr Glu
180 185 190
Asp Leu Gln Met Val Cys Thr Lys Pro His Cys Asp Ser Glu Gly Leu
195 200 205
Ser Asp Leu His Asn Asp Ser Glu Arg Trp Pro Gln Val Val Asp Gly
210 215 220
Val Gly Phe Thr Ile Lys Gly Asn Asn Glu Leu Lys Gln Val Asp Leu
225 230 235 240
Ile Pro Lys Ile Glu Ala Glu Val Ser Arg Ser Val Glu Asp Asp Ser
245 250 255
Ile Pro Ser Phe Ser Gly Gly Ile Asp Asp Ser Leu Arg Lys Ala Gly
260 265 270
Cys Ala Cys Glu Thr Leu Asn Asp Met Gly Met Ser His Met Ala Asn
275 280 285
Gly Asp Leu Trp Cys Asn Val Leu Tyr Ala Pro Leu Ser Glu Gly Cys
290 295 300
Gln Ser Lys Asp Ala Arg His Ile Ala Val Met Gly Asn Lys Val Thr
305 310 315 320
Gln Gly Ser Gln Cys Gly Gln Gly Asp Leu Ala Cys Asp Gly Ile Val
325 330 335
Leu Arg Gly Gly Val Asp Val Glu Lys Ser Leu Asp Asp Leu Gln Met
340 345 350
Cys Ser Lys Glu Pro Gln Cys Asp Asn Lys Gly Phe Pro Tyr Leu Thr
355 360 365
Glu Phe Gly Val Gln Gln Pro Ser Tyr Gly Met Asn Val Ile Cys Ser
370 375 380
Lys Thr Asp Pro Asn His Gln Leu Glu Lys Asp Glu Leu Leu Thr Asn
385 390 395 400
Thr Arg Gly Glu Phe Ser Ser Ser Ile His Glu Asp Ser Val Pro Ser
405 410 415
Ile Ser Val Ser Ser Val Asp Phe Thr Phe Asp Gly Asn Ala Gly Gln
420 425 430
Ile Gly Lys Thr Ser Glu His Arg Ala Ile Met Glu Lys Val Ser His
435 440 445
Gly Ser Gln Arg Gly Gly Val Leu Ser Cys Glu Ser Arg Ser Leu Lys
450 455 460
Glu Ser His Ala Asp Glu Asn Gln Ser Ser Thr Leu Glu Val Lys Thr
465 470 475 480
Cys Glu Glu Gly Leu Gln Thr Gly Gln Val Glu Pro Cys His Ser Ile
485 490 495
Val Ala Leu Ser Asp Ser Gly Lys Tyr Gly Thr Asp Ile Leu Pro Arg
500 505 510
Gly Gly Asp Gly Leu Arg Ser Met Thr Gly Ala Asn His Glu Leu Val
515 520 525
Lys Asp Asp Phe His Pro Lys Ser Asp Val Val Val Ser Cys Pro Val
530 535 540
Asp Glu Ala Ser Ile Pro Ser Asn Tyr Asn Ser Pro Ile Asp Val Leu
545 550 555 560
Leu Tyr Lys Glu Asp Gly Leu Val Gly Glu Ile Ser Glu Asn Arg Ile
565 570 575
Gly Val Glu Lys Leu Ala His Asp Leu Leu Gly Glu Val Met Leu Ser
580 585 590
Phe Asp Ser Arg Pro Gln Thr Glu Ala Ser Gly Asp Glu Asn Gln His
595 600 605
Phe Trp Met Asp Val Pro Lys Gly Ser Thr Ala Ser Val Cys Glu Val
610 615 620
Glu Asn Thr Gly Thr Arg Arg Ser Cys Asp Pro Cys Ala Glu Ile Glu
625 630 635 640
Phe Pro Leu Gln Gln Ser Arg Glu Lys His Val Ile Ser Glu Ser Pro
645 650 655
Pro Glu Arg Asp Leu Thr Ser Ser Ser His Asn Leu Pro Cys Glu Asn
660 665 670
Glu Pro Cys Tyr Ser Gly Arg Glu Thr Pro Ala Phe Cys Leu Gly His
675 680 685
Gln Asp Ser Ala Gly Leu Gly Leu Glu Ser Ser Asp Cys Leu Val Gln
690 695 700
Glu Leu Asn Thr Cys Thr Ser Thr Asp Asp Lys Ala Cys Ser Val Asp
705 710 715 720
Phe Val Glu Asn Gly Asn Gly Ser His Asn Gln Lys Glu Val Pro Val
725 730 735
Ile Phe Phe Arg Arg Arg Asn Pro Val Arg Ala Ala Ser Ser Arg Asn
740 745 750
Ser Asn Phe Glu Lys Cys Asp Gln Ile Asn Lys Ser Gly Asn Ser Thr
755 760 765
Arg Lys Ser Lys Lys Val Asp Ser Val Ser Ser Leu Leu Lys Ser Thr
770 775 780
Met Ile Lys Phe Pro Asn Lys Thr Thr Lys Gly Arg Ser Gly Ile Asn
785 790 795 800
Arg Pro Leu Asn Ser Ser Ala Trp Gly Ser Leu Gln Lys Leu Met Asp
805 810 815
Gly Phe Asn Gln Asn Cys Gly Pro Ser Thr Ser Arg Ser His Gln Thr
820 825 830
Cys Leu Gly Lys Glu Ile Ser Asn Arg Gly Ser Ser Glu Lys Lys Gln
835 840 845
Leu Ser Ile Arg Lys Ile Arg Thr Ser Arg Cys Ser Lys Tyr Lys Asn
850 855 860
Thr Ser Leu Ser Asp Ile Gly Tyr Leu Ala Gly Glu Leu Asn Gly Gln
865 870 875 880
Pro Thr Cys Ser Val Arg Ile Asp Thr Asn Val Ser Ser Asp Ala Leu
885 890 895
Phe Asn Ser Pro Asn Gly Ala His Lys Ala Ala Gln Cys Val Glu Gly
900 905 910
Asn His Thr Leu Lys Leu Thr Ser Ser Leu Thr Asp Ile Gln Gln Phe
915 920 925
Gly Leu Glu Asn Val Thr Gln Glu Thr Cys Pro Gly Tyr Ile His Gly
930 935 940
Glu Cys Gly Thr Ser Thr Ser Glu Arg Ser Leu Asn Asn Ile Val Gly
945 950 955 960
Phe Ser Pro Asp Ser Val Leu Asp Ile Ala Ser Val Thr Cys Glu Ser
965 970 975
Asn Thr Ser Ala Thr Leu Asp Val Ile Val His Glu Asn Pro Ser Cys
980 985 990
Pro Gly Gly Leu Ile Gly Gly Gly Leu Arg Ala Ser Ala Leu Ser Thr
995 1000 1005
Ser His Cys Glu Asn His His Ala Ser Ser Leu Met Asp Leu Glu Gln
1010 1015 1020
Gln Val Lys Thr Val Arg Glu Asn Asp Met Gly Glu Glu Asp Val Ile
1025 1030 1035 1040
Pro Ser His Ala Met Met Tyr Asn Asp Ile Gly Glu Gly Lys Gln Thr
1045 1050 1055
Leu Ala Lys Ser Asn Thr Met Arg Lys Gly Arg Asn Val Gly Lys Gln
1060 1065 1070
Glu Cys Arg Lys Lys Asp Gly Lys Lys Gly Lys Asn Ile Asn Lys Asn
1075 1080 1085
Arg Ser Ser Thr Lys Ile Ser Ser Ser Glu Ala Ser Lys Leu Val Ser
1090 1095 1100
Phe Ser Asn Asp Ser Pro Ser Leu Asp Pro Ser Glu Leu Leu Leu His
1105 1110 1115 1120
Thr Arg Pro Pro Lys Phe Gly Ser Cys Ser Lys Val Val Thr Ser Ala
1125 1130 1135
Ile His Asp Val Gly Met His Gly Tyr Asp Asn Met Arg Pro Phe Gly
1140 1145 1150
Ile Asp Asn Asp Asp Glu Gly Ser Ala Phe Asp Asn Val Lys Ser Leu
1155 1160 1165
Arg Arg Lys Lys Lys Asp Ser His Gly Gly Lys Lys Gly Lys Val Arg
1170 1175 1180
Asp Pro His Gly Lys Gly Arg Ser Lys Lys Lys Asn Ile Ala Asp Asn
1185 1190 1195 1200
Thr Tyr Gly Leu Pro Ala Gln Leu Thr Asp Leu Ser Glu Pro Arg Met
1205 1210 1215
Asn Lys Gln Ser Asp Leu Ile Pro Ala Ala Glu Leu Val Phe Lys Asn
1220 1225 1230
Ser Ser Ala Val Ser Val Glu Leu Pro Ala Val Val Ala Cys Lys Thr
1235 1240 1245
Asp Gly Ala Ser Val Pro Pro Ala Pro Ala Trp Val Cys Cys Asp Asp
1250 1255 1260
Cys Glu Lys Trp Arg Cys Ile Pro Thr Glu Leu Ala Asp Lys Ile Ser
1265 1270 1275 1280
Lys Glu Asn Leu Arg Trp Thr Cys Lys Glu Asn Glu Asp Lys Thr Phe
1285 1290 1295
Ala Asn Cys Ser Ile Pro Gln Glu Lys Thr Asp Asp Glu Ile Asn Ala
1300 1305 1310
Glu Leu Gly Leu Ser Asp Ala Ser Ala Asp Glu Ala Asn Gly Asp Gly
1315 1320 1325
Ser Asn Ser Lys Ala Ser Gly Glu Pro Asn Phe Ala Leu Leu Arg Ser
1330 1335 1340
Asn Leu Phe Leu His Arg Asn Arg Arg Thr Gln Ser Ile Asp Glu Ser
1345 1350 1355 1360
Met Val Cys Asn Cys Lys Pro Pro His Asp Asp Arg Met Gly Cys Arg
1365 1370 1375
Asp Gly Cys Leu Asn Arg Ile Leu Asn Ile Glu Cys Thr Lys Arg Thr
1380 1385 1390
Cys Pro Cys Gly Glu His Cys Ser Asn Gln Gln Phe Gln Arg Arg Thr
1395 1400 1405
Tyr Ala Lys Leu Gly Lys Phe His Thr Gly Lys Lys Gly Tyr Gly Leu
1410 1415 1420
Gln Leu Lys Glu Asp Val Ser Glu Gly Arg Phe Leu Ile Glu Tyr Val
1425 1430 1435 1440
Gly Glu Val Leu Asp Ile Thr Ala Tyr Glu Ser Arg Gln Arg Tyr Tyr
1445 1450 1455
Ala Ser Lys Gly Gln Lys His Phe Tyr Phe Met Ala Leu Asn Gly Gly
1460 1465 1470
Glu Val Ile Asp Ala Cys Thr Lys Gly Asn Leu Gly Arg Phe Ile Asn
1475 1480 1485
His Ser Cys Ser Pro Asn Cys Arg Thr Glu Lys Trp Met Val Asn Gly
1490 1495 1500
Glu Val Cys Ile Gly Ile Phe Ala Met Arg Asn Ile Lys Lys Gly Glu
1505 1510 1515 1520
Glu Leu Thr Phe Asp Tyr Asn Tyr Val Arg Val Ser Gly Ala Ala Pro
1525 1530 1535
Gln Lys Cys Phe Cys Gly Thr Ala Lys Cys Arg Gly Tyr Ile Gly Gly
1540 1545 1550
Asp Ile Ser Gly Ala Asp Met Ile Thr Gln Asp Asp Ala Glu Ala Gly
1555 1560 1565
Thr Phe Glu Pro Met Ala Val Gln Glu Asp Ala Glu Glu Val Leu Gly
1570 1575 1580
Ala Asn Gly Leu Ser Ser His Gly Thr His Leu Asp Ile Val Asp His
1585 1590 1595 1600
Glu Ala Ser Thr Lys Thr Glu Asp Ser Asn Asp Cys Pro Ser Val Asn
1605 1610 1615
Pro Pro Glu Leu Glu Ser Glu Gln Gln Thr Ser Gly Thr Leu Phe Asp
1620 1625 1630
Thr Ser Glu Pro Glu Asn Ser Leu Glu Ala Leu Ser Pro Gln Asp Asp
1635 1640 1645
Glu Asp Val Val Arg Thr Pro Val His Val Ser Arg Thr Val Glu Ser
1650 1655 1660
Thr Ser Arg Gln Phe Pro Glu Leu Gly Thr Arg Ser Ser Glu Ile Leu
1665 1670 1675 1680
Gln Arg Ala Pro Cys Thr Leu Asp Gly Pro Lys Val Pro Ser Thr Thr
1685 1690 1695
Asn Gly Ile Pro Pro Ser Ser Asp Leu Gly Ser His Trp Val Pro Gly
1700 1705 1710
Phe His Ala Asn Lys Lys Thr Asn Val Lys His His Leu Ile Leu Asn
1715 1720 1725
Pro Ser Ser Ala Pro Ile Asp Ser Glu His Ile Leu Gly Val Glu Gly
1730 1735 1740
Arg Leu Asn Ser Leu Leu Asp Val Asn Gly Gly Ile Ser Lys Arg Lys
1745 1750 1755 1760
Asp Ala Thr Asn Gly Tyr Leu Lys Leu Leu Leu Val Thr Ala Ala Glu
1765 1770 1775
Gly Asp Asn Ala Gly Gly Thr Ser Lys Ser Val Arg Asp Leu Ser Leu
1780 1785 1790
Ile Leu Asp Ala Leu Leu Lys Thr Arg Ser Asn Ser Val Leu Leu Asp
1795 1800 1805
Ile Ile Asn Lys Asn Gly Leu Gln Met Leu His Asn Ile Leu Lys Gln
1810 1815 1820
Asn Lys Ser Asp Phe His Arg Ile Pro Ile Ile Arg Lys Leu Val Lys
1825 1830 1835 1840
Leu Gln Gly Val Asp Val Gly Leu Val Lys Ala
1845 1850
<210> 12
<211> 1851
<212> PRT
<213> SDG725 Normal type Rice (Oryza sativa)
<400> 12
Met Glu Glu Pro Asp Gly Glu Ala Arg Gly Arg Glu Asp His Ala Ala
1 5 10 15
Val Gly Arg Leu Gly Gly Glu Glu Gly Ala Val Gly Gly Gly Gly Leu
20 25 30
Ala Leu Leu Ala Val Pro Glu Ile Gly Gly Glu Leu Gly Asp Gly Gly
35 40 45
Lys Val Cys Gly Gly Gln Glu Arg Arg Leu Pro Thr Glu Glu Asp Gly
50 55 60
Val Arg Asp Asn Gly Gly Gly Ser Ala Ala Glu Leu Val Glu Ser Ala
65 70 75 80
Val Asn Val Ser Thr Pro Phe Glu Gly Arg Gly Gln Ile Gly Gly Glu
85 90 95
Lys Glu Ser Ser Met Gln Glu Gly Ser Met Asn Met Ala Gly Glu Lys
100 105 110
His Gly Ser Tyr His Val Glu Ser Ala Glu Pro Ser Asn Leu Gln Thr
115 120 125
Cys His Ala Pro Asn Gly Gly Val Ser Asn Lys Thr Leu Phe Ala Pro
130 135 140
Phe Ser Glu Val Phe Ser Ser Asp Asn Ser His Met Arg Tyr Leu Leu
145 150 155 160
Asp Lys Ala Thr Glu Gly Ser Ile Cys Glu His Gly Asp Leu Ala Asp
165 170 175
Ser Lys Asp Asp Leu Gly Gly Ala Thr Asp Val Lys Thr Asn Thr Glu
180 185 190
Asp Leu Gln Met Val Cys Thr Lys Pro His Cys Asp Ser Glu Gly Leu
195 200 205
Ser Asp Leu His Asn Asp Ser Glu Arg Trp Pro Gln Val Val Asp Gly
210 215 220
Val Gly Phe Thr Ile Lys Gly Asn Asn Glu Leu Lys Gln Val Asp Leu
225 230 235 240
Ile Pro Lys Ile Glu Ala Glu Val Ser Arg Ser Val Glu Asp Asp Ser
245 250 255
Ile Pro Ser Phe Ser Gly Gly Ile Asp Asp Ser Leu Arg Lys Ala Gly
260 265 270
Cys Ala Cys Glu Thr Leu Asn Asp Met Gly Met Ser His Met Ala Asn
275 280 285
Gly Asp Leu Trp Cys Asn Val Leu Tyr Ala Pro Leu Ser Glu Gly Cys
290 295 300
Gln Ser Lys Asp Ala Arg His Ile Ala Val Met Gly Asn Lys Val Thr
305 310 315 320
Gln Gly Ser Gln Cys Gly Gln Gly Asp Leu Ala Cys Asp Gly Ile Val
325 330 335
Leu Arg Gly Gly Val Asp Val Glu Lys Ser Leu Asp Asp Leu Gln Met
340 345 350
Cys Ser Lys Glu Pro Gln Cys Asp Asn Lys Gly Phe Pro Tyr Leu Thr
355 360 365
Glu Phe Gly Val Gln Gln Pro Ser Tyr Gly Met Asn Val Ile Cys Ser
370 375 380
Lys Thr Asp Pro Asn His Gln Leu Glu Lys Asp Glu Leu Leu Thr Asn
385 390 395 400
Thr Arg Gly Glu Phe Ser Ser Ser Ile His Glu Asp Ser Val Pro Ser
405 410 415
Ile Ser Val Ser Ser Val Asp Phe Thr Phe Asp Gly Asn Ala Gly Gln
420 425 430
Ile Gly Lys Thr Ser Glu His Arg Ala Ile Met Glu Lys Val Ser His
435 440 445
Gly Ser Gln Arg Gly Gly Val Leu Ser Cys Glu Ser Arg Ser Leu Lys
450 455 460
Glu Ser His Ala Asp Glu Asn Gln Ser Ser Thr Leu Glu Val Lys Thr
465 470 475 480
Cys Glu Glu Gly Leu Gln Thr Gly Gln Val Glu Pro Cys His Ser Ile
485 490 495
Val Ala Leu Ser Asp Ser Gly Lys Tyr Gly Thr Asp Ile Leu Pro Arg
500 505 510
Gly Gly Asp Gly Leu Arg Ser Met Thr Gly Ala Asn His Glu Leu Val
515 520 525
Lys Asp Asp Phe His Pro Lys Ser Asp Val Val Val Ser Cys Pro Val
530 535 540
Asp Glu Ala Ser Ile Pro Ser Asn Tyr Asn Ser Pro Ile Asp Val Leu
545 550 555 560
Leu Tyr Lys Glu Asp Gly Leu Val Gly Glu Ile Ser Glu Asn Arg Thr
565 570 575
Gly Val Glu Lys Leu Ala His Asp Leu Leu Gly Glu Val Met Leu Ser
580 585 590
Phe Asp Ser Arg Pro Gln Thr Glu Ala Ser Gly Asp Glu Asn Gln His
595 600 605
Phe Trp Met Asp Val Pro Lys Gly Ser Thr Ala Ser Val Cys Glu Val
610 615 620
Glu Asn Thr Gly Thr Arg Arg Ser Cys Asp Pro Cys Ala Glu Ile Glu
625 630 635 640
Phe Pro Leu Gln Gln Ser Arg Glu Lys His Val Ile Ser Glu Ser Pro
645 650 655
Pro Glu Arg Asp Leu Thr Ser Ser Ser His Asn Leu Pro Cys Glu Asn
660 665 670
Glu Pro Cys Cys Ser Gly Arg Glu Thr Pro Ala Phe Cys Leu Gly His
675 680 685
Gln Asp Ser Ala Gly Ile Gly Leu Glu Ser Ser Asp Cys Leu Val Gln
690 695 700
Glu Leu Asn Thr Cys Thr Ser Thr Asp Asp Lys Ala Cys Ser Val Asp
705 710 715 720
Phe Val Glu Asn Gly Asn Gly Ser His Asn Gln Lys Glu Val Pro Val
725 730 735
Ile Phe Phe Arg Arg Arg Asn Pro Val Arg Ala Ala Ser Ser Arg Asn
740 745 750
Ser Asn Phe Glu Lys Cys Asp Gln Ile Asn Lys Ser Gly Asn Ser Thr
755 760 765
Arg Lys Ser Lys Lys Val Asp Ser Val Ser Ser Leu Leu Lys Ser Thr
770 775 780
Met Ile Lys Phe Pro Asn Lys Thr Thr Lys Gly Arg Ser Gly Ile Asn
785 790 795 800
Arg Pro Leu Asn Ser Ser Ala Trp Gly Ser Leu Gln Lys Leu Met Asp
805 810 815
Gly Phe Asn Gln Asn Cys Gly Pro Ser Thr Ser Arg Ser His Gln Thr
820 825 830
Cys Leu Gly Lys Glu Ile Ser Asn Arg Gly Ser Ser Glu Lys Lys Gln
835 840 845
Leu Ser Ile Arg Lys Ile Arg Thr Ser Arg Cys Ser Lys Tyr Lys Asn
850 855 860
Thr Ser Leu Ser Asp Ile Gly Tyr Leu Ala Gly Glu Leu Asn Gly Gln
865 870 875 880
Pro Thr Cys Ser Val Arg Ile Asp Thr Asn Val Ser Ser Asp Ala Leu
885 890 895
Phe Asn Ser Ser Asn Gly Ala His Lys Ala Ala Gln Cys Val Glu Gly
900 905 910
Asn His Thr Leu Lys Leu Thr Ser Ser Leu Thr Asp Ile Gln Gln Phe
915 920 925
Gly Leu Glu Asn Val Thr Gln Glu Thr Cys Pro Gly Tyr Ile His Gly
930 935 940
Glu Cys Gly Thr Ser Thr Ser Glu Arg Ser Leu Asn Asn Ile Val Gly
945 950 955 960
Phe Ser Pro Asp Ser Val Leu Asp Ile Ala Ser Val Thr Cys Glu Ser
965 970 975
Asn Thr Ser Ala Thr Leu Asp Val Ile Val His Glu Asn Pro Ser Cys
980 985 990
Pro Gly Gly Leu Ile Gly Gly Gly Leu Arg Ala Ser Ala Leu Ser Thr
995 1000 1005
Ser His Cys Glu Asn His His Ala Ser Ser Leu Met Asp Leu Glu Gln
1010 1015 1020
Gln Val Lys Thr Val Arg Glu Asn Asp Met Gly Lys Glu Asp Val Ile
1025 1030 1035 1040
Pro Ser His Ala Met Met Tyr Asn Asp Ile Gly Glu Gly Lys Gln Thr
1045 1050 1055
Leu Ala Lys Ser Asn Thr Met Arg Lys Gly Arg Asn Val Gly Lys Gln
1060 1065 1070
Glu Cys Arg Lys Lys Asp Gly Lys Lys Gly Lys Asn Ile Asn Lys Asn
1075 1080 1085
Arg Ser Ser Thr Lys Ile Ser Ser Ser Glu Ala Ser Lys Leu Val Ser
1090 1095 1100
Phe Ser Asn Asp Ser Pro Ser Leu Asp Pro Ser Glu Leu Leu Leu His
1105 1110 1115 1120
Thr Arg Pro Pro Lys Phe Gly Ser Cys Ser Lys Val Val Thr Ser Ala
1125 1130 1135
Ile His Asp Val Gly Met His Gly Tyr Asp Asn Met Cys Pro Phe Gly
1140 1145 1150
Ile Asp Asn Asp Asp Glu Gly Ser Ala Phe Asp Asn Val Lys Ser Leu
1155 1160 1165
Arg Arg Lys Lys Lys Asp Ser His Gly Gly Lys Lys Gly Lys Val Arg
1170 1175 1180
Asp Pro His Gly Lys Gly Arg Ser Lys Lys Lys Asn Ile Ala Asp Asn
1185 1190 1195 1200
Thr Tyr Gly Leu Pro Ala Gln Leu Thr Asp Leu Ser Glu Pro Arg Met
1205 1210 1215
Asn Lys Gln Ser Asp Leu Ile Pro Ala Ala Glu Leu Val Phe Lys Asn
1220 1225 1230
Ser Ser Ala Val Ser Val Glu Leu Pro Ala Val Val Ala Cys Lys Thr
1235 1240 1245
Asp Gly Ala Ser Val Pro Pro Ala Pro Ala Trp Val Cys Cys Asp Asp
1250 1255 1260
Cys Glu Lys Trp Arg Cys Ile Pro Thr Glu Leu Ala Asp Lys Ile Ser
1265 1270 1275 1280
Lys Glu Asn Leu Arg Trp Thr Cys Lys Glu Asn Glu Asp Lys Thr Phe
1285 1290 1295
Ala Asp Cys Ser Ile Pro Gln Glu Lys Thr Asp Asp Glu Ile Asn Ala
1300 1305 1310
Glu Leu Gly Leu Ser Asp Ala Ser Ala Asp Glu Ala Asn Gly Asp Gly
1315 1320 1325
Ser Asn Ser Lys Ala Ser Gly Glu Pro Asn Phe Ala Leu Leu Arg Ser
1330 1335 1340
Asn Leu Phe Leu His Arg Asn Arg Arg Thr Gln Ser Ile Asp Glu Ser
1345 1350 1355 1360
Met Val Cys Asn Cys Lys Pro Pro His Asp Asp Arg Met Gly Cys Arg
1365 1370 1375
Asp Gly Cys Leu Asn Arg Ile Leu Asn Ile Glu Cys Thr Lys Arg Thr
1380 1385 1390
Cys Pro Cys Gly Glu His Cys Ser Asn Gln Gln Phe Gln Arg Arg Thr
1395 1400 1405
Tyr Ala Lys Leu Gly Lys Phe His Thr Gly Lys Lys Gly Tyr Gly Leu
1410 1415 1420
Gln Leu Lys Glu Asp Val Ser Glu Gly Arg Phe Leu Ile Glu Tyr Val
1425 1430 1435 1440
Gly Glu Val Leu Asp Ile Thr Ala Tyr Glu Ser Arg Gln Arg Tyr Tyr
1445 1450 1455
Ala Ser Lys Gly Gln Lys His Phe Tyr Phe Met Ala Leu Asn Gly Gly
1460 1465 1470
Glu Val Ile Asp Ala Cys Thr Lys Gly Asn Leu Gly Arg Phe Ile Asn
1475 1480 1485
His Ser Cys Ser Pro Asn Cys Arg Thr Glu Lys Trp Met Val Asn Gly
1490 1495 1500
Glu Val Cys Ile Gly Ile Phe Ala Met Arg Asn Ile Lys Lys Gly Glu
1505 1510 1515 1520
Glu Leu Thr Phe Asp Tyr Asn Tyr Val Arg Val Ser Gly Ala Ala Pro
1525 1530 1535
Gln Lys Cys Phe Cys Gly Thr Ala Lys Cys Arg Gly Tyr Ile Gly Gly
1540 1545 1550
Asp Ile Ser Gly Ala Asp Met Ile Thr Gln Asp Asp Ala Glu Ala Gly
1555 1560 1565
Thr Phe Glu Pro Met Ala Asp Gln Glu Asp Ala Glu Glu Val Leu Gly
1570 1575 1580
Ala Asn Gly Leu Ser Ser His Gly Thr His Leu Asp Ile Val Asp His
1585 1590 1595 1600
Glu Ala Ser Thr Lys Thr Glu Asp Ser Asn Asp Cys Pro Ser Val Asn
1605 1610 1615
Pro Pro Glu Leu Glu Ser Glu Gln Gln Thr Ser Gly Thr Leu Phe Asp
1620 1625 1630
Thr Ser Glu Pro Glu Asn Ser Leu Glu Ala Leu Ser Pro Gln Asp Asp
1635 1640 1645
Glu Asp Val Val Arg Thr Pro Val His Val Ser Arg Thr Val Glu Ser
1650 1655 1660
Thr Ser Arg Gln Phe Pro Glu Phe Gly Thr Arg Ser Ser Glu Ile Leu
1665 1670 1675 1680
Gln Arg Ala Pro Cys Thr Leu Asp Gly Pro Lys Val Pro Ser Thr Thr
1685 1690 1695
Asn Gly Ile Pro Pro Ser Ser Asp Leu Gly Ser His Arg Val Pro Gly
1700 1705 1710
Phe His Ala Asn Lys Lys Thr Asn Val Lys His His Leu Ile Leu Asn
1715 1720 1725
Pro Ser Ser Ala Pro Ile Asp Ser Glu His Ile Leu Gly Val Glu Gly
1730 1735 1740
Arg Leu Asn Ser Leu Leu Asp Val Asn Gly Gly Ile Ser Lys Arg Lys
1745 1750 1755 1760
Asp Ala Thr Asn Gly Tyr Leu Lys Leu Leu Leu Val Thr Ala Ala Glu
1765 1770 1775
Gly Asp Asn Ala Gly Gly Thr Ser Lys Ser Val Arg Asp Leu Ser Leu
1780 1785 1790
Ile Leu Asp Ala Leu Leu Lys Thr Arg Ser Asn Ser Val Leu Leu Asp
1795 1800 1805
Ile Ile Asn Lys Asn Gly Leu Gln Met Leu His Asn Ile Leu Lys Gln
1810 1815 1820
Asn Lys Ser Asp Phe His Arg Ile Pro Ile Ile Arg Lys Leu Val Lys
1825 1830 1835 1840
Leu Gln Gly Val Asp Val Gly Leu Val Lys Ala
1845 1850
<210> 13
<211> 16
<212> DNA
<213> Hd1 functional marker H1 Forward Sequence (Artificial Sequence)
<400> 13
cctctccaaa gattcc 16
<210> 14
<211> 17
<212> DNA
<213> Hd1 functional marker H1 reverse Sequence (Artificial Sequence)
<400> 14
gctcccacaa ctccata 17
<210> 15
<211> 45
<212> DNA
<213> Forward primer Ehd1-F-G (Artificial sequence)
<400> 15
gaaggtgacc aagttcatgc ttcattgcag cagtgaacca cctcg 45
<210> 16
<211> 46
<212> DNA
<213> Forward primer Ehd1-F-A (Artificial sequence)
<400> 16
gaaggtcgga gtcaacggat tttcattgca gcagtgaacc acctca 46
<210> 17
<211> 29
<212> DNA
<213> reverse Universal primer Ehd1-R (Artificial sequence)
<400> 17
aaagaagttt aatttgatca ctcactgtc 29
<210> 18
<211> 45
<212> DNA
<213> Forward primer SDG725-F-A (Artificial sequence)
<400> 18
gaaggtcgga gtcaacggat taaaacgaag ataagacatt tgcca 45
<210> 19
<211> 44
<212> DNA
<213> Forward primer SDG725-F-G (Artificial sequence)
<400> 19
gaaggtgacc aagttcatgc taaacgaaga taagacattt gccg 44
<210> 20
<211> 25
<212> DNA
<213> reverse Universal primer SDG725-R (Artificial sequence)
<400> 20
tctcatcatc tgtcttctct tgtgg 25

Claims (10)

1. A method for creating weak light sensitive japonica rice germplasm is characterized by comprising the following steps:
(1) selecting a japonica rice strain 1 with the genotype of Hd1+ Ehd1+ SDG725 and a japonica rice strain 2 with the genotype of Hd1+ Ehd1+ SDG725 as parents at the heading stage of rice;
(2) performing continuous selfing after hybridization, and obtaining a recombinant inbred line population by using a single-seed transmission method;
(3) the molecular marker technology is utilized to screen homozygous families with different genotype combinations, and the families with small amplitude and yield increasing potential in the full-calendar period are selected under the conditions of long sunlight and short sunlight, so that the new japonica rice line with the heading period genotype of hd1+ ehd1+ SDG725 or hd1+ ehd1+ SDG725 is obtained.
2. The method for creating the weak light sensitive japonica rice germplasm according to claim 1, wherein in the step (1), the japonica rice line 1 is Zhenju 2400; the japonica rice line 2 is Jiahe 218.
3. The method for creating weakly light-sensitive japonica rice germplasm according to claim 1, wherein in the step (1), the CDS sequence of the Hd1 allele is shown as SEQ ID No.1 or SEQ ID No. 2; the CDS sequence of the Ehd1 allele is shown as SEQ ID NO.3 or SEQ ID NO. 4; the CDS sequence of the SDG725 allele is shown in SEQ ID NO.5 or SEQ ID NO. 6.
4. The method for creating the weak light sensitive japonica rice germplasm according to claim 1, wherein in the step (1), the amino acid sequence encoded by the Hd1 allele is shown as SEQ ID No.7 or SEQ ID No. 8; the amino acid sequence coded by the Ehd1 allele is shown as SEQ ID NO.9 or SEQ ID NO. 10; the amino acid sequence encoded by the SDG725 allele is shown in SEQ ID NO.11 or SEQ ID NO. 12.
5. The method for creating the weak light sensitive japonica rice germplasm of claim 1, wherein in the step (3), the Hd1 molecular marker is H1, the forward primer sequence is shown as SEQ ID No.13, and the reverse primer sequence is shown as SEQ ID No. 14.
6. The method for creating the weak light sensitive japonica rice germplasm of claim 1, wherein in the step (3), the functional marker Ehd1 is H10 and is KASP marker, the sequence of the forward primer Ehd1-F-G is shown as SEQ ID No.15, the sequence of the forward primer Ehd1-F-A is shown as SEQ ID No.16, and the sequence of the reverse universal primer Ehd1-R is shown as SEQ ID No. 17.
7. The method for creating the weak light sensitive japonica rice germplasm of claim 6, wherein the fluorescent signal label of carboxyfluorescein FAM is added to the 5 'end of the forward primer Ehd1-F-G, and the fluorescent signal label of hexachlorofluorescein phosphoramidate HEX is added to the 5' end of the forward primer Ehd 1-F-A.
8. The method for creating a weak light-sensitive japonica rice germplasm according to claim 1, wherein in the step (3), the functional marker of the SDG725 is H11 and is KASP marker, the sequence of the forward primer SDG725-F-A is shown as SEQ ID No.18, the sequence of the forward primer SDG725-F-G is shown as SEQ ID No.19, and the sequence of the reverse universal primer SDG725-R is shown as SEQ ID No. 20.
9. The method for creating a weak light sensitive japonica rice germplasm of claim 8, wherein a fluorescent signal label of hexachlorofluorescein phosphoramidate HEX is added to the 5 'end of the forward primer SDG725-F-A, and a fluorescent signal label of carboxyfluorescein FAM is added to the 5' end of the forward primer SDG 725-F-G.
10. The method for creating the germplasm of japonica rice with weak light sensitivity according to claim 1, wherein in the step (3), the new japonica rice line with the heading date genotype of hd1+ ehd1+ SDG725 or hd1+ ehd1+ SDG725 shows photoperiod insensitivity, and the home line of hd1+ ehd1+ SDG725 is older than the home line of hd1+ ehd1+ SDG 725.
CN202210281245.0A 2022-03-21 2022-03-21 Method for creating weak light-sensitive japonica rice germplasm Active CN114600765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210281245.0A CN114600765B (en) 2022-03-21 2022-03-21 Method for creating weak light-sensitive japonica rice germplasm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210281245.0A CN114600765B (en) 2022-03-21 2022-03-21 Method for creating weak light-sensitive japonica rice germplasm

Publications (2)

Publication Number Publication Date
CN114600765A true CN114600765A (en) 2022-06-10
CN114600765B CN114600765B (en) 2022-11-25

Family

ID=81864972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210281245.0A Active CN114600765B (en) 2022-03-21 2022-03-21 Method for creating weak light-sensitive japonica rice germplasm

Country Status (1)

Country Link
CN (1) CN114600765B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050257292A1 (en) * 2002-05-28 2005-11-17 Masahiro Yano Ehd1gene promoting plant flowering, and utlization thereof
CN101792770A (en) * 2010-04-08 2010-08-04 天津师范大学 Photoperiodic tolerant mutant hd1-3 gene for regulating and controlling flowering time of rice and application thereof
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method
CN108841855A (en) * 2018-06-12 2018-11-20 福建省农业科学院生物技术研究所 A method of editor's rice Ehd1 gene cultivates long breeding time japonica rice variety
CN109055395A (en) * 2018-09-07 2018-12-21 江苏丘陵地区镇江农业科学研究所 A kind of photoperiod insensitiveness Hd1 allele and its molecular labeling and application
CN111955339A (en) * 2020-07-24 2020-11-20 中国水稻研究所 Method for creating weak light sensitive indica rice restorer line
CN112342236A (en) * 2020-10-27 2021-02-09 复旦大学 Application of rice histone methyltransferase in enhancing crop drought resistance and improving single plant yield
US20210198682A1 (en) * 2018-05-24 2021-07-01 Cas Center For Excellence In Molecular Plant Sciences Application of sdg40 gene or encoded protein thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050257292A1 (en) * 2002-05-28 2005-11-17 Masahiro Yano Ehd1gene promoting plant flowering, and utlization thereof
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method
CN101792770A (en) * 2010-04-08 2010-08-04 天津师范大学 Photoperiodic tolerant mutant hd1-3 gene for regulating and controlling flowering time of rice and application thereof
US20210198682A1 (en) * 2018-05-24 2021-07-01 Cas Center For Excellence In Molecular Plant Sciences Application of sdg40 gene or encoded protein thereof
CN108841855A (en) * 2018-06-12 2018-11-20 福建省农业科学院生物技术研究所 A method of editor's rice Ehd1 gene cultivates long breeding time japonica rice variety
CN109055395A (en) * 2018-09-07 2018-12-21 江苏丘陵地区镇江农业科学研究所 A kind of photoperiod insensitiveness Hd1 allele and its molecular labeling and application
CN111955339A (en) * 2020-07-24 2020-11-20 中国水稻研究所 Method for creating weak light sensitive indica rice restorer line
CN112342236A (en) * 2020-10-27 2021-02-09 复旦大学 Application of rice histone methyltransferase in enhancing crop drought resistance and improving single plant yield

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周振玲等: "水稻显性感光抑制基因Su-E_1(t)的定位及遗传分析", 《植物遗传资源学报》 *
许乐峰等: "水稻晚开花突变体lft1的鉴定与基因克隆", 《南京农业大学学报》 *
高雪英等: "水稻全长均一化cDNA文库构建及SDG725结合蛋白筛选", 《复旦学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN114600765B (en) 2022-11-25

Similar Documents

Publication Publication Date Title
Jin et al. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication
DK2602325T3 (en) The corn plant MON87460 Event and compositions and methods for the detection thereof
CN110692507A (en) Method for improving plant species
CN109055395B (en) Photoperiod insensitive Hd1 allele and molecular marker and application thereof
Kim et al. Loss-of-function alleles of heading date 1 (Hd1) are associated with adaptation of temperate japonica rice plants to the tropical region
CN105695478B (en) Gene for regulating plant type and yield of plant and application thereof
JP2016506731A (en) Breeding methods and related materials and methods for grain yield enhancement
CN110028567A (en) A kind of relevant protein of Rice Flowering and its encoding gene LHD3 and application
Watanabe et al. Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei
CN109112146A (en) Control clone and the Breeding Application of the gene qSLWA9 of cabbage type rape silique length and grain principal characteristic shape
CN104520312B (en) The regulation of seed vitality
CN109111511A (en) The breeding method of super long granule rice
CN109971763A (en) Florescence control gene C MP1 and relevant carrier and its application
CN108504769B (en) InDel molecular marker closely linked with flowering time of photoperiod-sensitive Chinese cabbage crops and application thereof
CN116286849B (en) Gene AhWRI1 for regulating peanut oil content and application thereof
CN112457385B (en) Application of gene LJP1 for controlling rice growth period
US20160135415A1 (en) Sorghum hybrids with delayed flowering times
JP2009060874A (en) Gene associated with low-temperature germination of rice and utilization thereof
CN114600765B (en) Method for creating weak light-sensitive japonica rice germplasm
Yang et al. A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.)
CN100457905C (en) Paddy rice hybrid fertility gene and its application
JP2018201418A (en) Dna marker selection method of gene for making size of japonica type rice larger
CN109097390B (en) Application of AtFKBP15 gene in regulating and controlling growth of lateral roots of arabidopsis thaliana
CN106995846A (en) The detection and application of a kind of Henan south aromatic rice Badh2 gene functions mark
Luong et al. Characterization of domestication loci associated with awn development in rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant