CN114599787A - 利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素 - Google Patents

利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素 Download PDF

Info

Publication number
CN114599787A
CN114599787A CN202080071220.7A CN202080071220A CN114599787A CN 114599787 A CN114599787 A CN 114599787A CN 202080071220 A CN202080071220 A CN 202080071220A CN 114599787 A CN114599787 A CN 114599787A
Authority
CN
China
Prior art keywords
leu
ala
val
gly
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080071220.7A
Other languages
English (en)
Inventor
林杰翰
吴珮如
姚文山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Singapore
Original Assignee
National University of Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Singapore filed Critical National University of Singapore
Publication of CN114599787A publication Critical patent/CN114599787A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/012063,5,7-Trioxododecanoyl-CoA synthase (2.3.1.206)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01086Fatty-acyl-CoA synthase (2.3.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010394-Hydroxybenzoate polyprenyltransferase (2.5.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y404/00Carbon-sulfur lyases (4.4)
    • C12Y404/01Carbon-sulfur lyases (4.4.1)
    • C12Y404/01026Olivetolic acid cyclase (4.4.1.26)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010124-Coumarate-CoA ligase (6.2.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01025Benzoate--CoA ligase (6.2.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/0103Phenylacetate--CoA ligase (6.2.1.30)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种酿酒酵母的重组细胞,其基因组中包含编码大麻素生物合成途径基因的核酸。大麻素由重组细胞在大麻素前体底物存在下产生,并且大麻素生物合成途径基因中至少一个来自大麻以外的生物体。本发明还公开了用重组细胞和大麻素前体底物生产大麻素的方法。

Description

利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料 可持续生产大麻素
背景技术
植物大麻素这种化合物最初是从大麻(Cannabis sativa)植物中分离出来的,由于法律和社会问题,植物大麻素的研究和治疗应用受到很大阻碍。一些大麻素,如9-四氢大麻酚(THC),与植物中的其他大麻素混合产生,被发现具有精神活性。然而,目前从大麻中分离出了至少113种大麻素((Aizpurua-Olaizola等人,J.Nat.Prod.,2016,79(2):324-331),其中大多数是非精神活性的,它们具有独特的药理特性。
人大麻素受体的广泛表达意味着这些化合物对人体有广泛的影响。人大麻素受体主要有两类受体——CB1受体主要表达于中枢神经系统,而CB2受体主要存在于外周免疫系统。此外,研究还发现这些受体在各种人体组织中的表达,如心脏、肾上腺、肺、脾脏和扁桃体(Galiègue等人,Eur.J.Biochem.,1995,232(1):54-61)。大麻素与这些受体的结合激活了可能影响人体内广泛生物系统的信号通路。
植物大麻素已被美国食品和药物管理局批准临床用作癌症强化化疗患者的止吐剂(THC andDronabinol;Pertwee,Forsch.Komplementarmed.,1999,Suppl 3:12-15),并在英国作为对其他药物无反应的多发性硬化症患者痉挛的高效治疗药物(Flachenecker等人,Eur.Neurol.,2014,71(5-6):271-279)。各种研究也显示了植物大麻素作为抗肿瘤药物(Velasco等人,Nat.Rev.Cancer,2012,12(6):436-444;Maria Pyszniak等人,Onco.Targets Therapy,2016,.9:4323–4336),以及作为对几种耐甲氧西林金黄色葡萄球菌(MRSA)菌株有效的抗菌剂(Appendino等人,J.Nat.Prod.,2008,71(8):1427-1430)的治疗潜力。
鉴于大麻素研究的这些最新进展,合法大麻市场目前估计价值77亿美元,并预计将在2021年增长至314亿美元左右(Zhang,Forbes,2017)。
目前,大多数用于研究或治疗应用的大麻素都是从大麻提取物中提取的。与非法使用植物提取物相关的法律和社会影响是传统种植面临的最大挑战,因为在大麻中以混合物形式生产的精神活性成分如THC浓度很高。栽培大麻过程中产生的大麻素的选择性控制有限。此外,在研究可以生产少量大麻素(如次大麻二酚(CBDV)和大麻环酚(CBL))的大麻菌株的治疗潜力方面存在巨大的市场缺口。
由于需要高能耗的过程来控制环境因素,这些植物的种植不仅成本高昂,而且在环境上是不可持续的。2012年,能源与资源集团在劳伦斯伯克利国家实验室(LawrenceBerkeleyNational Laboratory)进行的研究估计,仅在美国,室内大麻种植的能源消耗成本每年约为60亿美元。此外,这种方法生产一公斤的最终产品的温室气体排放量相当于300万辆汽车的排放量(Mills,EnergyPolicy,2012,46:58-67)。
有必要找到替代的大麻素生产方法,以避免上述复杂问题。
发明内容
为了满足上文所述的需要,提供了一种酿酒酵母重组细胞,其基因组中含有多个核酸,每个核酸编码大麻素生物合成途径基因,使得重组细胞在大麻素前体底物存在下产生大麻素。至少有一个大麻素生物合成途径基因不是来自大麻。
还公开了一种通过将重组细胞与大麻素前体底物接触并培养重组细胞来生产大麻素的方法。
下面的说明书和实施例中阐述了一个或多个实施方案的细节。其他特征、对象和优点从具体实施方式、附图以及所附权利要求书中显而易见。
附图说明
本发明以下描述参考附图,其中:
图1示出了大麻素的生物合成途径。聚酮途径为黑色,异戊二烯途径为浅灰色。对途径进行的修饰以深灰色显示。
图2示出了从跨膜螺旋预测网络服务器(TMHMM)获得的香叶基焦磷酸:二羟基戊基苯甲酸香叶基转移酶的结果,示出了其氨基酸序列中6个预测的跨膜区域。
图3A是酵母Fab途径组装系统的示意图,示出了从生物元件(0级)组装而来的途径(2级)的克隆程序。图像取自Guo等人,NucleicAcids Res.,2015,.43(13):e88。
图3B示出了组装到2级途径的1级转录单元(POT)前缀和后缀的序列。
图4示出了在酿酒酵母中产生的大麻素的LC-MS分析的提取离子计数(左侧)和质谱(右侧):(第一行)表达4CL和MCS的阴性对照构建体4ME;(第二行)表达4CL、MCS、OLS和OAC的构建体4MOO;和(最后一排)OLA标准品。
图5示出了体外酶学检测的LC-MS分析的提取离子计数和质谱:使用GPP和OLA不使用酶的阴性对照(第一行),使用GPP和OLA及酶GOT(第二行),使用GPP和OLA及酶NphB(第三行),以及CBGA标准品(最后一行)。
图6示出了在酿酒酵母中过度表达单萜前体物IPP、DMAPP和GPP以及香叶醇生物合成的简化甲基戊酸途径(Zhao等人,Appl.Microbiol.Biotechnol.,2016,100(10):4561-4571)。下划线标出了用于在本发明系统中产生GPP的适应基因。
图7示出了在酿酒酵母中产生的大麻素的LC-MS分析提取的离子计数和质谱:阴性对照是构建仅表达大麻素基因的4MOON pMKU+空pCKL(第一行),构建在pMKU载体上表达大麻素基因,在pCKL上表达甲羟戊酸盐基因(第二行),以及CBGA标准(最后一行)的4MOONpMKU+IHUE pCKL。
图8示出了OLA和DVA之间碳链长度的差异(Groom等人,ActaCrystallogr.BStruct.Sci.Cryst.Eng.Mater,2016,72(Pt2):171-179)。
图9示出了使用不同的起始单元和酿酒酵母构建物生产OLA类似物。
图10中第3列示出了通过提取离子计数LC-MS分析鉴定的大肠杆菌中产生的新型二羟基戊基苯甲酸类似物的结构。第1列示出了大肠杆菌表达的生物合成途径,并与第2列所示的底物一起培养。4MOO=4-香豆酰-CoA连接酶、丙二酰CoA合成酶(MCS)、橄榄醇合成酶(OLS)和二羟基戊基苯甲酸环化酶(OAC);BMOO=苯甲酸CoA连接酶、MCS、OLS和OAC;CMOO=肉桂酰CoA连接酶、MCS、OLS和OAC;PMOO=苯乙酸CoA连接酶、MCS、OLS和OAC。
图11示出了建议的OLS反应机理。
图12示出了与OLS结构对接的3,5-二氧代癸酰CoA中间体(蓝色)的结构(左边)和与叠加的丙二酰CoA单元(黄色)对接的3,5-二氧代癸酰CoA中间体(蓝色)的蛋白质结构。
具体实施方式
如上所述,所提供的重组细胞在其基因组中包含多个核酸,每个核酸编码大麻素生物合成途径基因。在一个示例性重组细胞中,大麻素生物合成途径基因来自大麻以外的生物体。
本发明包含的某些重组细胞含有编码辅酶A(CoA)连接酶的核酸。CoA连接酶可以是但不限于红花烟草(Nicotiana tabacum)4-香豆酰-CoA连接酶(SEQ ID NO:1)、沼泽红假单胞菌(Rhodopseudomonaspalstri)苯甲酸-CoA连接酶(SEQ ID NO:2)和天蓝色链霉菌(Streptomyces coelicolor)苯乙酸-CoA连接酶(SEQ ID NO:3)。CoA连接酶可以与上述序列具有70%或更高的一致性(例如,70%、75%、80%、85%、90%、95%和99%或更高),同时保持酶活性。
此外,重组细胞可包括编码丙二酰CoA合成酶(MCS)、橄榄醇合成酶(OLS)和二羟基戊基苯甲酸(OAC)中任一种的核酸。在特定的重组细胞中,所述MCS被酰基激活酶(AAE)取代。
MCS可以具有SEQ ID NO:5的氨基酸序列,OLS可以具有SEQ IDNO:6的氨基酸序列,OAC可以具有SEQ ID NO:7的氨基酸序列,AAE可以具有SEQ ID NO:4的氨基酸序列。
或者,所述MCS、OLS、OAC和AAE可以具有与其对应序列号的氨基酸序列有70%或更多一致性的氨基酸序列。
上述重组细胞将在大麻素前体底物存在下产生大麻素。所述大麻素前体底物可以是,例如丁酸、戊酸、己酸、庚酸和辛酸。其他大麻素前体底物见下表1。
表1.大麻素前体底物
Figure BDA0003589114550000041
Figure BDA0003589114550000051
Figure BDA0003589114550000061
Figure BDA0003589114550000071
如发明内容部分所述,公开了一种使用上述重组细胞生产大麻素的方法。该方法通过将重组细胞与大麻素前体底物接触并培养重组细胞来实施。
在一个示例性方法中,重组细胞表达CoA连接酶、丙二酰CoA合成酶、橄榄醇合成酶和橄榄醇酸环化酶,大麻素前体底物为丁酸、戊酸、己酸、庚酸或辛酸。上述表1所示的其他大麻素前体底物也可以用于该方法。
在诸如酿酒酵母的微生物中的大麻素生物合成途径重组合成可以用于生物生产主要大麻素和次要大麻素。与栽培大麻生产的大麻素混合物相比,这种生物生产方法有助于生产特定的大麻素。此外,次要大麻素可以被高产量生产。此外,大麻素生物合成途径中的酶可以在微生物中操纵和表达,以产生具有治疗潜力的新型独特大麻素。
在不作进一步阐述的情况下,相信本领域技术人员可以基于本文的公开,最大限度地利用本发明。因此,以下具体实施例仅被解释为描述性的,不以任何方式限制本公开的其余部分。本文引用的所有出版物全部通过引用合并。
实施例
实施例1:大麻素生物合成途径的修饰
为了在微生物中重建大麻素生物合成途径,有必要首先了解存在于大麻中的,催化所述途径中每一步骤的酶。见图1。
上游生物合成途径可分为两个功能部分,聚酮途径产生二羟基戊基苯甲酸(OLA)作为最终产物和类异戊二烯途径产生焦磷酸牻牛儿酯(GPP)。
聚酮生产OLA
聚酮途径(见图1,红色)始于底物己酸和丙二酰CoA。一种名为CsAAE1(SEQ ID NO:4)的酰基激活酶负责将CoA部分添加到大麻叶守卫细胞(trichome)中的己酸中(Stout等人,Plant J.,2012,71(3):353-365)。然后,一种名为橄榄醇合成酶(OLS;SEQ ID NO:6)的III型聚酮合酶通过利用一个单位的己基CoA和三个单位的丙二酰CoA催化四酮硫酯(3,5,7–三氧十二烷基CoA)的形成(Taura等人,FEBS Lett,2009,583(12):2061-2066)。最后,二羟基戊基苯甲酸环化酶(OAC;SEQ ID NO:7)催化C2-C7醛缩合环化步骤以产生OLA(Gagne等人,Proc.Natl.Acad.Sci.USA,2012,109(31):12811-12816)。
类异戊二烯生产GPP
在大麻中,二甲基烯丙基焦磷酸盐(DMAPP)和异戊烯基焦磷酸盐(IPP)等类异戊二烯通过2-C-甲基-D-赤藓糖醇4-磷酸(MEP)途径产生(见图1,蓝色)(Van Bakel等人,GenomeBiol.,2011,12(10):R102)。一种假定的GPP合酶将一个单元的DMAPP与一个单元的IPP结合生成GPP。类异戊二烯也可以通过甲羟戊酸途径在自然界中产生,这种途径通常存在于微生物中,如酵母和一些细菌(Buhaescu等人,Clin.Biochem.,2007,40(9-10):575-584)。
终点大麻素
一旦产生OLA和GPP,芳基异戊烯基转移酶香叶基焦磷酸:二羟基戊基苯甲酸香叶基转移酶(GOT)通过将GPP中的C10异戊烯基转移到二羟基戊基苯甲酸的C3上催化第一大麻素,即大麻素酸(CBGA)的生产(Fellemier等人,FEBS Lett.,1998,427(2):283-285;参见图1)。不同大麻素的生物合成,例如四氢大麻酚酸(THCA)和次大麻二酚(CBDA),可以通过它们各自的合成酶(即THCA合酶和CBDA合酶)进行,方法是将先前从GPP转移的CBGA(见图1,黑色)上的C10碳链进行差异环化。
大麻素生物合成途径的修饰
大麻素生物合成途径的修饰如图1中的绿色所示。之前建立了一个分子工具包,使用四种不同的酰基CoA连接酶生产具有不同官能团的酰基CoA硫酯(Go等人,Biochemistry,2012,51(22):4568-4579)。4-香豆酰-CoA连接酶(4CL)从红花烟草(Nicotiana tabacum)植株(SEQ ID NO:1)中分离,苯甲酸盐-CoA连接酶(BZL)从革兰氏阴性细菌沼泽红假单胞菌(Rhodopseudomonaspalstri)(SEQ ID NO:2)中分离,来自革兰氏阳性细菌天蓝色链霉菌(Streptomyces coelicolor)(SEQ ID NO:3)的苯乙酸CoA连接酶(PCL)均被确定为与70种羧酸(见上表1)具有底物普适性,包括OLS的天然底物己酸。此外,来自土壤细菌三叶根瘤菌的丙二酰CoA合成酶(MCS)产生许多具有CoA部分的丙二酸,作为III型聚酮合成酶(如OLS)的延长单元。利用这些特性良好且底物普适的CoA连接酶替代大麻中的CsAAE1,有助于多种大麻素的下游生产。
每个CoA连接酶与丙二酰CoA合成酶(MCS)配对,后者负责将CoA部分添加到丙二酸上。
在异源系统中表达来自大麻的异戊烯基转移酶(即GOT)具有挑战性。事实上,正如生物信息学预测工具TMHMM(Carvalho等人,FEMS YeastRes.,2017,17(4))所示,这种酶被预测为具有内在跨膜区域的膜相关蛋白。见图2。
来自链霉菌属的可溶性异戊烯基转移酶,即NphB,之前被证明能够在大肠杆菌等细菌系统中接受OLA作为异戊二烯基受体(Kuzuyama等人,Nature,2005,435(7044):983-987;Yang et al.,Biochemistry,2012,51(12):2606-2618)。该酶可作为GOT的替代物,在大麻素生物合成途径中异源表达前酰基转移酶。
实施例2:在酿酒酵母中构建组装
酿酒酵母构建结构的分子克隆策略是一套基于Golden-Gate组装的质粒,称为YeastFab系统(Guo等人)。组装系统允许将启动子和终止子等转录单元模块化组装成开放阅读框(ORF),然后组装多达六个不同转录单元的表达盒。
YeastFab质粒的体系(suite)已经被扩展,可以将多达八个转录单元组装在一起。组装的模块化性质有利于下游优化,因为改变转录调控单元(如启动子和终止子)相对容易,能够在生物合成途径中差异调节每个基因的表达。在这种途径组装方法中,II型限制性内切酶(例如BsaI和BsmBI)在酶识别位点附近切割,使限制性内切酶和DNA连接酶在一步法消化连接反应中发挥作用。参见图3A。
将启动子、开放阅读框和终止子等标准生物部分分别克隆到单个质粒中(0级)。在第一轮一步法消化连接反应后,它们被组装成单独的转录单元,称为POTs(1级)。每个POT被设计成在接下来的反应中与另一个POT组装,通过前缀和后缀序列将多达八个转录单元组装进一个途径(2级),如图3B所示。
酵母组成型启动子库之前已经根据它们的相对强度进行了表征。选择一组具有不同强度的启动子和终止子来表达生物合成途径中的每种酶,反映它们对表达宿主的相对化学计量和毒性。为每个ORF分配了不同的启动子和终止子(见下表2),以防止酵母中经常发生的同源重组发生在彼此接近的同源序列之间(OrrWeaver等人,Proc.Natl.Acad.Sci.USA,1981,78(10):6354-6358)。
表2为每个ORF选择的启动子和终止子。(A)组装到OLA的途径。(B)组装到CBGA的途径。(C)组装到大麻素的终点的途径。
Figure BDA0003589114550000101
Figure BDA0003589114550000111
在转录单元和指定的启动子和终止子组装后,它们被组装进一个单个质粒中包含多个基因的途径中。在酵母中,焦磷酸法尼酯(FPP)是GPP的C15形式,通过向GPP中添加额外的IPP,由酶Erg20p内源性产生。之前的研究表明,表达该酶的双突变体,即Erg20pWW(F96W-N127W),会增加内源性GPP水平(Ignea等人,ACS Synth.Biol.,2014,3(5):298-306)。该双突变体与来自大冷杉(Abies grandis)(Burke等人,Arch.Biochem.Biophys.,2002,405(1):130-136)的香叶基二磷酸合酶(Ag-GPPase)和嵌合GPP合酶(Chi-GPPase)一起用于在构建物中产生GPP,以向前推进反应。
实施例3:大麻素生物生产
将表达基因组装到预期质粒中后,将其转入单一生物体(酿酒酵母),用于生物生产预期产物。酵母菌株BY4741是氨基酸甲硫氨酸、亮氨酸、组氨酸和尿嘧啶的营养缺陷型菌株(Brachmann等人,Yeast,1998,14(2):115-132),用于大麻素的生物生产。步进式方法可以作为预防措施,以确保每个质粒转化酵母随后表达一种功能酶。然后,在进入生物合成途径的下一步之前,使用液相色谱-质谱(LC-MS)检测每个步骤(例如OLA、CBGA和CBDA)的产物。
将酿酒酵母培养物培养至稳定期以表达酶。将底物(即己酸和丙二酸)添加到培养物中,然后在25℃下培养过夜。将培养物快速离心(spindown),将颗粒从上清液培养基中分离出来。通过LC-MS检查细胞颗粒和上清液培养基是否存在预期产物。
为了制备用于LC-MS分析的样品,将上清液培养基酸化至pH<2.0,然后用乙酸乙酯萃取三次。使用旋转真空浓缩器干燥提取的乙酸乙酯,重悬于甲醇中,并通过LC-MS进行分析。首先通过玻璃珠物理剪切或化学裂解裂解细胞,检查细胞颗粒是否存在预期产物。因此,裂解物经历了类似的酸化、有机萃取和LC-MS分析步骤。
实施例4:新型大麻素的生物合成
通过计算分析得知,可以通过三种不同的方法产生新的和非天然的大麻素实现大麻素库的多样化。
首先,传统的前体定向组合生物合成方法,包括使用不同的底物,将有助于探索途径中酶的底物普适性图谱。在每个步骤形成的独特和新的产物,之后作为该途径下一步的新底物,从而增加所生产产物的多样性。每种酶由于其结合口袋中的空间限制和相互作用,对其可以接受的底物都有一种天生的特异性。计算机方法,如计算机模拟(in silico)对接(docking),允许以高通量方式筛选大型的小分子化合物库,以识别具有良好结合亲和力的底物,然后进行实验测试。
第二,底物与酶结构的计算机模拟对接将清楚地阐明活性位点微环境中底物的空间限制和相互作用。这些信息随后被用于指导蛋白质工程。理解底物与酶结合袋(bindingpocket)的关键相互作用至关重要,以便合理设计特定突变,增加每种酶可能接受的底物的多样性。
最后,可以应用于每种酶的蛋白质工程程度是有限的,因为由此引入的突变可能会无意中改变整个蛋白质结构的体系结构(architecture),并导致蛋白质不稳定和无活性。不同生物体执行每个生物合成步骤的酶的直系同源物可以被识别并整合到该途径中。来自酶功能启动的酶相似性工具(Enzyme Similarity tool from the Enzyme-FunctionInitiative,EFI-EST)是一个生物信息学网络服务器,有助于识别蛋白质查询序列的同源物(Gerlt等人,Biochim.Biophys.Acta,2015,1854(8):1019-1037)。所述网络工具使用UniProt数据库来识别自然界中与查询序列在功能和催化的反应方面相关的氨基酸序列。它通过生成一个序列相似性网络来识别来自不同家族的蛋白质,这些家族可能具有非常不同的底物特异性图谱,从而利于它们之间关系的可视化。由此确定的直系同源物具有一组完全不同的底物,可以作为大麻素生物合成途径中特定步骤的合适替代物,从而产生独特和新型大麻素产品。
实施例5:酿酒酵母中大麻素的生物生产
如上文实施例2中所述,将转录单元组装成POTs。将质粒插入2级组装质粒pCKU和pMKU中,pCKU和pMKU分别含有酵母低拷贝或高拷贝复制源CEN和2μ,以及URA3选择标记。组装好的质粒使用之前描述的醋酸锂法转化到酿酒酵母的单个菌株S.cerevisiae BY4741中(Gietz等人,Nat.Protoc.,2007,2(1):35-37)。在将底物己酸和丙二酸添加到培养物中之前,将这些菌株培养过夜。在25℃下与底物培养过夜后,收集培养物,并用乙酸乙酯从每个培养物的生长培养基中进行提取。结果如图4所示。
在大麻素途径中表达四种酶(即CoA连接酶、MCS、OLS和OAC)的酵母培养上清液在约4分钟时显示出洗脱峰,m/z值为223.100(ppm误差为11.7),与OLA的m/z值相对应。参见图4的首行和底部行。在缺乏聚酮合成酶和聚酮环化酶、OLS和OAC的酵母阴性对照上清液中未观察到该峰值。见图4,首行。
该途径的下一步产生CBGA。为此,将上述产生OLA的前四个基因与GPP合成酶(Erg20pWW、AgGPPase或ChiGPPase)和异戊烯基转移酶(即GOT或NphB)一起组装到2级组装质粒pCKU和pMKU中。组装转录单元并转化到宿主酵母菌株后,如上所述,通过LC-MS分析培养上清液。在细胞内或细胞外组装的所有结构中均未观察到CBGA产物。不受理论约束,在某些培养物中缺乏CBGA可能是由于异戊烯基转移酶(GOT或NphB)的酶表达不良或缺乏可用于反应的底物(OLA或GPP)。
为了检测异戊烯基转移酶的活性,将表达GOT和NphB异戊二烯基转移酶转录单位的1级POT质粒分别转化到BY4741细胞中。如上所述,在稳定期培养和裂解培养物。然后将等量的裂解物分别添加以建立以OLA和GPP为底物的体外酶法测定法。通过用水替换裂解物建立了阴性对照。在30℃培养后,在LC-MS检测之前进行酸化和有机萃取。结果如图5所示。
在阴性对照组(未添加酶)和含有GOT的裂解液中观察到与CBGA相对应的小峰。参见图5,第一和第二行。这些数据表明,香叶基部分在OLA上的异戊烯基化是一个没有任何酶催化的自发过程,当OLA和GPP存在于混合物中时,会观察到少量异戊烯基化。在酿酒酵母BY4741中表达的GOT被确定为无活性,因为CBGA对应的峰面积与阴性对照相似。
另一方面,含有NphB的裂解物示出了CBGA的峰面积大于阴性对照,表明NphB是活性的。参见图5,第三行。洗脱0.1分钟后,在NphB催化的样品中也观察到一个次级峰,其m/z值与CBGA相同。此前有报道称,该峰值是在CBGA的另一个位置进行的非特异性OLA异戊烯基化产物,即2-O-香叶基二羟基戊基苯甲酸(Zirpel等人,J.Biotechnol.,2017,259:204-212)。当NphB在酵母菌株BY4741中表达时被证明具有功能,因此CBGA的产量低取决于构建物中底物OLA和GPP的供应。不受理论约束,GPP产量不足可能是CBGA产量低的最可能原因,因为在所有结构中都检测到与OLA对应的峰。
本领域已知在酿酒酵母中过度表达源自GPP的单萜的方法。有大量发表的论文描述了在酵母中提高单萜烯产量所做的工作,因为它们具有很高的商业价值。提高GPP产量的一种方法是减少酵母宿主承担的代谢负担。据报道,通过过度表达甲羟戊酸途径中的四个基因以及相应的单萜合酶香叶醇合成酶,香叶醇产量比以前的工程酵母菌株提高了七倍(Zhao等人)。
参考图6,类异戊二烯二磷酸异构酶(IDI1)催化DMAPP和IPP之间的异构化。这有助于提高有利于GPP生产的前体比例(Liu等人,J.Biotechnol.,2013,168(4):446-451)。HMG-CoA被确定为甲羟戊酸途径中的一个关键限速步骤,并且过度表达该基因的一个截短版本tHMG1,可增加该途径中甲羟戊酸的供应(Asadollahi等人,Biotechnol.Bioeng.,2010,106(1):86-96;Scalcinati等人,Metab Eng,2012.14(2):p.91-103)。UPC2是一种转录因子,参与调节甾醇生物合成,并过度表达突变体,UPC2-1通过增强甾醇的需氧摄取,从而促进甲羟戊酸的产生(Davies等人,Mol.Cell.Biol.,2005,25(16):7375-7385)。
IDI1、tHMG1和UPC2-1基因与之前描述的GPP合成酶Erg20pWW一起,使用上述YeastFab系统组装到1级POTs中,随后组装到表达营养缺陷型标记LEU2的2级组装质粒(pCKL/pMKL)中。这使得大麻素和类异戊烯的基因可以在单独的质粒上保持表达,以减少组装并转化到酵母菌株中的每个质粒的长度。
使用亮氨酸营养缺陷型标记(LEU2)分别指定一系列中到强启动子和终止子,以过度表达pCKL/pMKL质粒上保持的四个GPP产生基因,同时为大麻素基因中的酶指定一组不同的启动子和终止子,保持在单独的质粒pCKU/pMKU上。见下表3。
表3.选择用于(A)来自保持在pCKL/pMKL上的甲羟戊酸途径的ORF和(B)保持在pCKU/pMKU上的大麻素酶的启动子和终止子。
Figure BDA0003589114550000141
Figure BDA0003589114550000151
大麻素(pCKU/pMKU)和甲羟戊酸基因组装完成后,将两种质粒转化到酵母菌株BY4741中,并在缺乏尿嘧啶和亮氨酸的培养基中生长以选择转化子。对表达这两种质粒的构建体进行相同的生物生产程序。对溶解的细胞颗粒进行有机萃取后,在细胞内检测到微量的CBGA。结果如图7所示。洗脱时间约为6-7分钟且m/z值为359.2223(ppm误差为-1.34)的峰与CBGA标准品对应。
为了进一步提高通过酵母表达途径产生的CBGA的产量,对野生型NphB进行了计算蛋白质工程,以提高其产生CBGA而不是副产物2-O-香叶基二羟基戊基苯甲酸的选择性。产生了四种突变体,即V49W/Y288A(SEQ ID NO:8)、V49W/Y288P(SEQ ID NO:9)、V49W/Y288A/Q295F(SEQ ID NO:10)和V49W/Y288P/Q295F(SEQ ID NO:11),它们在使用GPP中的香叶基部分在正确位置对二羟基戊基苯甲酸进行异戊烯基化以产生CBGA方面具有高度特异性。这些突变体在CBGA产量显著增加的同时完全不产生副产物,随后被整合到所述途径中,并显著提高了体内CBGA的滴度。
实施例6:大麻素的多样化
大麻素生物合成途径中的分支点可以用来生产新型大麻素化合物。上述结构中使用的酰基CoA连接酶和聚酮合酶(即OLS)的普适性允许使用不同的短-中链脂肪酸(C3-C10)作为底物,而不是己酸(C6)来生产二羟基戊基苯甲酸类似物。在大麻中的一个例子是大麻素四氢次大麻酚(THCV)和次大麻二酚酸(CBDVA)的生产,这两种物质都是由途径中相同的酶产生的。这些小量生产的大麻素使用聚酮类化合物前体2,4-二羟基-6-丙基-苯甲酸(DVA)代替OLA。DVA在芳香环C2上具有C3链长度,而不是OLA中的C5链(见图8),它也是由大麻中的CsAAE1酶产生的,使用丁酸(C4)作为起始单元,而不是己酸(C6)。
通过使用不同的起始单元(C3–C10)代替己酸(C6),测试OLS和OAC的底物普适性。结果如图9所示。
某些OLA类似物,即(C3、C9、C10)不是在酿酒酵母中产生的,而是在大肠杆菌中使用相同的生物合成途径构建物产生的。见图10。这可能是由于大肠杆菌中存在的内源性酰基CoA连接酶,而酿酒酵母中不存在,所述内源性酰基CoA连接酶能够作用于底物,如丙酸、壬酸和癸酸。这样一种内源性连接酶可以提供一种适宜的(primed)酰基CoA硫酯,作为聚酮合成酶OLS作用的底物。
实施例7:大麻素生产的进一步多样化
传统的前体定向组合生物合成方法需要对大量的底物库进行费力的筛选,以检测是否形成了新的产物。为了缩短识别有利底物所需的时间和减少损耗的资源,采用对接等计算方法作为预测模型来识别能够装入酶结合袋且与活性位点具有良好结合亲和力的底物。这有助于以高通量的方式筛选数千个底物库,以产生用于实验测试的最有利底物的排名列表。
从OLS的
Figure BDA0003589114550000161
分辨率结构开始,首先对接该酶的天然底物己酰CoA和丙二酰CoA作为阳性对照。OLS使用两种具有不同R-基团的底物,通过CoA部分进入活性位点;一个己酰CoA起始单元和三个丙二酰CoA延长单元反应,丙二酰CoA延长单元通过将乙酰酮基团连接到连接到OLS的Cys157的己基中间体上来迭代地延长起始单元,如图11和12所示。
为了确定不同的起始单元可以使用延长单元(如丙二酰CoA)执行相同的三个延长步骤,最后一个仍然共价连接到OLS的中间状态,即三酮中间体,3,5–二氧癸酰CoA(用两个丙二酰CoA延长后)使用GOLD对接(Groom等人;见图12,左边)。这允许描述调节执行多个延伸步骤的反应机制的空间限制。如果结合袋能够适应相应起始单元的最后一个共价连接的中间状态,它应该能够进行前几轮延长。
最后的丙二酰CoA单元使用结晶的丙二酰CoA配体进行叠加,所述结晶的丙二酰CoA配体与豆科紫花苜蓿(Medicago sativa)的查尔酮合成酶(CHS2)同源蛋白质(PDB代码:1CML)复合(Ferrer et al.,Nat.Struct.Biol.,1999,6(8):775-784)。使用蛋白质定位优化程序(PLOP)将叠加的丙二酰CoA配体(图12中的黄色配体,右图)与对接的3,5-二氧代十二烷基CoA中间体(图12中的蓝色配体)在OLS结构中进行能量最小化(Jacobson等人,J.Phys.Chem.B,2002,106(44):11673-11680;Jacobson等人,Proteins,2004,55(2):351-367;Zhao等人,Proteins,2011,79(10):2920-2935;Zhu等人,Proteins,2006,65(2):438-452;Zhu等人,J.Chem.Theory Comput.,2007,3(6):2108-2119)。最后一个叠加步骤确定了可能具有更大R-基团的起始单元,并导致OLS结合袋中与最后一个丙二酰CoA配体发生空间冲突,从而阻止最后一个延长步骤。这些候选物随后被淘汰。从图12左图和右图中的阳性对照观察到,对接的来自己酰CoA起始单元的3,5-二氧代癸酰CoA中间体的位置和能量最小化的丙二酰CoA的位置都使两个底物处于能共同进行最后的延伸反应的状态。
如上所述,有70个酰基CoA起始单位(Go等人)和12个不同的酰基CoA延长剂单位(Go等人,ACS Catalystation,2015,5(7):4033-4042)的库可用。总的来说,这相当于总共840个起始和延长单元的组合,它们可以作为III型聚酮合成酶(如OLS)的底物。它们被用作底物库,对接到OLS结构中。对接结果的输出被相应地排序,并与实验结果进行比较,以检查预测模型的准确性。OLS底物普适性的实验测试将产生具有不同链长或R-基团的二羟基戊基苯甲酸类似物,所述二羟基戊基苯甲酸类似物之后可用于制备在二羟基戊基苯甲酸大麻素C2骨架上具有不同R-基团的大麻素(见图8)。
实施例8:蛋白质工程
蛋白质工程是一个由来已久的工程酶领域,旨在实现特定的预期特性。然而,如果没有好的选择方法,庞大的序列空间需要一个预测模型来选择突变体以显示产品多样性。
如上所述,NphB突变体的设计具有很高的选择性,可以在不产生任何副产物的情况下生产CBGA。设计了不同的NphB突变体,使该异戊烯基转移酶接受不同的底物,从而产生不同的所需大麻素产品。
大麻素生物合成途径中的最后一个环化步骤使先前从GPP转移的C10链环化(见图1)。CBGA类似物是以更长的异戊二烯基链长度生产的,由于可用的链长度更长,将作为更多样结构的前体。GPP的C15链长类似物法尼基焦磷酸盐(FPP)和C20链长类似物香叶基焦磷酸盐(GGPP)被用作GPP的合适替代品,以生产具有C15或C20异戊二烯基链的CBGA类似物。使用相同的计算蛋白质工程方法,可以确定NphB酶上的特定突变,为更长的FPP和GPP提供更好的亲和力。可以检测到这些突变随后会产生CBGA类似物。
针对CBGA类似物产生菌株筛选大麻素合成酶的同源文库,以测试各种大麻素化学结构的产生,随后测试其生物活性。
其他实施方案
本说明书中公开的所有特征可以任意组合。本说明书中公开的每个特征可以由用于相同、等同或相似目的的替代特征替代。因此,除非另有明确说明,否则所公开的每个特征仅为等同或相似特征的通用系列的示例。
根据以上描述,本领域技术人员可以容易地确定本发明的基本特征,并且在不脱离本发明的精神和范围的情况下,可以对本发明进行各种改变和修改,以使其适应各种用途和条件。因此,其他实施方案也在权利要求的范围内。
序列表
<110> 新加坡国立大学
<120> 利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素
<130> 218005-0109PCT
<150> US 62/914,058
<151> 2019-10-11
<160> 12
<170> PatentIn version 3.5
<210> 1
<211> 542
<212> PRT
<213> 红花烟草
<220>
<221> misc_feature
<223> 4-香豆酸-CoA连接酶 2
<400> 1
Met Glu Lys Asp Thr Lys Gln Val Asp Ile Ile Phe Arg Ser Lys Leu
1 5 10 15
Pro Asp Ile Tyr Ile Pro Asn His Leu Pro Leu His Ser Tyr Cys Phe
20 25 30
Glu Asn Ile Ser Glu Phe Ser Ser Arg Pro Cys Leu Ile Asn Gly Ala
35 40 45
Asn Lys Gln Ile Tyr Thr Tyr Ala Asp Val Glu Leu Asn Ser Arg Lys
50 55 60
Val Ala Ala Gly Leu His Lys Gln Gly Ile Gln Pro Lys Asp Thr Ile
65 70 75 80
Met Ile Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ala Phe Ile Gly
85 90 95
Ala Ser Tyr Leu Gly Ala Ile Ser Thr Met Ala Asn Pro Leu Phe Thr
100 105 110
Pro Ala Glu Val Val Lys Gln Ala Lys Ala Ser Ser Ala Lys Ile Ile
115 120 125
Val Thr Gln Ala Cys His Val Asn Lys Val Lys Asp Tyr Ala Phe Glu
130 135 140
Asn Asp Val Lys Ile Ile Cys Ile Asp Ser Ala Pro Glu Gly Cys Leu
145 150 155 160
His Phe Ser Val Leu Thr Gln Ala Asn Glu His Asp Ile Pro Glu Val
165 170 175
Glu Ile Gln Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr
180 185 190
Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Leu Val Thr
195 200 205
Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His
210 215 220
Ser Glu Asp Val Met Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser
225 230 235 240
Leu Asn Ser Val Leu Leu Cys Gly Leu Arg Val Gly Ala Ala Ile Leu
245 250 255
Ile Met Gln Lys Phe Asp Ile Val Ser Phe Leu Glu Leu Ile Gln Ser
260 265 270
Tyr Lys Val Thr Ile Gly Pro Phe Val Pro Pro Ile Val Leu Ala Ile
275 280 285
Ala Lys Ser Pro Met Val Asp Asp Tyr Asp Leu Ser Ser Val Arg Thr
290 295 300
Val Met Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Thr Val
305 310 315 320
Arg Ala Lys Phe Pro Asn Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr
325 330 335
Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Pro
340 345 350
Phe Glu Ile Lys Ser Gly Ala Cys Gly Thr Val Val Arg Asn Ala Glu
355 360 365
Met Lys Ile Val Asp Pro Lys Thr Gly Asn Ser Leu Pro Arg Asn Gln
370 375 380
Ser Gly Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu
385 390 395 400
Asn Asp Pro Glu Ala Thr Ala Arg Thr Ile Asp Lys Glu Gly Trp Leu
405 410 415
Tyr Thr Gly Asp Ile Gly Tyr Ile Asp Asp Asp Asp Glu Leu Phe Ile
420 425 430
Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala
435 440 445
Pro Ala Glu Leu Glu Ala Leu Leu Leu Asn His Pro Asn Ile Ser Asp
450 455 460
Ala Ala Val Val Pro Met Lys Asp Glu Gln Ala Gly Glu Val Pro Val
465 470 475 480
Ala Phe Val Val Arg Ser Asn Gly Ser Thr Ile Thr Glu Asp Glu Val
485 490 495
Lys Asp Phe Ile Ser Lys Gln Val Ile Phe Tyr Lys Arg Ile Lys Arg
500 505 510
Val Phe Phe Val Asp Ala Ile Pro Lys Ser Pro Ser Gly Lys Ile Leu
515 520 525
Arg Lys Asp Leu Arg Ala Lys Leu Ala Ala Gly Leu Pro Asn
530 535 540
<210> 2
<211> 524
<212> PRT
<213> 沼泽红假单胞菌
<220>
<221> misc_feature
<223> 苯甲酸CoA连接酶
<400> 2
Met Asn Ala Ala Ala Val Thr Pro Pro Pro Glu Lys Phe Asn Phe Ala
1 5 10 15
Glu His Leu Leu Gln Thr Asn Arg Val Arg Pro Asp Lys Thr Ala Phe
20 25 30
Val Asp Asp Ile Ser Ser Leu Ser Phe Ala Gln Leu Glu Ala Gln Thr
35 40 45
Arg Gln Leu Ala Ala Ala Leu Arg Ala Ile Gly Val Lys Arg Glu Glu
50 55 60
Arg Val Leu Leu Leu Met Leu Asp Gly Thr Asp Trp Pro Val Ala Phe
65 70 75 80
Leu Gly Ala Ile Tyr Ala Gly Ile Val Pro Val Ala Val Asn Thr Leu
85 90 95
Leu Thr Ala Asp Asp Tyr Ala Tyr Met Leu Glu His Ser Arg Ala Gln
100 105 110
Ala Val Leu Val Ser Gly Ala Leu His Pro Val Leu Lys Ala Ala Leu
115 120 125
Thr Lys Ser Asp His Glu Val Gln Arg Val Ile Val Ser Arg Pro Ala
130 135 140
Ala Pro Leu Glu Pro Gly Glu Val Asp Phe Ala Glu Phe Val Gly Ala
145 150 155 160
His Ala Pro Leu Glu Lys Pro Ala Ala Thr Gln Ala Asp Asp Pro Ala
165 170 175
Phe Trp Leu Tyr Ser Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Val
180 185 190
His Thr His Ala Asn Pro Tyr Trp Thr Ser Glu Leu Tyr Gly Arg Asn
195 200 205
Thr Leu His Leu Arg Glu Asp Asp Val Cys Phe Ser Ala Ala Lys Leu
210 215 220
Phe Phe Ala Tyr Gly Leu Gly Asn Ala Leu Thr Phe Pro Met Thr Val
225 230 235 240
Gly Ala Thr Thr Leu Leu Met Gly Glu Arg Pro Thr Pro Asp Ala Val
245 250 255
Phe Lys Arg Trp Leu Gly Gly Val Gly Gly Val Lys Pro Thr Val Phe
260 265 270
Tyr Gly Ala Pro Thr Gly Tyr Ala Gly Met Leu Ala Ala Pro Asn Leu
275 280 285
Pro Ser Arg Asp Gln Val Ala Leu Arg Leu Ala Ser Ser Ala Gly Glu
290 295 300
Ala Leu Pro Ala Glu Ile Gly Gln Arg Phe Gln Arg His Phe Gly Leu
305 310 315 320
Asp Ile Val Asp Gly Ile Gly Ser Thr Glu Met Leu His Ile Phe Leu
325 330 335
Ser Asn Leu Pro Asp Arg Val Arg Tyr Gly Thr Thr Gly Trp Pro Val
340 345 350
Pro Gly Tyr Gln Ile Glu Leu Arg Gly Asp Gly Gly Gly Pro Val Ala
355 360 365
Asp Gly Glu Pro Gly Asp Leu Tyr Ile His Gly Pro Ser Ser Ala Thr
370 375 380
Met Tyr Trp Gly Asn Arg Ala Lys Ser Arg Asp Thr Phe Gln Gly Gly
385 390 395 400
Trp Thr Lys Ser Gly Asp Lys Tyr Val Arg Asn Asp Asp Gly Ser Tyr
405 410 415
Thr Tyr Ala Gly Arg Thr Asp Asp Met Leu Lys Val Ser Gly Ile Tyr
420 425 430
Val Ser Pro Phe Glu Ile Glu Ala Thr Leu Val Gln His Pro Gly Val
435 440 445
Leu Glu Ala Ala Val Val Gly Val Ala Asp Glu His Gly Leu Thr Lys
450 455 460
Pro Lys Ala Tyr Val Val Pro Arg Pro Gly Gln Thr Leu Ser Glu Thr
465 470 475 480
Glu Leu Lys Thr Phe Ile Lys Asp Arg Leu Ala Pro Tyr Lys Tyr Pro
485 490 495
Arg Ser Thr Val Phe Val Ala Glu Leu Pro Lys Thr Ala Thr Gly Lys
500 505 510
Ile Gln Arg Phe Lys Leu Arg Glu Gly Val Leu Gly
515 520
<210> 3
<211> 448
<212> PRT
<213> 天蓝色链霉菌
<220>
<221> misc_feature
<223> 苯乙酸-CoA连接酶
<400> 3
Met Ser Ser Glu Pro Thr Thr Gly Thr Ala Pro Ala Pro Arg Arg Gly
1 5 10 15
Glu Pro Leu Pro His Asp Leu Leu Asp Asp Ala Glu Arg Leu Ser Arg
20 25 30
Glu Gln Leu Arg Glu Leu Gln Leu Asp Arg Leu Arg Ala Thr Leu Arg
35 40 45
His Ala Tyr Asp Asn Val Glu Leu Tyr Arg Lys Lys Phe Asp Ala Ala
50 55 60
Gly Val Thr Pro Asp Asp Cys Arg Ser Leu Ala Asp Leu Ser Arg Phe
65 70 75 80
Pro Phe Thr Thr Lys Ala Asp Leu Arg Asp Thr Tyr Pro Phe Gly Met
85 90 95
Phe Ala Val Pro Met Ala Asp Val Arg Arg Val His Ala Ser Ser Gly
100 105 110
Thr Thr Gly Arg Ala Thr Val Val Gly Tyr Thr Glu Asn Asp Leu Ser
115 120 125
Met Trp Ala Asp Val Val Ala Arg Ser Ile Arg Ala Ala Gly Gly Arg
130 135 140
Pro Gly His Lys Val His Ile Ser Tyr Gly Tyr Gly Leu Phe Thr Gly
145 150 155 160
Gly Leu Gly Ala His Tyr Gly Ala Glu Arg Ala Gly Cys Thr Val Ile
165 170 175
Pro Ala Ser Gly Gly Met Thr Ala Arg Gln Val Gln Ile Ile Gln Asp
180 185 190
Phe Arg Pro Glu Ile Ile Met Val Thr Pro Ser Tyr Met Leu Thr Leu
195 200 205
Leu Asp Glu Phe Glu Arg Gln Gly Val Asp Pro Arg Thr Ser Ser Leu
210 215 220
Gln Val Gly Ile Phe Gly Ala Glu Pro Trp Thr Glu Glu Met Arg Arg
225 230 235 240
Glu Ile Glu Glu Arg Met Asp Ile His Ala Val Asp Ile Tyr Gly Leu
245 250 255
Ser Glu Val Ile Gly Pro Gly Val Ala Gln Glu Cys Val Glu Thr Lys
260 265 270
Asp Gly Leu His Ile Trp Glu Asp His Phe Tyr Pro Glu Val Val Asp
275 280 285
Pro Leu Thr Asp Ala Val Leu Pro Gly Gly Glu Glu Gly Glu Ile Val
290 295 300
Phe Thr Ser Leu Thr Lys Glu Ala Leu Pro Val Ile Arg Tyr Arg Thr
305 310 315 320
Arg Asp Leu Thr Arg Leu Leu Pro Gly Thr Ala Arg Pro Ala Phe Arg
325 330 335
Arg Met Arg Lys Val Thr Gly Arg Cys Asp Asp Met Ile Ile Leu Arg
340 345 350
Gly Val Asn Val Phe Pro Thr Gln Val Glu Glu Ile Val Leu Arg Thr
355 360 365
Pro Gly Val Ala Pro His Phe Gln Met Arg Leu Thr Glu Arg Gly Arg
370 375 380
Met Asp His Met Thr Val Arg Val Glu Ala Arg Pro Asp Ala Ala Pro
385 390 395 400
Glu Gln Arg Asp Ala Ala Ala Arg Ala Ile Ala Gln Gly Val Lys Asp
405 410 415
Gly Val Gly Val Thr Val Glu Val Glu Val Val Glu Pro Glu Thr Leu
420 425 430
Glu Arg Ser Leu Gly Lys Ile Arg Arg Val Trp Asp Gln Arg Gly Ala
435 440 445
<210> 4
<211> 543
<212> PRT
<213> 大麻
<220>
<221> misc_feature
<223> 草酰辅酶A
<400> 4
Met Glu Lys Ser Gly Tyr Gly Arg Asp Gly Ile Tyr Arg Ser Leu Arg
1 5 10 15
Pro Pro Leu His Leu Pro Asn Asn Asn Asn Leu Ser Met Val Ser Phe
20 25 30
Leu Phe Arg Asn Ser Ser Ser Tyr Pro Gln Lys Pro Ala Leu Ile Asp
35 40 45
Ser Glu Thr Asn Gln Ile Leu Ser Phe Ser His Phe Lys Ser Thr Val
50 55 60
Ile Lys Val Ser His Gly Phe Leu Asn Leu Gly Ile Lys Lys Asn Asp
65 70 75 80
Val Val Leu Ile Tyr Ala Pro Asn Ser Ile His Phe Pro Val Cys Phe
85 90 95
Leu Gly Ile Ile Ala Ser Gly Ala Ile Ala Thr Thr Ser Asn Pro Leu
100 105 110
Tyr Thr Val Ser Glu Leu Ser Lys Gln Val Lys Asp Ser Asn Pro Lys
115 120 125
Leu Ile Ile Thr Val Pro Gln Leu Leu Glu Lys Val Lys Gly Phe Asn
130 135 140
Leu Pro Thr Ile Leu Ile Gly Pro Asp Ser Glu Gln Glu Ser Ser Ser
145 150 155 160
Asp Lys Val Met Thr Phe Asn Asp Leu Val Asn Leu Gly Gly Ser Ser
165 170 175
Gly Ser Glu Phe Pro Ile Val Asp Asp Phe Lys Gln Ser Asp Thr Ala
180 185 190
Ala Leu Leu Tyr Ser Ser Gly Thr Thr Gly Met Ser Lys Gly Val Val
195 200 205
Leu Thr His Lys Asn Phe Ile Ala Ser Ser Leu Met Val Thr Met Glu
210 215 220
Gln Asp Leu Val Gly Glu Met Asp Asn Val Phe Leu Cys Phe Leu Pro
225 230 235 240
Met Phe His Val Phe Gly Leu Ala Ile Ile Thr Tyr Ala Gln Leu Gln
245 250 255
Arg Gly Asn Thr Val Ile Ser Met Ala Arg Phe Asp Leu Glu Lys Met
260 265 270
Leu Lys Asp Val Glu Lys Tyr Lys Val Thr His Leu Trp Val Val Pro
275 280 285
Pro Val Ile Leu Ala Leu Ser Lys Asn Ser Met Val Lys Lys Phe Asn
290 295 300
Leu Ser Ser Ile Lys Tyr Ile Gly Ser Gly Ala Ala Pro Leu Gly Lys
305 310 315 320
Asp Leu Met Glu Glu Cys Ser Lys Val Val Pro Tyr Gly Ile Val Ala
325 330 335
Gln Gly Tyr Gly Met Thr Glu Thr Cys Gly Ile Val Ser Met Glu Asp
340 345 350
Ile Arg Gly Gly Lys Arg Asn Ser Gly Ser Ala Gly Met Leu Ala Ser
355 360 365
Gly Val Glu Ala Gln Ile Val Ser Val Asp Thr Leu Lys Pro Leu Pro
370 375 380
Pro Asn Gln Leu Gly Glu Ile Trp Val Lys Gly Pro Asn Met Met Gln
385 390 395 400
Gly Tyr Phe Asn Asn Pro Gln Ala Thr Lys Leu Thr Ile Asp Lys Lys
405 410 415
Gly Trp Val His Thr Gly Asp Leu Gly Tyr Phe Asp Glu Asp Gly His
420 425 430
Leu Tyr Val Val Asp Arg Ile Lys Glu Leu Ile Lys Tyr Lys Gly Phe
435 440 445
Gln Val Ala Pro Ala Glu Leu Glu Gly Leu Leu Val Ser His Pro Glu
450 455 460
Ile Leu Asp Ala Val Val Ile Pro Phe Pro Asp Ala Glu Ala Gly Glu
465 470 475 480
Val Pro Val Ala Tyr Val Val Arg Ser Pro Asn Ser Ser Leu Thr Glu
485 490 495
Asn Asp Val Lys Lys Phe Ile Ala Gly Gln Val Ala Ser Phe Lys Arg
500 505 510
Leu Arg Lys Val Thr Phe Ile Asn Ser Val Pro Lys Ser Ala Ser Gly
515 520 525
Lys Ile Leu Arg Arg Glu Leu Ile Gln Lys Val Arg Ser Asn Met
530 535 540
<210> 5
<211> 504
<212> PRT
<213> 三叶草根瘤菌
<220>
<221> misc_feature
<223> 丙二酰CoA合成酶
<400> 5
Met Ser Asn His Leu Phe Asp Ala Met Arg Ala Ala Ala Pro Gly Asn
1 5 10 15
Ala Pro Phe Ile Arg Ile Asp Asn Thr Arg Thr Trp Thr Tyr Asp Asp
20 25 30
Ala Phe Ala Leu Ser Gly Arg Ile Ala Ser Ala Met Asp Ala Leu Gly
35 40 45
Ile Arg Pro Gly Asp Arg Val Ala Val Gln Val Glu Lys Ser Ala Glu
50 55 60
Ala Leu Ile Leu Tyr Leu Ala Cys Leu Arg Ser Gly Ala Val Tyr Leu
65 70 75 80
Pro Leu Asn Thr Ala Tyr Thr Leu Ala Glu Leu Asp Tyr Phe Ile Gly
85 90 95
Asp Ala Glu Pro Arg Leu Val Val Val Ala Ser Ser Ala Arg Ala Gly
100 105 110
Val Glu Thr Ile Ala Lys Pro Arg Gly Ala Ile Val Glu Thr Leu Asp
115 120 125
Ala Ala Gly Ser Gly Ser Leu Leu Asp Leu Ala Arg Asp Glu Pro Ala
130 135 140
Asp Phe Val Asp Ala Ser Arg Ser Ala Asp Asp Leu Ala Ala Ile Leu
145 150 155 160
Tyr Thr Ser Gly Thr Thr Gly Arg Ser Lys Gly Ala Met Leu Thr His
165 170 175
Gly Asn Leu Leu Ser Asn Ala Leu Thr Leu Arg Asp Phe Trp Arg Val
180 185 190
Thr Ala Gly Asp Arg Leu Ile His Ala Leu Pro Ile Phe His Thr His
195 200 205
Gly Leu Phe Val Ala Thr Asn Val Thr Leu Leu Ala Gly Ala Ser Met
210 215 220
Phe Leu Leu Ser Lys Phe Asp Pro Glu Glu Ile Leu Ser Leu Met Pro
225 230 235 240
Gln Ala Thr Met Leu Met Gly Val Pro Thr Phe Tyr Val Arg Leu Leu
245 250 255
Gln Ser Pro Arg Leu Asp Lys Gln Ala Val Ala Asn Ile Arg Leu Phe
260 265 270
Ile Ser Gly Ser Ala Pro Leu Leu Ala Glu Thr His Thr Glu Phe Gln
275 280 285
Ala Arg Thr Gly His Ala Ile Leu Glu Arg Tyr Gly Met Thr Glu Thr
290 295 300
Asn Met Asn Thr Ser Asn Pro Tyr Glu Gly Lys Arg Ile Ala Gly Thr
305 310 315 320
Val Gly Phe Pro Leu Pro Asp Val Thr Val Arg Val Thr Asp Pro Ala
325 330 335
Thr Gly Leu Ala Leu Pro Pro Glu Gln Thr Gly Met Ile Glu Ile Lys
340 345 350
Gly Pro Asn Val Phe Lys Gly Tyr Trp Arg Met Pro Glu Lys Thr Ala
355 360 365
Ala Glu Phe Thr Ala Asp Gly Phe Phe Ile Ser Gly Asp Leu Gly Lys
370 375 380
Ile Asp Arg Asp Gly Tyr Val His Ile Val Gly Arg Gly Lys Asp Leu
385 390 395 400
Val Ile Ser Gly Gly Tyr Asn Ile Tyr Pro Lys Glu Val Glu Gly Glu
405 410 415
Ile Asp Gln Ile Glu Gly Val Val Glu Ser Ala Val Ile Gly Val Pro
420 425 430
His Pro Asp Phe Gly Glu Gly Val Thr Ala Val Val Val Arg Lys Pro
435 440 445
Gly Ala Ala Leu Asp Glu Lys Ala Ile Val Ser Ala Leu Gln Asp Arg
450 455 460
Leu Ala Arg Tyr Lys Gln Pro Lys Arg Ile Ile Phe Ala Glu Asp Leu
465 470 475 480
Pro Arg Asn Thr Met Gly Lys Val Gln Lys Asn Ile Leu Arg Gln Gln
485 490 495
Tyr Ala Asp Leu Tyr Thr Arg Thr
500
<210> 6
<211> 385
<212> PRT
<213> 大麻
<220>
<221> misc_feature
<223> 橄榄醇合成酶
<400> 6
Met Asn His Leu Arg Ala Glu Gly Pro Ala Ser Val Leu Ala Ile Gly
1 5 10 15
Thr Ala Asn Pro Glu Asn Ile Leu Leu Gln Asp Glu Phe Pro Asp Tyr
20 25 30
Tyr Phe Arg Val Thr Lys Ser Glu His Met Thr Gln Leu Lys Glu Lys
35 40 45
Phe Arg Lys Ile Cys Asp Lys Ser Met Ile Arg Lys Arg Asn Cys Phe
50 55 60
Leu Asn Glu Glu His Leu Lys Gln Asn Pro Arg Leu Val Glu His Glu
65 70 75 80
Met Gln Thr Leu Asp Ala Arg Gln Asp Met Leu Val Val Glu Val Pro
85 90 95
Lys Leu Gly Lys Asp Ala Cys Ala Lys Ala Ile Lys Glu Trp Gly Gln
100 105 110
Pro Lys Ser Lys Ile Thr His Leu Ile Phe Thr Ser Ala Ser Thr Thr
115 120 125
Asp Met Pro Gly Ala Asp Tyr His Cys Ala Lys Leu Leu Gly Leu Ser
130 135 140
Pro Ser Val Lys Arg Val Met Met Tyr Gln Leu Gly Cys Tyr Gly Gly
145 150 155 160
Gly Thr Val Leu Arg Ile Ala Lys Asp Ile Ala Glu Asn Asn Lys Gly
165 170 175
Ala Arg Val Leu Ala Val Cys Cys Asp Ile Met Ala Cys Leu Phe Arg
180 185 190
Gly Pro Ser Glu Ser Asp Leu Glu Leu Leu Val Gly Gln Ala Ile Phe
195 200 205
Gly Asp Gly Ala Ala Ala Val Ile Val Gly Ala Glu Pro Asp Glu Ser
210 215 220
Val Gly Glu Arg Pro Ile Phe Glu Leu Val Ser Thr Gly Gln Thr Ile
225 230 235 240
Leu Pro Asn Ser Glu Gly Thr Ile Gly Gly His Ile Arg Glu Ala Gly
245 250 255
Leu Ile Phe Asp Leu His Lys Asp Val Pro Met Leu Ile Ser Asn Asn
260 265 270
Ile Glu Lys Cys Leu Ile Glu Ala Phe Thr Pro Ile Gly Ile Ser Asp
275 280 285
Trp Asn Ser Ile Phe Trp Ile Thr His Pro Gly Gly Lys Ala Ile Leu
290 295 300
Asp Lys Val Glu Glu Lys Leu His Leu Lys Ser Asp Lys Phe Val Asp
305 310 315 320
Ser Arg His Val Leu Ser Glu His Gly Asn Met Ser Ser Ser Thr Val
325 330 335
Leu Phe Val Met Asp Glu Leu Arg Lys Arg Ser Leu Glu Glu Gly Lys
340 345 350
Ser Thr Thr Gly Asp Gly Phe Glu Trp Gly Val Leu Phe Gly Phe Gly
355 360 365
Pro Gly Leu Thr Val Glu Arg Val Val Val Arg Ser Val Pro Ile Lys
370 375 380
Tyr
385
<210> 7
<211> 101
<212> PRT
<213> 大麻
<220>
<221> misc_feature
<223> 二羟基戊基苯甲酸环化酶
<400> 7
Met Ala Val Lys His Leu Ile Val Leu Lys Phe Lys Asp Glu Ile Thr
1 5 10 15
Glu Ala Gln Lys Glu Glu Phe Phe Lys Thr Tyr Val Asn Leu Val Asn
20 25 30
Ile Ile Pro Ala Met Lys Asp Val Tyr Trp Gly Lys Asp Val Thr Gln
35 40 45
Lys Asn Lys Glu Glu Gly Tyr Thr His Ile Val Glu Val Thr Phe Glu
50 55 60
Ser Val Glu Thr Ile Gln Asp Tyr Ile Ile His Pro Ala His Val Gly
65 70 75 80
Phe Gly Asp Val Tyr Arg Ser Phe Trp Glu Lys Leu Leu Ile Phe Asp
85 90 95
Tyr Thr Pro Arg Lys
100
<210> 8
<211> 307
<212> PRT
<213> 人工序列
<220>
<223> 链霉菌CL190 NphB V49W, Y288A
<400> 8
Met Ser Glu Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu
1 5 10 15
Ala Ala Gly Leu Leu Gly Val Ala Cys Ala Arg Asp Lys Ile Tyr Pro
20 25 30
Leu Leu Ser Thr Phe Gln Asp Thr Leu Val Glu Gly Gly Ser Val Val
35 40 45
Trp Phe Ser Met Ala Ser Gly Arg His Ser Thr Glu Leu Asp Phe Ser
50 55 60
Ile Ser Val Pro Thr Ser His Gly Asp Pro Tyr Ala Thr Val Val Glu
65 70 75 80
Lys Gly Leu Phe Pro Ala Thr Gly His Pro Val Asp Asp Leu Leu Ala
85 90 95
Asp Thr Gln Lys His Leu Pro Val Ser Met Phe Ala Ile Asp Gly Glu
100 105 110
Val Thr Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asn
115 120 125
Met Pro Gly Val Ala Glu Leu Ser Ala Ile Pro Ser Met Pro Pro Ala
130 135 140
Val Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val
145 150 155 160
Gln Met Thr Ser Met Asp Tyr Lys Lys Arg Gln Val Asn Leu Tyr Phe
165 170 175
Ser Glu Leu Ser Ala Gln Thr Leu Glu Ala Glu Ser Val Leu Ala Leu
180 185 190
Val Arg Glu Leu Gly Leu His Val Pro Asn Glu Leu Gly Leu Lys Phe
195 200 205
Cys Lys Arg Ser Phe Ser Val Tyr Pro Thr Leu Asn Trp Glu Thr Gly
210 215 220
Lys Ile Asp Arg Leu Cys Phe Ala Val Ile Ser Asn Asp Pro Thr Leu
225 230 235 240
Val Pro Ser Ser Asp Glu Gly Asp Ile Glu Lys Phe His Asn Tyr Ala
245 250 255
Thr Lys Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr
260 265 270
Gly Leu Thr Leu Ser Pro Lys Glu Glu Tyr Tyr Lys Leu Gly Ala Ala
275 280 285
Tyr His Ile Thr Asp Val Gln Arg Gly Leu Leu Lys Ala Phe Asp Ser
290 295 300
Leu Glu Asp
305
<210> 9
<211> 307
<212> PRT
<213> 人工序列
<220>
<223> 链霉菌CL190 NphB V49W, Y288P
<400> 9
Met Ser Glu Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu
1 5 10 15
Ala Ala Gly Leu Leu Gly Val Ala Cys Ala Arg Asp Lys Ile Tyr Pro
20 25 30
Leu Leu Ser Thr Phe Gln Asp Thr Leu Val Glu Gly Gly Ser Val Val
35 40 45
Trp Phe Ser Met Ala Ser Gly Arg His Ser Thr Glu Leu Asp Phe Ser
50 55 60
Ile Ser Val Pro Thr Ser His Gly Asp Pro Tyr Ala Thr Val Val Glu
65 70 75 80
Lys Gly Leu Phe Pro Ala Thr Gly His Pro Val Asp Asp Leu Leu Ala
85 90 95
Asp Thr Gln Lys His Leu Pro Val Ser Met Phe Ala Ile Asp Gly Glu
100 105 110
Val Thr Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asn
115 120 125
Met Pro Gly Val Ala Glu Leu Ser Ala Ile Pro Ser Met Pro Pro Ala
130 135 140
Val Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val
145 150 155 160
Gln Met Thr Ser Met Asp Tyr Lys Lys Arg Gln Val Asn Leu Tyr Phe
165 170 175
Ser Glu Leu Ser Ala Gln Thr Leu Glu Ala Glu Ser Val Leu Ala Leu
180 185 190
Val Arg Glu Leu Gly Leu His Val Pro Asn Glu Leu Gly Leu Lys Phe
195 200 205
Cys Lys Arg Ser Phe Ser Val Tyr Pro Thr Leu Asn Trp Glu Thr Gly
210 215 220
Lys Ile Asp Arg Leu Cys Phe Ala Val Ile Ser Asn Asp Pro Thr Leu
225 230 235 240
Val Pro Ser Ser Asp Glu Gly Asp Ile Glu Lys Phe His Asn Tyr Ala
245 250 255
Thr Lys Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr
260 265 270
Gly Leu Thr Leu Ser Pro Lys Glu Glu Tyr Tyr Lys Leu Gly Ala Pro
275 280 285
Tyr His Ile Thr Asp Val Gln Arg Gly Leu Leu Lys Ala Phe Asp Ser
290 295 300
Leu Glu Asp
305
<210> 10
<211> 307
<212> PRT
<213> 人工序列
<220>
<223> 链霉菌CL190 NphB V49W, Y288A, Q295F
<400> 10
Met Ser Glu Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu
1 5 10 15
Ala Ala Gly Leu Leu Gly Val Ala Cys Ala Arg Asp Lys Ile Tyr Pro
20 25 30
Leu Leu Ser Thr Phe Gln Asp Thr Leu Val Glu Gly Gly Ser Val Val
35 40 45
Trp Phe Ser Met Ala Ser Gly Arg His Ser Thr Glu Leu Asp Phe Ser
50 55 60
Ile Ser Val Pro Thr Ser His Gly Asp Pro Tyr Ala Thr Val Val Glu
65 70 75 80
Lys Gly Leu Phe Pro Ala Thr Gly His Pro Val Asp Asp Leu Leu Ala
85 90 95
Asp Thr Gln Lys His Leu Pro Val Ser Met Phe Ala Ile Asp Gly Glu
100 105 110
Val Thr Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asn
115 120 125
Met Pro Gly Val Ala Glu Leu Ser Ala Ile Pro Ser Met Pro Pro Ala
130 135 140
Val Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val
145 150 155 160
Gln Met Thr Ser Met Asp Tyr Lys Lys Arg Gln Val Asn Leu Tyr Phe
165 170 175
Ser Glu Leu Ser Ala Gln Thr Leu Glu Ala Glu Ser Val Leu Ala Leu
180 185 190
Val Arg Glu Leu Gly Leu His Val Pro Asn Glu Leu Gly Leu Lys Phe
195 200 205
Cys Lys Arg Ser Phe Ser Val Tyr Pro Thr Leu Asn Trp Glu Thr Gly
210 215 220
Lys Ile Asp Arg Leu Cys Phe Ala Val Ile Ser Asn Asp Pro Thr Leu
225 230 235 240
Val Pro Ser Ser Asp Glu Gly Asp Ile Glu Lys Phe His Asn Tyr Ala
245 250 255
Thr Lys Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr
260 265 270
Gly Leu Thr Leu Ser Pro Lys Glu Glu Tyr Tyr Lys Leu Gly Ala Ala
275 280 285
Tyr His Ile Thr Asp Val Phe Arg Gly Leu Leu Lys Ala Phe Asp Ser
290 295 300
Leu Glu Asp
305
<210> 11
<211> 307
<212> PRT
<213> 人工序列
<220>
<223> 链霉菌CL190 NphB V49W, Y288P, Q295F
<400> 11
Met Ser Glu Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu
1 5 10 15
Ala Ala Gly Leu Leu Gly Val Ala Cys Ala Arg Asp Lys Ile Tyr Pro
20 25 30
Leu Leu Ser Thr Phe Gln Asp Thr Leu Val Glu Gly Gly Ser Val Val
35 40 45
Trp Phe Ser Met Ala Ser Gly Arg His Ser Thr Glu Leu Asp Phe Ser
50 55 60
Ile Ser Val Pro Thr Ser His Gly Asp Pro Tyr Ala Thr Val Val Glu
65 70 75 80
Lys Gly Leu Phe Pro Ala Thr Gly His Pro Val Asp Asp Leu Leu Ala
85 90 95
Asp Thr Gln Lys His Leu Pro Val Ser Met Phe Ala Ile Asp Gly Glu
100 105 110
Val Thr Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asn
115 120 125
Met Pro Gly Val Ala Glu Leu Ser Ala Ile Pro Ser Met Pro Pro Ala
130 135 140
Val Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val
145 150 155 160
Gln Met Thr Ser Met Asp Tyr Lys Lys Arg Gln Val Asn Leu Tyr Phe
165 170 175
Ser Glu Leu Ser Ala Gln Thr Leu Glu Ala Glu Ser Val Leu Ala Leu
180 185 190
Val Arg Glu Leu Gly Leu His Val Pro Asn Glu Leu Gly Leu Lys Phe
195 200 205
Cys Lys Arg Ser Phe Ser Val Tyr Pro Thr Leu Asn Trp Glu Thr Gly
210 215 220
Lys Ile Asp Arg Leu Cys Phe Ala Val Ile Ser Asn Asp Pro Thr Leu
225 230 235 240
Val Pro Ser Ser Asp Glu Gly Asp Ile Glu Lys Phe His Asn Tyr Ala
245 250 255
Thr Lys Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr
260 265 270
Gly Leu Thr Leu Ser Pro Lys Glu Glu Tyr Tyr Lys Leu Gly Ala Pro
275 280 285
Tyr His Ile Thr Asp Val Phe Arg Gly Leu Leu Lys Ala Phe Asp Ser
290 295 300
Leu Glu Asp
305
<210> 12
<211> 538
<212> PRT
<213> 人工序列
<220>
<223> VSP- CBDA融合
<400> 12
Met Phe Ser Leu Lys Ala Leu Leu Pro Leu Ala Leu Leu Leu Val Ser
1 5 10 15
Ala Asn Gln Val Ala Ala Asn Pro Arg Glu Asn Phe Leu Lys Cys Phe
20 25 30
Ser Gln Tyr Ile Pro Asn Asn Ala Thr Asn Leu Lys Leu Val Tyr Thr
35 40 45
Gln Asn Asn Pro Leu Tyr Met Ser Val Leu Asn Ser Thr Ile His Asn
50 55 60
Leu Arg Phe Thr Ser Asp Thr Thr Pro Lys Pro Leu Val Ile Val Thr
65 70 75 80
Pro Ser His Val Ser His Ile Gln Gly Thr Ile Leu Cys Ser Lys Lys
85 90 95
Val Gly Leu Gln Ile Arg Thr Arg Ser Gly Gly His Asp Ser Glu Gly
100 105 110
Met Ser Tyr Ile Ser Gln Val Pro Phe Val Ile Val Asp Leu Arg Asn
115 120 125
Met Arg Ser Ile Lys Ile Asp Val His Ser Gln Thr Ala Trp Val Glu
130 135 140
Ala Gly Ala Thr Leu Gly Glu Val Tyr Tyr Trp Val Asn Glu Lys Asn
145 150 155 160
Glu Asn Leu Ser Leu Ala Ala Gly Tyr Cys Pro Thr Val Cys Ala Gly
165 170 175
Gly His Phe Gly Gly Gly Gly Tyr Gly Pro Leu Met Arg Asn Tyr Gly
180 185 190
Leu Ala Ala Asp Asn Ile Ile Asp Ala His Leu Val Asn Val His Gly
195 200 205
Lys Val Leu Asp Arg Lys Ser Met Gly Glu Asp Leu Phe Trp Ala Leu
210 215 220
Arg Gly Gly Gly Ala Glu Ser Phe Gly Ile Ile Val Ala Trp Lys Ile
225 230 235 240
Arg Leu Val Ala Val Pro Lys Ser Thr Met Phe Ser Val Lys Lys Ile
245 250 255
Met Glu Ile His Glu Leu Val Lys Leu Val Asn Lys Trp Gln Asn Ile
260 265 270
Ala Tyr Lys Tyr Asp Lys Asp Leu Leu Leu Met Thr His Phe Ile Thr
275 280 285
Arg Asn Ile Thr Asp Asn Gln Gly Lys Asn Lys Thr Ala Ile His Thr
290 295 300
Tyr Phe Ser Ser Val Phe Leu Gly Gly Val Asp Ser Leu Val Asp Leu
305 310 315 320
Met Asn Lys Ser Phe Pro Glu Leu Gly Ile Lys Lys Thr Asp Cys Arg
325 330 335
Gln Leu Ser Trp Ile Asp Thr Ile Ile Phe Tyr Ser Gly Val Val Asn
340 345 350
Tyr Asp Thr Asp Asn Phe Asn Lys Glu Ile Leu Leu Asp Arg Ser Ala
355 360 365
Gly Gln Asn Gly Ala Phe Lys Ile Lys Leu Asp Tyr Val Lys Lys Pro
370 375 380
Ile Pro Glu Ser Val Phe Val Gln Ile Leu Glu Lys Leu Tyr Glu Glu
385 390 395 400
Asp Ile Gly Ala Gly Met Tyr Ala Leu Tyr Pro Tyr Gly Gly Ile Met
405 410 415
Asp Glu Ile Ser Glu Ser Ala Ile Pro Phe Pro His Arg Ala Gly Ile
420 425 430
Leu Tyr Glu Leu Trp Tyr Ile Cys Ser Trp Glu Lys Gln Glu Asp Asn
435 440 445
Glu Lys His Leu Asn Trp Ile Arg Asn Ile Tyr Asn Phe Met Thr Pro
450 455 460
Tyr Val Ser Lys Asn Pro Arg Leu Ala Tyr Leu Asn Tyr Arg Asp Leu
465 470 475 480
Asp Ile Gly Ile Asn Asp Pro Lys Asn Pro Asn Asn Tyr Thr Gln Ala
485 490 495
Arg Ile Trp Gly Glu Lys Tyr Phe Gly Lys Asn Phe Asp Arg Leu Val
500 505 510
Lys Val Lys Thr Leu Val Asp Pro Asn Asn Phe Phe Arg Asn Glu Gln
515 520 525
Ser Ile Pro Pro Leu Pro Arg His Arg His
530 535

Claims (22)

1.一种酿酒酵母的重组细胞,在其基因组中包含多个核酸,每个核酸编码大麻素生物合成途径基因,其中大麻素由所述重组细胞在大麻素前体底物存在下产生,并且至少一个所述大麻素生物合成途径基因来自大麻以外的生物体。
2.根据权利要求1所述的重组细胞,其中所述多个核酸中的一个编码异戊烯基转移酶。
3.如权利要求2所述的重组细胞,其中所述异戊烯基转移酶是链霉菌NphB。
4.如权利要求2所述的重组细胞,其中所述异戊烯基转移酶具有SEQ ID NO:8-11中任一氨基酸序列或具有与SEQ ID NO:8-11至少70%一致性的具有异戊烯基转移酶活性的氨基酸序列。
5.如权利要求1所述的重组细胞,其中所述多个核酸中的一个编码CoA连接酶,所述CoA连接酶选自红花烟草(Nicotiana tabacum)4-香豆酰-CoA连接酶、沼泽红假单胞菌(Rhodopseudomonas palstri)苯甲酸-CoA连接酶和天蓝色链霉菌(Streptomycescoelicolor)苯乙酸-CoA连接酶。
6.如权利要求5所述的重组细胞,其中所述CoA连接酶具有SEQ ID NO:1-3中任一氨基酸序列或与SEQ ID NO:1-3至少具有70%一致性且具有CoA连接酶活性的氨基酸序列。
7.如权利要求1所述的重组细胞,其中所述多个核酸中的一个编码丙二酰CoA合成酶(MCS)、橄榄醇合成酶(OLS)和二羟基戊基苯甲酸环化酶(OAC)。
8.如权利要求7所述的重组细胞,其中所述MCS具有SEQ ID NO:5的氨基酸序列或与SEQID NO:5具有70%一致性且具有MCS活性的氨基酸序列。
9.如权利要求1所述的重组细胞,其中所述大麻素前体底物选自表1中列出的大麻素前体底物。
10.如权利要求9所述的重组细胞,其中所述大麻素前体底物为丁酸、戊酸、己酸、庚酸或辛酸。
11.一种生产大麻素的方法,所述方法包括将如权利要求1所述的重组细胞与大麻素前体底物接触并培养所述重组细胞。
12.如权利要求11所述的方法,其中所述大麻素前体底物选自表1中列出的大麻素前体底物。
13.如权利要求12所述的方法,其中所述大麻素前体底物为丁酸、戊酸、己酸、庚酸或辛酸。
14.如权利要求11所述的方法,其中所述多个核酸中的一个编码异戊烯基转移酶。
15.如权利要求14所述的方法,其中所述异戊二烯基转移酶是链霉菌属NphB。
16.如权利要求14所述的方法,其中所述异戊烯基转移酶具有SEQ ID NO:8-11中任一的氨基酸序列或与SEQ ID NO:8-11至少70%一致性且具有异戊烯基转移酶活性的氨基酸序列。
17.如权利要求11所述的方法,其中所述多个核酸中的一个编码CoA连接酶,所述CoA连接酶选自红花烟草(Nicotiana tabacum)4-香豆酰-CoA连接酶、沼泽红假单胞菌(Rhodopseudomonas palstri)苯甲酸-CoA连接酶和天蓝色链霉菌(Streptomycescoelicolor)苯乙酸-CoA连接酶。
18.如权利要求17所述的方法,其中所述CoA连接酶具有SEQ ID NO:1-3中任一氨基酸序列或与SEQ ID NO:1-3至少70%一致性且具有CoA连接酶活性的氨基酸序列。
19.如权利要求11所述的方法,其中所述多个核酸中的一个编码丙二酰CoA合成酶(MCS)、橄榄醇合成酶(OLS)和二羟基戊基苯甲酸环化酶(OAC)。
20.如权利要求19所述的方法,其中所述MCS具有SEQ ID NO:5的氨基酸序列或与SEQID NO:5有70%一致性且具有MCS活性的氨基酸序列。
21.一种异戊烯基转移酶,其中所述异戊烯基转移酶的氨基酸序列为SEQ ID NO:8-11中的任何一个。
22.一种编码异戊烯基转移酶的核酸,其中所述异戊烯基转移酶的氨基酸序列为SEQID NO:8-11中的任何一个。
CN202080071220.7A 2019-10-11 2020-10-12 利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素 Pending CN114599787A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962914058P 2019-10-11 2019-10-11
US62/914,058 2019-10-11
PCT/SG2020/050584 WO2021071439A1 (en) 2019-10-11 2020-10-12 Sustainable production of cannabinoids from simple precursor feedstocks using saccharomyces cerevisiae

Publications (1)

Publication Number Publication Date
CN114599787A true CN114599787A (zh) 2022-06-07

Family

ID=75437554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080071220.7A Pending CN114599787A (zh) 2019-10-11 2020-10-12 利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素

Country Status (8)

Country Link
US (1) US20240093253A1 (zh)
EP (1) EP4041876A4 (zh)
JP (1) JP2022552953A (zh)
KR (1) KR20220079579A (zh)
CN (1) CN114599787A (zh)
AU (1) AU2020364933A1 (zh)
CA (1) CA3156345A1 (zh)
WO (1) WO2021071439A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137663A (zh) * 2005-01-28 2008-03-05 索尔克生物学研究所 新型芳香异戊烯基转移酶,编码其的核酸和其使用
CN105555265A (zh) * 2013-02-28 2016-05-04 全谱实验室有限公司 大麻素的生物合成
WO2018200888A1 (en) * 2017-04-27 2018-11-01 Regents Of The University Of California Microorganisms and methods for producing cannabinoids and cannabinoid derivatives
WO2018209143A1 (en) * 2017-05-10 2018-11-15 Baymedica, Inc. Recombinant production systems for prenylated polyketides of the cannabinoid family
WO2019014490A1 (en) * 2017-07-12 2019-01-17 Biomedican, Inc. PRODUCTION OF CANNABINOIDS IN YEAST
WO2019183152A1 (en) * 2018-03-19 2019-09-26 Renew Biopharma, Inc. Compositions and methods for using genetically modified enzymes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3692143A4 (en) * 2017-10-05 2021-09-29 Eleszto Genetika, Inc. MICROORGANISMS AND METHODS OF FERMENTATION OF CANNABINOIDS
WO2019190945A1 (en) * 2018-03-29 2019-10-03 William Marsh Rice University Biosynthesis of olivetolic acid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137663A (zh) * 2005-01-28 2008-03-05 索尔克生物学研究所 新型芳香异戊烯基转移酶,编码其的核酸和其使用
US20080274478A1 (en) * 2005-01-28 2008-11-06 The Salk Institute For Biological Studies Toudai Tol, Ltd. Novel aromatic prenyltransferases, nucleic acids encoding same and uses therefor
CN105555265A (zh) * 2013-02-28 2016-05-04 全谱实验室有限公司 大麻素的生物合成
WO2018200888A1 (en) * 2017-04-27 2018-11-01 Regents Of The University Of California Microorganisms and methods for producing cannabinoids and cannabinoid derivatives
WO2018209143A1 (en) * 2017-05-10 2018-11-15 Baymedica, Inc. Recombinant production systems for prenylated polyketides of the cannabinoid family
WO2019014490A1 (en) * 2017-07-12 2019-01-17 Biomedican, Inc. PRODUCTION OF CANNABINOIDS IN YEAST
WO2019183152A1 (en) * 2018-03-19 2019-09-26 Renew Biopharma, Inc. Compositions and methods for using genetically modified enzymes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZIRPEL B等: "Engineering yeasts as platform organisms for cannabinoid biosynthesis", JOURNAL OF BIOTECHNOLOGY, vol. 259, pages 204 - 212, XP085167531, DOI: 10.1016/j.jbiotec.2017.07.008 *
裴俊伟等: "大麻素前体物SA的生物合成及产量优化", 微生物学通报, pages 1 - 23 *

Also Published As

Publication number Publication date
WO2021071439A1 (en) 2021-04-15
KR20220079579A (ko) 2022-06-13
EP4041876A1 (en) 2022-08-17
AU2020364933A1 (en) 2022-04-21
JP2022552953A (ja) 2022-12-21
CA3156345A1 (en) 2021-04-15
US20240093253A1 (en) 2024-03-21
EP4041876A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
Kildegaard et al. Engineering of Yarrowia lipolytica for production of astaxanthin
Tashiro et al. Bacterial production of pinene by a laboratory-evolved pinene-synthase
Ye et al. Engineering microbes for isoprene production
Lund et al. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism
CN108474009B (zh) 麦芽糖依赖性降解决定子、麦芽糖响应型启动子、稳定化构建体及其在生成非分解代谢化合物中的用途
EP3183357B1 (en) Method for producing oxygenated valencene
Berthelot et al. Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis
Yang et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli
Han et al. Fermentative production and direct extraction of (−)-α-bisabolol in metabolically engineered Escherichia coli
US7622283B2 (en) Methods for synthesizing mevalonate
JP5580488B2 (ja) テルペンシンターゼ変異体を発生させる方法
Xie et al. Functional characterization of four sesquiterpene synthases from Ricinus communis (castor bean)
US7741070B2 (en) Gene targets for enhanced carotenoid production
BRPI0614990A2 (pt) células hospedeiras geneticamente modificadas e uso das mesmas para produção de compostos isoprenóides
US20220259603A1 (en) Methods and cells for microbial production of phytocannabinoids and phytocannabinoid precursors
Khalid et al. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593
Delmulle et al. Challenges in the microbial production of flavonoids
Whitehead et al. Decoding catalysis by terpene synthases
Liu et al. Reprogramming the metabolism of oleaginous yeast for sustainably biosynthesizing the anticarcinogen precursor germacrene A
ES2880004T3 (es) Coproducción de un sesquiterpeno y un carotenoide
CN114599787A (zh) 利用酿酒酵母(Saccharomyces Cerevisiae)从简单前体原料可持续生产大麻素
US10337031B2 (en) Production of fragrant compounds
Hattan et al. Reconstruction of the Native Biosynthetic System of Carotenoids in E. coli─ Biosynthesis of a Series of Carotenoids Specific to Paprika Fruit
Tong et al. Functional characterization and substrate promiscuity of sesquiterpene synthases from Tripterygium wilfordii
US20230272439A1 (en) Method for producing olivetolic acid in an amoebozoa host species

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40075557

Country of ref document: HK