CN114595803B - 利用神经网络计算单元中的输入数据稀疏 - Google Patents

利用神经网络计算单元中的输入数据稀疏

Info

Publication number
CN114595803B
CN114595803B CN202210121408.9A CN202210121408A CN114595803B CN 114595803 B CN114595803 B CN 114595803B CN 202210121408 A CN202210121408 A CN 202210121408A CN 114595803 B CN114595803 B CN 114595803B
Authority
CN
China
Prior art keywords
input
inputs
subset
zero
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210121408.9A
Other languages
English (en)
Chinese (zh)
Other versions
CN114595803A (zh
Inventor
禹同爀
拉维·纳拉亚纳斯瓦米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of CN114595803A publication Critical patent/CN114595803A/zh
Application granted granted Critical
Publication of CN114595803B publication Critical patent/CN114595803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • G06F17/153Multidimensional correlation or convolution
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3824Operand accessing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/10Interfaces, programming languages or software development kits, e.g. for simulating neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Image Analysis (AREA)
  • Advance Control (AREA)
  • Complex Calculations (AREA)
  • Storage Device Security (AREA)
  • Memory System (AREA)
CN202210121408.9A 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏 Active CN114595803B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/336,066 2016-10-27
US15/336,066 US10360163B2 (en) 2016-10-27 2016-10-27 Exploiting input data sparsity in neural network compute units
US15/465,774 US9818059B1 (en) 2016-10-27 2017-03-22 Exploiting input data sparsity in neural network compute units
US15/465,774 2017-03-22
CN201710908258.5A CN108009626B (zh) 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710908258.5A Division CN108009626B (zh) 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏

Publications (2)

Publication Number Publication Date
CN114595803A CN114595803A (zh) 2022-06-07
CN114595803B true CN114595803B (zh) 2025-08-08

Family

ID=60256363

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210121408.9A Active CN114595803B (zh) 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏
CN201710908258.5A Active CN108009626B (zh) 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710908258.5A Active CN108009626B (zh) 2016-10-27 2017-09-29 利用神经网络计算单元中的输入数据稀疏

Country Status (9)

Country Link
US (6) US10360163B2 (enExample)
EP (2) EP3533003B1 (enExample)
JP (3) JP7134955B2 (enExample)
KR (4) KR20240105502A (enExample)
CN (2) CN114595803B (enExample)
DE (2) DE102017120452A1 (enExample)
HK (1) HK1254700A1 (enExample)
SG (1) SG11201903787YA (enExample)
WO (1) WO2018080624A1 (enExample)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959498B1 (en) 2016-10-27 2018-05-01 Google Llc Neural network instruction set architecture
US10175980B2 (en) 2016-10-27 2019-01-08 Google Llc Neural network compute tile
US10360163B2 (en) 2016-10-27 2019-07-23 Google Llc Exploiting input data sparsity in neural network compute units
US10685285B2 (en) * 2016-11-23 2020-06-16 Microsoft Technology Licensing, Llc Mirror deep neural networks that regularize to linear networks
EP3561736A4 (en) * 2016-12-20 2020-09-09 Shanghai Cambricon Information Technology Co., Ltd MATRIX MULTIPLICATION AND ADDITION DEVICE, NEURONAL COMPUTING DEVICE AND PROCESS
US11328037B2 (en) * 2017-07-07 2022-05-10 Intel Corporation Memory-size- and bandwidth-efficient method for feeding systolic array matrix multipliers
TWI680409B (zh) * 2017-07-08 2019-12-21 英屬開曼群島商意騰科技股份有限公司 適用於人工神經網路之矩陣及向量相乘的方法
US10790828B1 (en) 2017-07-21 2020-09-29 X Development Llc Application specific integrated circuit accelerators
US10879904B1 (en) * 2017-07-21 2020-12-29 X Development Llc Application specific integrated circuit accelerators
US10725740B2 (en) * 2017-08-31 2020-07-28 Qualcomm Incorporated Providing efficient multiplication of sparse matrices in matrix-processor-based devices
GB2570186B (en) 2017-11-06 2021-09-01 Imagination Tech Ltd Weight buffers
WO2019090325A1 (en) 2017-11-06 2019-05-09 Neuralmagic, Inc. Methods and systems for improved transforms in convolutional neural networks
US11715287B2 (en) 2017-11-18 2023-08-01 Neuralmagic Inc. Systems and methods for exchange of data in distributed training of machine learning algorithms
US10936942B2 (en) * 2017-11-21 2021-03-02 Google Llc Apparatus and mechanism for processing neural network tasks using a single chip package with multiple identical dies
CN109902812B (zh) * 2017-12-11 2020-10-09 中科寒武纪科技股份有限公司 板卡和神经网络运算方法
US10553207B2 (en) * 2017-12-29 2020-02-04 Facebook, Inc. Systems and methods for employing predication in computational models
US11693627B2 (en) * 2018-02-09 2023-07-04 Deepmind Technologies Limited Contiguous sparsity pattern neural networks
WO2019157599A1 (en) * 2018-02-16 2019-08-22 The Governing Council Of The University Of Toronto Neural network accelerator
US10572568B2 (en) * 2018-03-28 2020-02-25 Intel Corporation Accelerator for sparse-dense matrix multiplication
WO2021054990A1 (en) * 2019-09-16 2021-03-25 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US10963787B2 (en) 2018-05-31 2021-03-30 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US11216732B2 (en) 2018-05-31 2022-01-04 Neuralmagic Inc. Systems and methods for generation of sparse code for convolutional neural networks
US10832133B2 (en) 2018-05-31 2020-11-10 Neuralmagic Inc. System and method of executing neural networks
US11449363B2 (en) 2018-05-31 2022-09-20 Neuralmagic Inc. Systems and methods for improved neural network execution
US10599429B2 (en) * 2018-06-08 2020-03-24 Intel Corporation Variable format, variable sparsity matrix multiplication instruction
US12481861B2 (en) * 2018-07-12 2025-11-25 International Business Machines Corporation Hierarchical parallelism in a network of distributed neural network cores
EP3735658A1 (en) * 2018-07-12 2020-11-11 Huawei Technologies Co. Ltd. Generating a compressed representation of a neural network with proficient inference speed and power consumption
CN110796244B (zh) * 2018-08-01 2022-11-08 上海天数智芯半导体有限公司 用于人工智能设备的核心计算单元处理器及加速处理方法
CN109344964B (zh) * 2018-08-08 2020-12-29 东南大学 一种适用于神经网络的乘加计算方法和计算电路
CN110826707B (zh) * 2018-08-10 2023-10-31 北京百度网讯科技有限公司 应用于卷积神经网络的加速方法和硬件加速器
US12205012B2 (en) * 2018-08-24 2025-01-21 Samsung Electronics Co., Ltd. Method of accelerating training process of neural network and neural network device thereof
JP6985997B2 (ja) * 2018-08-27 2021-12-22 株式会社日立製作所 機械学習システムおよびボルツマンマシンの計算方法
WO2020046859A1 (en) 2018-08-27 2020-03-05 Neuralmagic Inc. Systems and methods for neural network convolutional layer matrix multiplication using cache memory
EP3841529B1 (en) * 2018-09-27 2025-07-16 DeepMind Technologies Limited Scalable and compressive neural network data storage system
US11586417B2 (en) 2018-09-28 2023-02-21 Qualcomm Incorporated Exploiting activation sparsity in deep neural networks
US11636343B2 (en) 2018-10-01 2023-04-25 Neuralmagic Inc. Systems and methods for neural network pruning with accuracy preservation
CN111026440B (zh) * 2018-10-09 2022-03-29 上海寒武纪信息科技有限公司 运算方法、装置、计算机设备和存储介质
JP7115211B2 (ja) * 2018-10-18 2022-08-09 富士通株式会社 演算処理装置および演算処理装置の制御方法
CN111126081B (zh) * 2018-10-31 2023-07-21 深圳永德利科技股份有限公司 全球通用语言终端及方法
US10768895B2 (en) 2018-11-08 2020-09-08 Movidius Limited Dot product calculators and methods of operating the same
KR102809535B1 (ko) * 2018-11-13 2025-05-22 삼성전자주식회사 뉴럴 네트워크를 이용한 데이터 처리 방법 및 이를 지원하는 전자 장치
US11663001B2 (en) * 2018-11-19 2023-05-30 Advanced Micro Devices, Inc. Family of lossy sparse load SIMD instructions
US11361050B2 (en) 2018-11-20 2022-06-14 Hewlett Packard Enterprise Development Lp Assigning dependent matrix-vector multiplication operations to consecutive crossbars of a dot product engine
WO2020121023A1 (en) * 2018-12-11 2020-06-18 Mipsology SAS Accelerating artificial neural network computations by skipping input values
US10769527B2 (en) 2018-12-11 2020-09-08 Mipsology SAS Accelerating artificial neural network computations by skipping input values
JP7189000B2 (ja) * 2018-12-12 2022-12-13 日立Astemo株式会社 情報処理装置、車載制御装置、車両制御システム
KR102833321B1 (ko) * 2018-12-12 2025-07-10 삼성전자주식회사 뉴럴 네트워크에서 컨볼루션 연산을 수행하는 방법 및 장치
KR102721579B1 (ko) * 2018-12-31 2024-10-25 에스케이하이닉스 주식회사 프로세싱 시스템
US11544559B2 (en) 2019-01-08 2023-01-03 Neuralmagic Inc. System and method for executing convolution in a neural network
US11604958B2 (en) 2019-03-13 2023-03-14 Samsung Electronics Co., Ltd. Method and apparatus for processing computation of zero value in processing of layers in neural network
DE112020001258T5 (de) 2019-03-15 2021-12-23 Intel Corporation Grafikprozessoren und Grafikverarbeitungseinheiten mit Skalarproduktakkumulationsanweisungen für ein Hybrid-Gleitkommaformat
ES3041900T3 (en) * 2019-03-15 2025-11-17 Intel Corp Architecture for block sparse operations on a systolic array
KR102746968B1 (ko) * 2019-03-20 2024-12-27 에스케이하이닉스 주식회사 신경망 가속 장치 및 그것의 동작 방법
KR102749978B1 (ko) * 2019-05-10 2025-01-03 삼성전자주식회사 피처맵 데이터에 대한 압축을 수행하는 뉴럴 네트워크 프로세서 및 이를 포함하는 컴퓨팅 시스템
US11301545B2 (en) * 2019-07-11 2022-04-12 Facebook Technologies, Llc Power efficient multiply-accumulate circuitry
US20210026686A1 (en) * 2019-07-22 2021-01-28 Advanced Micro Devices, Inc. Chiplet-integrated machine learning accelerators
US11195095B2 (en) 2019-08-08 2021-12-07 Neuralmagic Inc. System and method of accelerating execution of a neural network
US12249189B2 (en) 2019-08-12 2025-03-11 Micron Technology, Inc. Predictive maintenance of automotive lighting
US11635893B2 (en) * 2019-08-12 2023-04-25 Micron Technology, Inc. Communications between processors and storage devices in automotive predictive maintenance implemented via artificial neural networks
US12061971B2 (en) 2019-08-12 2024-08-13 Micron Technology, Inc. Predictive maintenance of automotive engines
US11042350B2 (en) 2019-08-21 2021-06-22 Micron Technology, Inc. Intelligent audio control in vehicles
KR20210024865A (ko) 2019-08-26 2021-03-08 삼성전자주식회사 데이터를 처리하는 방법 및 장치
US12210401B2 (en) 2019-09-05 2025-01-28 Micron Technology, Inc. Temperature based optimization of data storage operations
US11651209B1 (en) * 2019-10-02 2023-05-16 Google Llc Accelerated embedding layer computations
KR102808579B1 (ko) * 2019-10-16 2025-05-16 삼성전자주식회사 뉴럴 네트워크에서 연산을 수행하는 방법 및 장치
JP7462140B2 (ja) * 2019-10-29 2024-04-05 国立大学法人 熊本大学 ニューラルネットワーク回路及びニューラルネットワーク演算方法
JP7299134B2 (ja) * 2019-11-05 2023-06-27 ルネサスエレクトロニクス株式会社 データ処理装置及びその動作方法、プログラム
US11244198B2 (en) 2019-11-21 2022-02-08 International Business Machines Corporation Input partitioning for deep learning of large image data
FR3105659B1 (fr) 2019-12-18 2022-06-24 Commissariat Energie Atomique Procédé et dispositif de codage binaire de signaux pour implémenter des opérations MAC numériques à précision dynamique
KR102268817B1 (ko) * 2019-12-19 2021-06-24 국민대학교산학협력단 분산 클라우드 환경에서의 기계 학습 성능 평가 방법 및 장치
KR20210086233A (ko) * 2019-12-31 2021-07-08 삼성전자주식회사 완화된 프루닝을 통한 행렬 데이터 처리 방법 및 그 장치
TWI727641B (zh) * 2020-02-03 2021-05-11 華邦電子股份有限公司 記憶體裝置及其操作方法
US11586601B2 (en) * 2020-02-05 2023-02-21 Alibaba Group Holding Limited Apparatus and method for representation of a sparse matrix in a neural network
US11604975B2 (en) 2020-04-09 2023-03-14 Apple Inc. Ternary mode of planar engine for neural processor
CN111445013B (zh) * 2020-04-28 2023-04-25 南京大学 一种针对卷积神经网络的非零探测器及其方法
KR102418794B1 (ko) * 2020-06-02 2022-07-08 오픈엣지테크놀로지 주식회사 하드웨어 가속기를 위한 파라미터를 메모리로부터 액세스하는 방법 및 이를 이용한 장치
CN113835675A (zh) * 2020-06-23 2021-12-24 深圳市中兴微电子技术有限公司 数据处理装置及数据处理方法
US20220012304A1 (en) * 2020-07-07 2022-01-13 Sudarshan Kumar Fast matrix multiplication
KR102871496B1 (ko) 2020-07-17 2025-10-14 삼성전자주식회사 뉴럴 네트워크 장치 및 그의 동작 방법
JPWO2022014500A1 (enExample) * 2020-07-17 2022-01-20
CA3186225A1 (en) 2020-07-21 2022-01-27 Mostafa MAHMOUD System and method for using sparsity to accelerate deep learning networks
US11928176B2 (en) * 2020-07-30 2024-03-12 Arm Limited Time domain unrolling sparse matrix multiplication system and method
US12386683B2 (en) * 2020-09-08 2025-08-12 Technion Research And Development Foundation Ltd. Non-blocking simultaneous multithreading (NB-SMT)
CN116210228A (zh) 2020-09-30 2023-06-02 索尼半导体解决方案公司 信号处理装置、成像装置和信号处理方法
US12229659B2 (en) 2020-10-08 2025-02-18 Samsung Electronics Co., Ltd. Processor with outlier accommodation
US11436168B2 (en) * 2020-10-14 2022-09-06 Samsung Electronics Co., Ltd. Accelerator and electronic device including the same
US20210042617A1 (en) * 2020-10-27 2021-02-11 Intel Corporation Accelerated loading of unstructured sparse data in machine learning architectures
US11861328B2 (en) * 2020-11-11 2024-01-02 Samsung Electronics Co., Ltd. Processor for fine-grain sparse integer and floating-point operations
US11861327B2 (en) * 2020-11-11 2024-01-02 Samsung Electronics Co., Ltd. Processor for fine-grain sparse integer and floating-point operations
JP7580491B2 (ja) * 2020-11-30 2024-11-11 グーグル エルエルシー 複数のアキュムレータを有するシストリックアレイセル
US11556757B1 (en) 2020-12-10 2023-01-17 Neuralmagic Ltd. System and method of executing deep tensor columns in neural networks
CN112862086B (zh) * 2020-12-25 2025-01-24 南京蓝洋智能科技有限公司 一种神经网络运算处理方法、装置及计算机可读介质
KR102541461B1 (ko) 2021-01-11 2023-06-12 한국과학기술원 저전력 고성능 인공 신경망 학습 가속기 및 가속 방법
US12210663B2 (en) * 2021-01-13 2025-01-28 University Of Florida Research Foundation, Inc. Decommissioning and erasing entropy in microelectronic systems
US11853717B2 (en) * 2021-01-14 2023-12-26 Microsoft Technology Licensing, Llc Accelerating processing based on sparsity for neural network hardware processors
US20220253692A1 (en) * 2021-02-05 2022-08-11 Samsung Electronics Co., Ltd. Method and apparatus of operating a neural network
TWI847030B (zh) * 2021-05-05 2024-07-01 創鑫智慧股份有限公司 矩陣乘法器及其操作方法
US11940907B2 (en) * 2021-06-25 2024-03-26 Intel Corporation Methods and apparatus for sparse tensor storage for neural network accelerators
US11669489B2 (en) * 2021-09-30 2023-06-06 International Business Machines Corporation Sparse systolic array design
US11960982B1 (en) 2021-10-21 2024-04-16 Neuralmagic, Inc. System and method of determining and executing deep tensor columns in neural networks
JP2023073824A (ja) * 2021-11-16 2023-05-26 キヤノン株式会社 演算装置、情報処理方法、及びプログラム
KR102729077B1 (ko) * 2022-03-10 2024-11-13 리벨리온 주식회사 뉴럴 프로세싱 장치
CN116804973B (zh) * 2022-03-18 2024-06-18 深圳鲲云信息科技有限公司 地址生成装置、方法、数据缓存器和人工智能芯片
US20240119269A1 (en) * 2023-12-18 2024-04-11 Arnab Raha Dynamic sparsity-based acceleration of neural networks
TWI898651B (zh) * 2024-06-12 2025-09-21 新加坡商艾沛芯科技股份有限公司 記憶體裝置及其操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761213A (zh) * 2014-02-14 2014-04-30 上海交通大学 基于循环流水计算的片上阵列系统
CN103970720A (zh) * 2014-05-30 2014-08-06 东南大学 基于大规模粗粒度嵌入式可重构系统及其处理方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754128A (en) 1971-08-31 1973-08-21 M Corinthios High speed signal processor for vector transformation
JPS4874139A (enExample) * 1971-12-29 1973-10-05
JPS5364439A (en) * 1976-11-20 1978-06-08 Agency Of Ind Science & Technol Linear coversion system
JPS58134357A (ja) 1982-02-03 1983-08-10 Hitachi Ltd ベクトルプロセッサ
DE3586692T2 (de) 1984-03-29 1993-02-18 Toshiba Kawasaki Kk Arithmetische konvolutionsschaltung fuer digitale signalverarbeitung.
JPH0748207B2 (ja) * 1989-04-14 1995-05-24 シャープ株式会社 行列演算装置
US5267185A (en) 1989-04-14 1993-11-30 Sharp Kabushiki Kaisha Apparatus for calculating matrices
US5138695A (en) 1989-10-10 1992-08-11 Hnc, Inc. Systolic array image processing system
JPH03167664A (ja) 1989-11-28 1991-07-19 Nec Corp マトリクス演算回路
JPH05501317A (ja) 1990-05-30 1993-03-11 アダプティブ・ソリューションズ・インコーポレーテッド 仮想ゼロ値を用いるニューラル・ネットワーク
WO1991019267A1 (en) 1990-06-06 1991-12-12 Hughes Aircraft Company Neural network processor
US5287464A (en) 1990-10-24 1994-02-15 Zilog, Inc. Semiconductor multi-device system with logic means for controlling the operational mode of a set of input/output data bus drivers
JP3318753B2 (ja) 1991-12-05 2002-08-26 ソニー株式会社 積和演算装置および積和演算方法
AU658066B2 (en) * 1992-09-10 1995-03-30 Deere & Company Neural network based control system
JPH06139218A (ja) 1992-10-30 1994-05-20 Hitachi Ltd ディジタル集積回路を用いて神経回路網を完全に並列にシミュレートするための方法及び装置
US6067536A (en) * 1996-05-30 2000-05-23 Matsushita Electric Industrial Co., Ltd. Neural network for voice and pattern recognition
US5742741A (en) 1996-07-18 1998-04-21 Industrial Technology Research Institute Reconfigurable neural network
US5905757A (en) 1996-10-04 1999-05-18 Motorola, Inc. Filter co-processor
US6243734B1 (en) 1998-10-30 2001-06-05 Intel Corporation Computer product and method for sparse matrices
JP2001117900A (ja) 1999-10-19 2001-04-27 Fuji Xerox Co Ltd ニューラルネットワーク演算装置
US20020044695A1 (en) * 2000-05-05 2002-04-18 Bostrom Alistair K. Method for wavelet-based compression of video images
JP2003244190A (ja) 2002-02-19 2003-08-29 Matsushita Electric Ind Co Ltd データフロー制御スイッチ用プロセッサ及びデータフロー制御スイッチ
US7016529B2 (en) * 2002-03-15 2006-03-21 Microsoft Corporation System and method facilitating pattern recognition
US7493498B1 (en) * 2002-03-27 2009-02-17 Advanced Micro Devices, Inc. Input/output permission bitmaps for compartmentalized security
US7426501B2 (en) 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
US7818729B1 (en) * 2003-09-15 2010-10-19 Thomas Plum Automated safe secure techniques for eliminating undefined behavior in computer software
WO2005067572A2 (en) 2004-01-13 2005-07-28 New York University Method, system, storage medium, and data structure for image recognition using multilinear independent component analysis
GB2436377B (en) 2006-03-23 2011-02-23 Cambridge Display Tech Ltd Data processing hardware
CN101441441B (zh) * 2007-11-21 2010-06-30 新乡市起重机厂有限公司 起重机智能防摇控制系统的设计方法
JP4513865B2 (ja) 2008-01-25 2010-07-28 セイコーエプソン株式会社 並列演算装置および並列演算方法
CN102037652A (zh) 2008-05-21 2011-04-27 Nxp股份有限公司 包括存储器组的数据处理系统和数据重排
US8321652B2 (en) * 2008-08-01 2012-11-27 Infineon Technologies Ag Process and method for logical-to-physical address mapping using a volatile memory device in solid state disks
EP2290563B1 (en) * 2009-08-28 2017-12-13 Accenture Global Services Limited Accessing content in a network
US8589600B2 (en) 2009-12-14 2013-11-19 Maxeler Technologies, Ltd. Method of transferring data with offsets
US8595467B2 (en) 2009-12-29 2013-11-26 International Business Machines Corporation Floating point collect and operate
US8676874B2 (en) 2010-12-06 2014-03-18 International Business Machines Corporation Data structure for tiling and packetizing a sparse matrix
US8457767B2 (en) * 2010-12-31 2013-06-04 Brad Radl System and method for real-time industrial process modeling
US8806171B2 (en) 2011-05-24 2014-08-12 Georgia Tech Research Corporation Systems and methods providing wear leveling using dynamic randomization for non-volatile memory
US8977629B2 (en) 2011-05-24 2015-03-10 Ebay Inc. Image-based popularity prediction
US8812414B2 (en) 2011-05-31 2014-08-19 International Business Machines Corporation Low-power event-driven neural computing architecture in neural networks
US8909576B2 (en) 2011-09-16 2014-12-09 International Business Machines Corporation Neuromorphic event-driven neural computing architecture in a scalable neural network
US9201828B2 (en) 2012-10-23 2015-12-01 Analog Devices, Inc. Memory interconnect network architecture for vector processor
US9606797B2 (en) 2012-12-21 2017-03-28 Intel Corporation Compressing execution cycles for divergent execution in a single instruction multiple data (SIMD) processor
WO2014105057A1 (en) 2012-12-28 2014-07-03 Intel Corporation Instruction to reduce elements in a vector register with strided access pattern
US20150067273A1 (en) * 2013-08-30 2015-03-05 Microsoft Corporation Computation hardware with high-bandwidth memory interface
US9477628B2 (en) 2013-09-28 2016-10-25 Intel Corporation Collective communications apparatus and method for parallel systems
US9323525B2 (en) 2014-02-26 2016-04-26 Intel Corporation Monitoring vector lane duty cycle for dynamic optimization
US9715642B2 (en) * 2014-08-29 2017-07-25 Google Inc. Processing images using deep neural networks
CN104463209B (zh) * 2014-12-08 2017-05-24 福建坤华仪自动化仪器仪表有限公司 一种基于bp神经网络的pcb板上数字代码识别方法
US9666257B2 (en) 2015-04-24 2017-05-30 Intel Corporation Bitcell state retention
US10013652B2 (en) * 2015-04-29 2018-07-03 Nuance Communications, Inc. Fast deep neural network feature transformation via optimized memory bandwidth utilization
US10489703B2 (en) 2015-05-20 2019-11-26 Nec Corporation Memory efficiency for convolutional neural networks operating on graphics processing units
EP3304437B1 (en) * 2015-06-05 2021-05-26 DeepMind Technologies Limited Whitened neural network layers
US10474627B2 (en) 2015-10-08 2019-11-12 Via Alliance Semiconductor Co., Ltd. Neural network unit with neural memory and array of neural processing units that collectively shift row of data received from neural memory
CN205139973U (zh) * 2015-10-26 2016-04-06 中国人民解放军军械工程学院 基于fpga器件构建的bp神经网络
US9875104B2 (en) 2016-02-03 2018-01-23 Google Llc Accessing data in multi-dimensional tensors
US10552119B2 (en) 2016-04-29 2020-02-04 Intel Corporation Dynamic management of numerical representation in a distributed matrix processor architecture
GB201607713D0 (en) * 2016-05-03 2016-06-15 Imagination Tech Ltd Convolutional neural network
CN106023065B (zh) * 2016-05-13 2019-02-19 中国矿业大学 一种基于深度卷积神经网络的张量型高光谱图像光谱-空间降维方法
CN106127297B (zh) 2016-06-02 2019-07-12 中国科学院自动化研究所 基于张量分解的深度卷积神经网络的加速与压缩方法
US10360163B2 (en) 2016-10-27 2019-07-23 Google Llc Exploiting input data sparsity in neural network compute units
US10175980B2 (en) 2016-10-27 2019-01-08 Google Llc Neural network compute tile
US9959498B1 (en) 2016-10-27 2018-05-01 Google Llc Neural network instruction set architecture
US10733505B2 (en) 2016-11-10 2020-08-04 Google Llc Performing kernel striding in hardware
CN106529511B (zh) 2016-12-13 2019-12-10 北京旷视科技有限公司 图像结构化方法及装置
US10037490B2 (en) 2016-12-13 2018-07-31 Google Llc Performing average pooling in hardware
US20180189675A1 (en) 2016-12-31 2018-07-05 Intel Corporation Hardware accelerator architecture and template for web-scale k-means clustering
US11164071B2 (en) 2017-04-18 2021-11-02 Samsung Electronics Co., Ltd. Method and apparatus for reducing computational complexity of convolutional neural networks
US10572409B1 (en) 2018-05-10 2020-02-25 Xilinx, Inc. Sparse matrix processing circuitry
US20220067527A1 (en) * 2018-12-18 2022-03-03 Movidius Ltd. Neural network compression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761213A (zh) * 2014-02-14 2014-04-30 上海交通大学 基于循环流水计算的片上阵列系统
CN103970720A (zh) * 2014-05-30 2014-08-06 东南大学 基于大规模粗粒度嵌入式可重构系统及其处理方法

Also Published As

Publication number Publication date
JP2022172258A (ja) 2022-11-15
EP3533003A1 (en) 2019-09-04
CN114595803A (zh) 2022-06-07
KR20220065898A (ko) 2022-05-20
US20250258784A1 (en) 2025-08-14
KR102397415B1 (ko) 2022-05-12
US20200012608A1 (en) 2020-01-09
CN108009626B (zh) 2022-03-01
WO2018080624A1 (en) 2018-05-03
HK1254700A1 (zh) 2019-07-26
JP7469407B2 (ja) 2024-04-16
KR102528517B1 (ko) 2023-05-04
US20180121377A1 (en) 2018-05-03
DE202017105363U1 (de) 2017-12-06
DE102017120452A1 (de) 2018-05-03
US9818059B1 (en) 2017-11-14
KR20240105502A (ko) 2024-07-05
US20220083480A1 (en) 2022-03-17
JP7134955B2 (ja) 2022-09-12
EP3533003B1 (en) 2022-01-26
CN108009626A (zh) 2018-05-08
KR20190053262A (ko) 2019-05-17
US20240289285A1 (en) 2024-08-29
KR20230061577A (ko) 2023-05-08
US10360163B2 (en) 2019-07-23
KR102679563B1 (ko) 2024-07-01
JP2024096786A (ja) 2024-07-17
JP2020500365A (ja) 2020-01-09
US11106606B2 (en) 2021-08-31
US11816045B2 (en) 2023-11-14
EP4044071A1 (en) 2022-08-17
SG11201903787YA (en) 2019-05-30

Similar Documents

Publication Publication Date Title
CN114595803B (zh) 利用神经网络计算单元中的输入数据稀疏
Zhang et al. BoostGCN: A framework for optimizing GCN inference on FPGA
US11507382B2 (en) Systems and methods for virtually partitioning a machine perception and dense algorithm integrated circuit
Nguyen et al. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection
JP7025441B2 (ja) ニューラルネットワーク処理のスケジューリング
US11880768B2 (en) Method and apparatus with bit-serial data processing of a neural network
US20190258306A1 (en) Data processing system and method
Roohi et al. Rnsim: Efficient deep neural network accelerator using residue number systems
CN114595811A (zh) 用于执行深度学习操作的方法和设备
Kuppannagari et al. Energy performance of fpgas on perfect suite kernels
GB2556413A (en) Exploiting input data sparsity in neural network compute units
CN112132254A (zh) 利用微神经元网络计算中的输入激活数据稀疏
Wu et al. Accelerator design for vector quantized convolutional neural network
US20200311521A1 (en) Loop-based execution for efficient deep learning
Ollivier et al. FPIRM: Floating-point Processing in Racetrack Memories
TWI842584B (zh) 電腦實施方法及電腦可讀儲存媒體
WO2023224614A1 (en) Exploiting data sparsity at a machine-learning hardware accelerator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant