CN114573835A - 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用 - Google Patents

一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN114573835A
CN114573835A CN202210211063.6A CN202210211063A CN114573835A CN 114573835 A CN114573835 A CN 114573835A CN 202210211063 A CN202210211063 A CN 202210211063A CN 114573835 A CN114573835 A CN 114573835A
Authority
CN
China
Prior art keywords
hydrogel
polyacrylamide
piezoelectric
piezoelectric material
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210211063.6A
Other languages
English (en)
Other versions
CN114573835B (zh
Inventor
张以河
安琪
芦茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN202210211063.6A priority Critical patent/CN114573835B/zh
Publication of CN114573835A publication Critical patent/CN114573835A/zh
Application granted granted Critical
Publication of CN114573835B publication Critical patent/CN114573835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • C08J2201/0444Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供了一种压电活性聚丙烯酰胺复合水凝胶,包括聚丙烯酰胺和压电材料,聚丙烯酰胺为具有多孔结构的凝胶态,压电材料为压电高分子聚偏氟乙烯‑六氟丙烯,所述聚偏氟乙烯‑六氟丙烯填充于所述聚丙烯酰胺凝胶的空隙中,其制备方法,先获得多孔聚丙烯酰胺水凝胶,然后将其浸泡于压电材料的有机溶剂液中,最后再将它们置于压电材料的不溶溶液中使压电材料在多孔聚丙烯酰胺水凝胶中沉淀。

Description

一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和 应用
技术领域
本发明总体地涉及压电材料技术领域,具体涉及一种压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用。
背景技术
水凝胶是由天然或合成材料形成的三维交联聚合物网络,由于聚合物上的亲水基团及其交联结构,可以容纳大量水分。由于聚合物链和水的热力学相容性,亲水线性聚合物将溶解在水中,其中化学交联和物理交联(例如氢键、疏水相互作用、离子络合)都有助于水凝胶的形成。由于其优异的生物相容性、拉伸性、粘弹性和独特的机械性能,水凝胶结合了液体和固体的优点,使其在细胞或组织培养、组织工程和伤口敷料等生物医学领域应用并得到了深入研究。
近来年,许多研究发现电信号是生物环境中的关键因素,在神经通讯、胚胎发育、损伤后组织修复等生物系统中发挥着重要作用。电活性生物材料能够有效地将电信号传递到细胞或改善细胞间的电通信,具备一定的生物相容性及良好的信号传导能力,可弥补现今生物材料在调控细胞分化和组织再生方面的缺陷,在广泛的生物医学应用中具有实用性,包括神经假体、生物传感器和神经移植物。但一些电活性生物材料存在降解性能较差,力学性能欠佳等缺点,限制了其应用。水凝胶作为具有良好的生物相容性、机械性能优异以及降解能力,适用于生物组织工程领域。电活性水凝胶尤其适合神经应用,因为它们可以提供电信号和软微环境,可以模拟天然神经组织。电活性水凝胶通常是由固有的导电材料和交联水凝胶网络构成,其中水凝胶作为聚合物网络支架,而导电材料赋予导电性能。
发明内容
本发明目的在于提供一种压电活性聚丙烯酰胺复合水凝胶及其制备方法,采用沉淀法将压电材料PVDF-HFP复合到聚丙烯酰胺水凝胶中,解决了疏水性压电材料PVDF-HFP和亲水性水凝胶难以结合的问题。
本发明的技术方案是,一种压电活性聚丙烯酰胺复合水凝胶,包括聚丙烯酰胺和压电材料,所述聚丙烯酰胺为具有多孔结构的凝胶态,所述压电材料为压电高分子聚偏氟乙烯-六氟丙烯,所述聚偏氟乙烯-六氟丙烯填充于所述聚丙烯酰胺凝胶的空隙中。
同时,是本发明提供了上述压电活性聚丙烯酰胺复合水凝胶的制备方法,其特征在于,包括如下步骤:
(1)将致孔剂溶解在含有丙烯酰胺单体的超纯水溶液中,然后加入交联剂和引发剂进行混合,将混合溶液置于烘箱保温反应,聚合得到聚丙烯酰胺水凝胶;
(2)将聚丙烯酰胺水凝胶置于盐酸溶液中浸泡3天,利用致孔剂与盐酸发生反应产生二氧化碳气体溢出水凝胶表面形成孔道对聚丙烯酰胺水凝胶进行制孔,然后将致孔后的聚丙烯酰胺水凝胶浸泡在超纯水中调节pH值为中性,得到多孔聚丙烯酰胺水凝胶;
(3)将多孔聚丙烯酰胺水凝胶冻干后,浸泡在有机溶剂中进行溶剂置换,得到溶剂置换后的多孔聚丙烯酰胺水凝胶;
(4)将压电材料溶解在有机溶剂中,室温下25℃搅拌24小时,得到压电材料溶液,然后将溶剂置换后的多孔聚丙烯酰胺水凝胶浸泡在压电材料溶液中,室温下25℃静置24小时,得到溶解有压电材料的复合水凝胶;
(5)将溶解有压电材料的复合水凝胶浸泡于去离子水中,室温下静置24小时,利用压电材料疏水性将其沉淀在凝胶孔隙中,同时置换复合水凝胶中的有机溶剂,得到具有压电活性的聚丙烯酰胺复合水凝胶。
进一步的,上述步骤(1)中的致孔剂为碳酸氢钠、交联剂为N,N-亚甲基双丙烯酰胺、引发剂为过硫酸铵;步骤(3)中的有机溶剂为二甲基亚砜;步骤(4)中的压电材料为聚偏氟乙烯-六氟丙烯。
进一步的,上述述步骤(1)中,各组分质量比为丙烯酰胺:致孔剂:压电材料:交联剂:引发剂为200:(5~20):70:1:3。
进一步的,上述步骤(1)中,保温反应的温度为60℃,保温反应的时间为8h。
进一步的,上述步骤(2)中盐酸的浓度为0.1mol/L,浸泡时间为3天;调节pH的方法为使用超纯水浸泡2天,每隔12小时换水期间不间断换水,用广泛pH试纸进行测试;所述步骤(3)中聚丙烯酰胺水凝胶冻干时间为12小时;步骤(4)中压电材料与有机溶剂的用量比为7g压电材料:90ml有机溶剂中。
本发明同时公开了所述具有压电活性的聚丙烯酰胺复合水凝胶在制备生物医药材料中的应用,比如用于生物药物缓释伤口贴片材料中。
本发明的制备方法新颖,利用沉淀法将疏水物质加入亲水物质中,制得的水凝胶无毒无害、生物相容性良好,可用于制备药物缓释伤口贴片的生物材料,具有较大的推广价值。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为对比例所得水凝胶及实施例1制备的复合水凝胶的扫描电镜图,其中(a)为对比例的扫描电镜图,放大倍数为160倍,(b)为实施例1的扫描电镜图,放大倍数为100倍;
图2为实施例1所得复合水凝胶扫描电镜图和元素mapping图,其中(a)为实施例的扫描电镜图,放大倍数为80倍,(b)为图(a)对应的元素mapping图;
图3为对比例所得水凝胶及实施例1制备的复合水凝胶的导出电压图;
图4为对比例所得水凝胶及实施例1制备的复合水凝胶的导出电流图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
对比例
(1)将丙烯酰胺20g与致孔剂碳酸氢钠、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:15:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将水凝胶调节为中性。
实施例1
(1)将丙烯酰胺20g与致孔剂碳酸氢钠、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:15:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将盐酸溶液水洗完全,将水凝胶调节为中性。
(3)配置0.7gPVDF-HFP溶于9mlDMSO溶液中,搅拌24h。
(4)将多孔水凝胶用冷冻干燥机冻干12h,浸泡于DMSO溶液中24h。再利用配置好的PVDF-HFP溶液浸泡水凝胶24h,最后用去离子水浸泡复合水凝胶进行沉淀。
图1为得到的水凝胶的扫描电镜图,其中图(a)为对比例的放大倍数为160倍,(b)为实施例1的放大倍数为100倍。从图(a)与(b)图的对照可以看出:实施例1相对于对比例的孔径和数量都有所减少,说明压电材料高分子PVDF-HFP的进入使得孔被填充,孔径减小。图2(a)为实施例1的放大倍数为80倍的电镜图,(b)为电镜图的元素mapping表征图。通过(b)的元素mapping图可以看出在水凝胶的横截面检测出来PVDF-HFP中的F元素,说明PVDF-HFP已经成功复合在水凝胶中。对比例所得水凝胶及实施例1所得具有压电活性的聚丙烯酰胺复合水凝胶的导出电压图和导出电流图分别如图3和图4所示,电压输出值和电流输出值反应出加入PVDF-HFP的水凝胶具有良好的压电活性。
实施例2
(1)将丙烯酰胺20克、致孔剂碳酸氢钠、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:5:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将盐酸溶液水洗完全,将水凝胶调节为中性。
(3)配置0.7gPVDF-HFP溶于9mlDMSO溶液中,搅拌24h。
(4)将多孔水凝胶用冷冻干燥机冻干12h,浸泡于DMSO溶液中24h。再利用配置好的PVDF-HFP溶液浸泡水凝胶24h,最后用去离子水浸泡复合水凝胶进行沉淀。
实施例3
(1)将丙烯酰胺20克与致孔剂碳酸氢钠、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:10:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将盐酸溶液水洗完全,将水凝胶调节为中性。
(3)配置0.7gPVDF-HFP溶于9mlDMSO溶液中,搅拌24h。
(4)将多孔水凝胶用冷冻干燥机冻干12h,浸泡于DMSO溶液中24h。再利用配置好的PVDF-HFP溶液浸泡水凝胶24h,最后用去离子水浸泡复合水凝胶进行沉淀。
实施例4
(1)将丙烯酰胺20克与致孔剂碳酸氢钠、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:20:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将盐酸溶液水洗完全,将水凝胶调节为中性。
(3)配置0.7gPVDF-HFP溶于9mlDMSO溶液中,搅拌24h。
(4)将多孔水凝胶用冷冻干燥机冻干12h,浸泡于DMSO溶液中24h。再利用配置好的PVDF-HFP溶液浸泡水凝胶24h,最后用去离子水浸泡复合水凝胶进行沉淀。
实施例2-4中,相对于实施例1改变了致孔剂碳酸氢钠的用量,在性能方面与实施例1进行对比:随着致孔剂添加量的减少,在复合水凝胶表面产生的孔逐渐减少,当致孔剂与丙烯酰胺的质量比低于5:20时,压电材料掺入量难以满足压电要求;当致孔剂与丙烯酰胺的质量比大于20:20时,所得复合水凝胶的机械性能减弱,不能满足使用要求。
实施例5
(1)将丙烯酰胺、致孔剂碳酸钙、交联剂N,N-亚甲基双丙烯酰胺和引发剂过硫铵(APS)按照质量比为200:15:1:3,依次溶于超纯水中,在60℃保温反应8h,得到水凝胶预聚物,然后将水凝胶预聚物在超纯水中浸泡24h,移除未反应的单体。
(2)用0.1mol/l的盐酸溶液将水凝胶浸泡3天,每隔12h更换溶液,直至完全发泡将碳酸氢钠除去,得到多孔水凝胶。将水凝胶用超纯水浸泡2天,每隔12h更换超纯水,直至将盐酸溶液水洗完全,将水凝胶调节为中性。
(3)配置0.7gPVDF-HFP溶于9mlDMSO溶液中,搅拌24h。
(4)将多孔水凝胶用冷冻干燥机冻干12h,浸泡于DMSO溶液中24h。再利用配置好的PVDF-HFP溶液浸泡水凝胶24h,最后用去离子水浸泡复合水凝胶进行沉淀。
实施例5中,改变了致孔剂的种类,使用相同含量的碳酸钙进行制备,制备过程中,碳酸钙容易沉淀,制备过程较难控制,导致复合水凝胶压电性能减弱,机械性能较差。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

1.一种压电活性聚丙烯酰胺复合水凝胶,其特征在于,包括聚丙烯酰胺和压电材料,所述聚丙烯酰胺为具有多孔结构的凝胶态,所述压电材料为压电高分子聚偏氟乙烯-六氟丙烯,所述聚偏氟乙烯-六氟丙烯填充于所述聚丙烯酰胺凝胶的空隙中。
2.如权利要求1所述的压电活性聚丙烯酰胺复合水凝胶的制备方法,其特征在于,包括如下步骤:
(1)将致孔剂溶解在含有丙烯酰胺单体的超纯水溶液中,然后加入交联剂和引发剂进行混合,将混合溶液置于烘箱保温反应,聚合得到聚丙烯酰胺水凝胶;
(2)将聚丙烯酰胺水凝胶置于盐酸溶液中浸泡3天,利用致孔剂与盐酸发生反应产生二氧化碳气体溢出水凝胶表面形成孔道对聚丙烯酰胺水凝胶进行制孔,然后将致孔后的聚丙烯酰胺水凝胶浸泡在超纯水中调节pH值为中性,得到多孔聚丙烯酰胺水凝胶;
(3)将多孔聚丙烯酰胺水凝胶冻干后,浸泡在有机溶剂中进行溶剂置换,得到溶剂置换后的多孔聚丙烯酰胺水凝胶;
(4)将压电材料溶解在有机溶剂中,室温下25℃搅拌24小时,得到压电材料溶液,然后将溶剂置换后的多孔聚丙烯酰胺水凝胶浸泡在压电材料溶液中,室温下25℃静置24小时,得到溶解有压电材料的复合水凝胶;
(5)将溶解有压电材料的复合水凝胶浸泡于去离子水中,室温下静置24小时,利用压电材料疏水性将其沉淀在凝胶孔隙中,同时置换复合水凝胶中的有机溶剂,得到具有压电活性的聚丙烯酰胺复合水凝胶。
3.根据权利要求2所述的一种具有压电活性的聚丙烯酰胺复合水凝胶的制备方法,其特征在于:所述步骤(1)中的致孔剂选自碳酸氢钠、碳酸钙中的一种;交联剂为N,N-亚甲基双丙烯酰胺、引发剂为过硫酸铵;步骤(3)中的有机溶剂为二甲基亚砜;步骤(4)中的压电材料为聚偏氟乙烯-六氟丙烯。
4.根据权利要求2所述的一种具有压电活性的聚丙烯酰胺复合水凝胶的制备方法,其特征在于:所述步骤(1)中,各组分质量比为丙烯酰胺:致孔剂:压电材料:交联剂:引发剂为200:(5~20):70:1:3。
5.根据权利要求2所述的一种具有压电活性的聚丙烯酰胺复合水凝胶的制备方法,其特征在于:所述步骤(1)中,保温反应的温度为60℃,保温反应的时间为8h。
6.根据权利要求2所述的一种具有压电活性的聚丙烯酰胺复合水凝胶的制备方法,其特征在于:
所述步骤(2)中盐酸的浓度为0.1mol/L,浸泡时间为3天;调节pH的方法为使用超纯水浸泡2天,每隔8小时换水期间不间断换水,用广泛pH试纸进行测试;
所述步骤(3)中聚丙烯酰胺水凝胶冻干时间为12小时;
步骤(4)中压电材料与有机溶剂的用量比为7g压电材料:90ml有机溶剂中。
7.权利要求1所述的具有压电活性的聚丙烯酰胺复合水凝胶在制备生物医药材料中的应用。
CN202210211063.6A 2022-03-03 2022-03-03 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用 Active CN114573835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210211063.6A CN114573835B (zh) 2022-03-03 2022-03-03 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210211063.6A CN114573835B (zh) 2022-03-03 2022-03-03 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114573835A true CN114573835A (zh) 2022-06-03
CN114573835B CN114573835B (zh) 2023-04-28

Family

ID=81779025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210211063.6A Active CN114573835B (zh) 2022-03-03 2022-03-03 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114573835B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115444974A (zh) * 2022-10-25 2022-12-09 中国地质大学(北京) 一种用于烫伤治疗的电活性复合贴片及其制备方法和应用
CN117720362A (zh) * 2023-12-18 2024-03-19 中南大学 液滴状取向多孔压电陶瓷材料及其制备方法和应用
CN117720362B (zh) * 2023-12-18 2024-05-31 中南大学 液滴状取向多孔压电陶瓷材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052254A1 (en) * 2009-03-12 2013-02-28 New Jersey Institute Of Technology System and method for a piezoelectric scaffold for tissue growth and repair
CN105330885A (zh) * 2015-12-01 2016-02-17 华中科技大学 一种压电凝胶及其制备方法与应用
CN107732003A (zh) * 2017-09-25 2018-02-23 中国地质大学(北京) 一种基于压电薄膜的pah/pamam自组装多层膜的制备方法
CN109106980A (zh) * 2018-07-24 2019-01-01 华南理工大学 一种具有电活性的高强度水凝胶及其制备方法和应用
CN110157013A (zh) * 2019-05-30 2019-08-23 福州大学 一种高拉伸性聚苯胺基柔性导电水凝胶的制备方法
CN114026709A (zh) * 2019-06-28 2022-02-08 富士胶片株式会社 高分子复合压电体、压电薄膜、压电扬声器、柔性显示屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052254A1 (en) * 2009-03-12 2013-02-28 New Jersey Institute Of Technology System and method for a piezoelectric scaffold for tissue growth and repair
CN105330885A (zh) * 2015-12-01 2016-02-17 华中科技大学 一种压电凝胶及其制备方法与应用
CN107732003A (zh) * 2017-09-25 2018-02-23 中国地质大学(北京) 一种基于压电薄膜的pah/pamam自组装多层膜的制备方法
CN109106980A (zh) * 2018-07-24 2019-01-01 华南理工大学 一种具有电活性的高强度水凝胶及其制备方法和应用
CN110157013A (zh) * 2019-05-30 2019-08-23 福州大学 一种高拉伸性聚苯胺基柔性导电水凝胶的制备方法
CN114026709A (zh) * 2019-06-28 2022-02-08 富士胶片株式会社 高分子复合压电体、压电薄膜、压电扬声器、柔性显示屏

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BABLU MORDINA,等: "Smart elastomeric hydrogel of polyacrylamide containing nanosized barium ferrite and graphene oxide" *
付如民: "基于丙烯腈柔性压电材料的制备及其在可穿戴传感器上的应用" *
李帮凯,等: "PNIPAM 微凝胶/PVDF 温敏膜的制备及其性能研究" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115444974A (zh) * 2022-10-25 2022-12-09 中国地质大学(北京) 一种用于烫伤治疗的电活性复合贴片及其制备方法和应用
CN115444974B (zh) * 2022-10-25 2024-01-30 中国地质大学(北京) 一种用于烫伤治疗的电活性复合贴片及其制备方法和应用
CN117720362A (zh) * 2023-12-18 2024-03-19 中南大学 液滴状取向多孔压电陶瓷材料及其制备方法和应用
CN117720362B (zh) * 2023-12-18 2024-05-31 中南大学 液滴状取向多孔压电陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114573835B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Minoura et al. Physico-chemical properties of silk fibroin membrane as a biomaterial
Zohuriaan‐Mehr et al. Protein‐and homo poly (amino acid)‐based hydrogels with super‐swelling properties
CN111926567B (zh) 一种温敏性导电水凝胶的制备方法
CN109734842B (zh) 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN114573835B (zh) 一种具有压电活性聚丙烯酰胺复合水凝胶及其制备方法和应用
Fang et al. Preparation and water absorbent behavior of superabsorbent polyaspartic acid resin
Sharma et al. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology.
Zhao et al. Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels
CN110885476A (zh) 一锅法制备的二次掺杂型氧化石墨烯/碱溶壳聚糖-聚苯胺-聚丙烯酰胺复合导电水凝胶
CN111732741A (zh) 一种透明质酸与ε-聚赖氨酸交联的方法及所得复合交联物和应用
Potorac et al. New hydrogels based on maleilated collagen with potential applications in tissue engineering
ZA200105804B (en) A film for medical use, consisting of linear block polymers of polyurethane and a method for the production of such a film.
JP2012001859A (ja) コラーゲン・キトサン複合繊維状多孔体及びその製造方法
US20060235114A1 (en) Temperature-responsive hydrogel
CN101905030B (zh) 一种丝素修饰的聚氨酯医用生物材料的制备方法
CN111138669B (zh) 一种通过自催化合成的自修复水凝胶及其凝胶前体的制备方法和水凝胶的合成方法
CN116589735A (zh) 一种琼脂糖-细菌纤维素复合凝胶的制备方法和应用
CN110540661A (zh) 一种丝素蛋白与聚乙烯醇的复合水凝胶及其制备方法和应用
CN114752087A (zh) 一种大豆分离蛋白基有机凝胶及其制备方法
CN114854044A (zh) 一种高强度PAMPS-PAM-Gel三网络水凝胶及其制备方法
CN113831556A (zh) 一种单宁酸交联聚吡咯导电聚合物水凝胶的制备方法及应用
CN113214504A (zh) 一种基于天然高分子的半互穿网络抑菌凝胶的制备方法
CN116217978A (zh) 一种聚苯胺基柔性导电水凝胶及其制备方法
Yao et al. Syntheses and characterization of pH-sensitive hydrogel from poly (γ-glutamic) acid.
Düşünceli Çift ağlı hidrojellerin basma yükü altında gerilme gevşemesi davranışı

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant