具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本公开实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本公开。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本公开的描述。
下面将结合附图详细说明根据本公开实施例的一种无人车的运营路径的生成方法和装置。
图1是本公开实施例的应用场景的场景示意图。该应用场景可以包括终端设备1和3,无人车2、服务器4以及网络5。
设备1和3可以是硬件,也可以是软件。当终端设备1和3为硬件时,其可以是具有显示屏且支持与服务器4通信的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等;当终端设备1和3为软件时,其可以安装在如上的电子设备中。终端设备1和3可以实现为多个软件或软件模块,也可以实现为单个软件或软件模块,本公开实施例对此不作限制。进一步地,终端设备1和3上可以安装有各种应用,例如数据处理应用、即时通信工具、社交平台软件、搜索类应用、购物类应用等。
服务器4可以是提供各种服务的服务器,例如,对与其建立通信连接的终端设备发送的请求进行接收的后台服务器,该后台服务器可以对终端设备发送的请求进行接收和分析等处理,并生成处理结果。服务器4可以是一台服务器,也可以是由若干台服务器组成的服务器集群,或者还可以是一个云计算服务中心,本公开实施例对此不作限制。
需要说明的是,服务器4可以是硬件,也可以是软件。当服务器4为硬件时,其可以是为终端设备1和3,以及无人车2提供各种服务的各种电子设备。当服务器4为软件时,其可以是为终端设备1和3,以及无人车2提供各种服务的多个软件或软件模块,也可以是为终端设备1和3,以及无人车2提供各种服务的单个软件或软件模块,本公开实施例对此不作限制。
网络5可以是采用同轴电缆、双绞线和光纤连接的有线网络,也可以是无需布线就能实现各种通信设备互联的无线网络,例如,蓝牙(Bluetooth)、近场通信(Near FieldCommunication,NFC)、红外(Infrared)等,本公开实施例对此不作限制。
用户可以通过终端设备1和3,以及无人车2经由网络5与服务器4建立通信连接,以接收或发送信息等。需要说明的是,终端设备1和3、无人车2、服务器4以及网络5的具体类型、数量和组合可以根据应用场景的实际需求进行调整,本公开实施例对此不作限制。
图2是本公开实施例提供的一种无人车的运营路径的生成方法的流程示意图。图2的无人车的运营路径的生成方法可以由图1的终端设备、或无人车或服务器执行。如图2所示,该无人车的运营路径的生成方法包括:
S201,获取扫描半径、预设数量和运营区域内的所有的站点;
S202,针对运营区域内的站点进行如下聚类算法:从站点中随机确定出一个未被访问过的站点作为起始站点,扫描与该起始站点距离不大于扫描半径的站点;当扫描到的站点的数量大于预设数量时,将该起始站点标记为核心站点并添加到核心站点集合中,更新核心站点集合;当扫描到的站点的数量不大于预设数量时,将该起始站点标记为噪声站点;将在扫描半径内扫描到的站点添加到普通站点集合中,更新普通站点集合;
S203,递归普通站点集合内所有站点,重复上述聚类算法,直到不存在未访问过的站点,递归结束;
S204,将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径。
本公开实施例可以应用于无人车需要提供服务或者物品的场景中,比如无人车出行的场景,无人驾驶公交和无人驾驶出租车提供的乘车服务的场景,无人车提供物品(物品可以是货物、商品,如无人巡游售卖机等)的场景等。本公开实施例通过扫描一个站点附近存在多少个站点,判别出一个站点是否是核心站点,核心站点可以理解为站点枢纽,具有很大的人流量(包括车流量)。站点可以广泛的理解为一个位置,比如公交站牌和学校门口等。如果一个站点被标记为噪声站点,可以删除该站点。需要说明的是,只要完成对一个站点附近站点的扫描,都需要将扫描到的站点添加到普通站点集合中。
可选地,递归普通站点集合内所有站点,重复上述聚类算法,直到不存在未访问过的站点,递归结束,可以理解为对普通站点集的遍历扫描,如下:扫描距离当前站点不大于扫描半径的站点,在扫描到的站点的数量大于预设数量时,将当前站点标记为核心站点添加到核心站点集合中,在扫描到的站点的数量不大于预设数量时,将当前站点标记为噪声站点,将扫描到的站点添加到普通站点集合中;扫描距离当前站点的下一个站点不大于扫描半径的站点,在扫描到的站点的数量大于预设数量时,将当前站点的下一个站点标记为核心站点添加到核心站点集合中,在扫描到的站点的数量不大于预设数量时,将当前站点的下一个站点标记为噪声站点,将扫描到的站点添加到普通站点集合中,直至完成对普通站点集合中所有站点的扫描,得到最终的核心站点集合。
递归普通站点集合内所有站点可以理解为一个循环,比如当前普通站点是普通站点集合中第i个,对第i个普通站点执行扫描操作,执行完后,i加1(i初始值为1),直至完成对普通站点集合中所有普通站点的扫描,得到最终的核心站点集合后,结束循环。其中,扫描操作也就是扫描当前普通站点在扫描半径内的所有站点,将扫描到的当前普通站点的所有站点添加到普通站点集合中,并在扫描到当前普通站点的所有站点的数量大于第一预设数量时,将当前普通站点作为核心站点添加到核心站点集合中。
根据本公开实施例提供的技术方案,获取扫描半径、预设数量和运营区域内的所有的站点;针对运营区域内的站点进行如下聚类算法:从站点中随机确定出一个未被访问过的站点作为起始站点,扫描与该起始站点距离不大于扫描半径的站点;当扫描到的站点的数量大于预设数量时,将该起始站点标记为核心站点并添加到核心站点集合中,更新核心站点集合;当扫描到的站点的数量不大于预设数量时,将该起始站点标记为噪声站点;将在扫描半径内扫描到的站点添加到普通站点集合中,更新普通站点集合;递归普通站点集合内所有站点,重复上述聚类算法,直到不存在未访问过的站点,递归结束;将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径。采用上述技术手段,可以解决现有技术中,无法根据站点的信息,自动生成无人车的运营路径的问题,进而提供一种自动生成无人车的运营路径的方案。
在一个可选实施例中,扫描半径为50米,或100米,或200米。
当然扫描半径也可以是其他的长度。
在步骤S204中,将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径,包括:按照预设时间间隔获取核心站点集合对应的站点数据,其中,站点数据包括核心站点集合中每个核心站点的下单数量和人流量;基于站点数据,为无人车生成运营路径和无人车在每个核心站点的停留时长;根据运营路径和无人车在每个核心站点的停留时长,控制无人车。
核心站点已经删选出来的热度较高的站点,在本公开实施例中,生成的运营路径要求无人车前往核心站点集合中每一个的核心站点。运营路径就是无人车前往每个核心站点的顺序,以及无人车在每个核心站点的停留时长。具体地,一个核心站点的下单数量和人流量越大,那么无人车在该核心站点的停留时长越长,该核心站点在运营路径中越靠前。
比如预设时间间隔是一个小时,那么每隔一个小时,获取核心站点集合对应的站点数据,基于站点数据,为无人车生成本预设时间间隔内的运营路径和无人车在每个核心站点的停留时长(如一天中的七点和八点都对应各自的运营路径和无人车在每个核心站点的停留时长,无人车每隔一个小时,会前往核心站点集合中所有的核心站点一次)。
在步骤S204中,将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径,包括:获取最终的核心站点集合中每一个核心站点的坐标;根据根据核心站点集合内的至少部分核心站点的坐标,为无人车规划运营路径;根据运营路径控制无人车。
运营路径是途径所有核心站点或者部分核心站点的。比如对于核心站点集合中的核心站点而言,无人车距离核心站点集合中的1号核心站点最近,然后距离最近依次是3号核心站点、2号核心站点和4号核心站点(核心站点集合至少包括上述四个核心站点)。那么运营路径便是依次经过1号核心站点、3号核心站点、2号核心站点和4号核心站点。
根据核心站点集合内的至少部分核心站点的坐标,为无人车规划运营路径,包括:基于每一个核心站点在扫描半径内的所有站点的数量,按照数量由大到小的顺序,对所有核心站点进行排序,得到有序集合;将有序集合中核心站点由前到后的顺序作为无人车通行的顺序,根据每一个核心站点的坐标,生成运营路径。
在本公开实施例中,无人车是通过了核心站点集合中所有的核心站点。因为对于无人车而言,可能核心站点之间的距离并不远,无人车从一个核心站点前往另外一个核心站点所花费的时间并不多,更重要的是用户的体验,在上述情境中,无人车应该依次通过热度从高到低的核心站点。核心站点的热度取决于该核心站点附近普通站点的数量,一个核心站点附近普通站点的数量越多,该核心站点的热度越高。
在步骤S204中,将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径,包括:获取核心站点集合对应的站点数据,其中,站点数据包括核心站点集合中每个核心站点的坐标;利用站点簇生成算法对站点数据进行处理,得到站点簇;根据站点簇生成运营路径。
站点簇生成算法可以是kmeans聚类算法等常用的聚类算法。站点簇是站点数据的一种表达形式,本公开实施例可以理解为利用站点簇,快速生成出最优的运营路径。
利用站点簇生成算法对站点数据进行处理,得到站点簇之后,方法还包括:根据站点簇确定无人车通行的顺序;根据无人车通行的顺序和每一个核心站点的坐标,为无人车规划运营路径;根据运营路径控制无人车。
本公开实施例中,无人车是通过了核心站点集合中所有的核心站点。举例说明:站点簇中距离无人车由远及近的站点依次为站点A、站点B、站点C和站点D。那么最优的运营路径依次是无人车通过站点A、站点B、站点C和站点D。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图3是本公开实施例提供的一种无人车的运营路径的生成装置的示意图。如图3所示,该无人车的运营路径的生成装置包括:
获取模块301,被配置为获取模块,被配置为获取扫描半径、预设数量和运营区域内的所有的站点;
第一算法模块302,被配置为针对运营区域内的站点进行如下聚类算法:从站点中随机确定出一个未被访问过的站点作为起始站点,扫描与该起始站点距离不大于扫描半径的站点;当扫描到的站点的数量大于预设数量时,将该起始站点标记为核心站点并添加到核心站点集合中,更新核心站点集合;当扫描到的站点的数量不大于预设数量时,将该起始站点标记为噪声站点;将在扫描半径内扫描到的站点添加到普通站点集合中,更新普通站点集合;
第二算法模块303,被配置为递归普通站点集合内所有站点,重复上述聚类算法,直到不存在未访问过的站点,递归结束;
路径生成模块304,被配置为将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径。
本公开实施例可以应用于无人车需要提供服务或者物品的场景中,比如无人车出行的场景,无人驾驶公交和无人驾驶出租车提供的乘车服务的场景,无人车提供物品(物品可以是货物、商品,如无人巡游售卖机等)的场景等。本公开实施例通过扫描一个站点附近存在多少个站点,判别出一个站点是否是核心站点,核心站点可以理解为站点枢纽,具有很大的人流量(包括车流量)。站点可以广泛的理解为一个位置,比如公交站牌和学校门口等。如果一个站点被标记为噪声站点,可以删除该站点。需要说明的是,只要完成对一个站点附近站点的扫描,都需要将扫描到的站点添加到普通站点集合中。
可选地,第二算法模块303还被配置为扫描距离当前站点不大于扫描半径的站点,在扫描到的站点的数量大于预设数量时,将当前站点标记为核心站点添加到核心站点集合中,在扫描到的站点的数量不大于预设数量时,将当前站点标记为噪声站点,将扫描到的站点添加到普通站点集合中;扫描距离当前站点的下一个站点不大于扫描半径的站点,在扫描到的站点的数量大于预设数量时,将当前站点的下一个站点标记为核心站点添加到核心站点集合中,在扫描到的站点的数量不大于预设数量时,将当前站点的下一个站点标记为噪声站点,将扫描到的站点添加到普通站点集合中,直至完成对普通站点集合中所有站点的扫描,得到最终的核心站点集合。
递归普通站点集合内所有站点可以理解为一个循环,比如当前普通站点是普通站点集合中第i个,对第i个普通站点执行扫描操作,执行完后,i加1(i初始值为1),直至完成对普通站点集合中所有普通站点的扫描,得到最终的核心站点集合后,结束循环。其中,扫描操作也就是扫描当前普通站点在扫描半径内的所有站点,将扫描到的当前普通站点的所有站点添加到普通站点集合中,并在扫描到当前普通站点的所有站点的数量大于第一预设数量时,将当前普通站点作为核心站点添加到核心站点集合中。
根据本公开实施例提供的技术方案,获取扫描半径、预设数量和运营区域内的所有的站点;针对运营区域内的站点进行如下聚类算法:从站点中随机确定出一个未被访问过的站点作为起始站点,扫描与该起始站点距离不大于扫描半径的站点;当扫描到的站点的数量大于预设数量时,将该起始站点标记为核心站点并添加到核心站点集合中,更新核心站点集合;当扫描到的站点的数量不大于预设数量时,将该起始站点标记为噪声站点;将在扫描半径内扫描到的站点添加到普通站点集合中,更新普通站点集合;递归普通站点集合内所有站点,重复上述聚类算法,直到不存在未访问过的站点,递归结束;将递归结束后的核心站点集合内的至少部分站点,作为无人车运营路径上的站点,形成运营路径。采用上述技术手段,可以解决现有技术中,无法根据站点的信息,自动生成无人车的运营路径的问题,进而提供一种自动生成无人车的运营路径的方案。
在一个可选实施例中,扫描半径为50米,或100米,或200米。
当然扫描半径也可以是其他的长度。
可选地,路径生成模块304还被配置为按照预设时间间隔获取核心站点集合对应的站点数据,其中,站点数据包括核心站点集合中每个核心站点的下单数量和人流量;基于站点数据,为无人车生成运营路径和无人车在每个核心站点的停留时长;根据运营路径和无人车在每个核心站点的停留时长,控制无人车。
核心站点已经删选出来的热度较高的站点,在本公开实施例中,生成的运营路径要求无人车前往核心站点集合中每一个的核心站点。运营路径就是无人车前往每个核心站点的顺序,以及无人车在每个核心站点的停留时长。具体地,一个核心站点的下单数量和人流量越大,那么无人车在该核心站点的停留时长越长,该核心站点在运营路径中越靠前。
比如预设时间间隔是一个小时,那么每隔一个小时,获取核心站点集合对应的站点数据,基于站点数据,为无人车生成本预设时间间隔内的运营路径和无人车在每个核心站点的停留时长(如一天中的七点和八点都对应各自的运营路径和无人车在每个核心站点的停留时长,无人车每隔一个小时,会前往核心站点集合中所有的核心站点一次)。
可选地,路径生成模块304还被配置为获取最终的核心站点集合中每一个核心站点的坐标;根据根据核心站点集合内的至少部分核心站点的坐标,为无人车规划运营路径;根据运营路径控制无人车。
运营路径是途径所有核心站点或者部分核心站点的。比如对于核心站点集合中的核心站点而言,无人车距离核心站点集合中的1号核心站点最近,然后距离最近依次是3号核心站点、2号核心站点和4号核心站点(核心站点集合至少包括上述四个核心站点)。那么运营路径便是依次经过1号核心站点、3号核心站点、2号核心站点和4号核心站点。
可选地,路径生成模块304还被配置为基于每一个核心站点在扫描半径内的所有站点的数量,按照数量由大到小的顺序,对所有核心站点进行排序,得到有序集合;将有序集合中核心站点由前到后的顺序作为无人车通行的顺序,根据每一个核心站点的坐标,生成运营路径。
在本公开实施例中,无人车是通过了核心站点集合中所有的核心站点。因为对于无人车而言,可能核心站点之间的距离并不远,无人车从一个核心站点前往另外一个核心站点所花费的时间并不多,更重要的是用户的体验,在上述情境中,无人车应该依次通过热度从高到低的核心站点。核心站点的热度取决于该核心站点附近普通站点的数量,一个核心站点附近普通站点的数量越多,该核心站点的热度越高。
可选地,路径生成模块304还被配置为获取核心站点集合对应的站点数据,其中,站点数据包括核心站点集合中每个核心站点的坐标;利用站点簇生成算法对站点数据进行处理,得到站点簇;根据站点簇生成运营路径。
站点簇生成算法可以是kmeans聚类算法等常用的聚类算法。站点簇是站点数据的一种表达形式,本公开实施例可以理解为利用站点簇,快速生成出最优的运营路径。
可选地,路径生成模块304还被配置为根据站点簇确定无人车通行的顺序;根据无人车通行的顺序和每一个核心站点的坐标,为无人车规划运营路径;根据运营路径控制无人车。
本公开实施例中,无人车是通过了核心站点集合中所有的核心站点。举例说明:站点簇中距离无人车由远及近的站点依次为站点A、站点B、站点C和站点D。那么最优的运营路径依次是无人车通过站点A、站点B、站点C和站点D。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
图4是本公开实施例提供的电子设备4的示意图。如图4所示,该实施例的电子设备4包括:处理器401、存储器402以及存储在该存储器402中并且可在处理器401上运行的计算机程序403。处理器401执行计算机程序403时实现上述各个方法实施例中的步骤。或者,处理器401执行计算机程序403时实现上述各装置实施例中各模块/单元的功能。
示例性地,计算机程序403可以被分割成一个或多个模块/单元,一个或多个模块/单元被存储在存储器402中,并由处理器401执行,以完成本公开。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序403在电子设备4中的执行过程。
电子设备4可以是桌上型计算机、笔记本、掌上电脑及云端服务器等电子设备。电子设备4可以包括但不仅限于处理器401和存储器402。本领域技术人员可以理解,图4仅仅是电子设备4的示例,并不构成对电子设备4的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如,电子设备还可以包括输入输出设备、网络接入设备、总线等。
处理器401可以是中央处理单元(Central Processing Unit,CPU),也可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器402可以是电子设备4的内部存储单元,例如,电子设备4的硬盘或内存。存储器402也可以是电子设备4的外部存储设备,例如,电子设备4上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器402还可以既包括电子设备4的内部存储单元也包括外部存储设备。存储器402用于存储计算机程序以及电子设备所需的其它程序和数据。存储器402还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
在本公开所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本公开实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,计算机程序可以存储在计算机可读存储介质中,该计算机程序在被处理器执行时,可以实现上述各个方法实施例的步骤。计算机程序可以包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如,在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。