CN114563841B - 一种封装集成一体的温度梯度增敏保偏光纤传感器 - Google Patents

一种封装集成一体的温度梯度增敏保偏光纤传感器 Download PDF

Info

Publication number
CN114563841B
CN114563841B CN202210190316.6A CN202210190316A CN114563841B CN 114563841 B CN114563841 B CN 114563841B CN 202210190316 A CN202210190316 A CN 202210190316A CN 114563841 B CN114563841 B CN 114563841B
Authority
CN
China
Prior art keywords
pmf
optical fiber
film
znse
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210190316.6A
Other languages
English (en)
Other versions
CN114563841A (zh
Inventor
王丽
王进
苏雪琼
肖燃燃
成浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202210190316.6A priority Critical patent/CN114563841B/zh
Publication of CN114563841A publication Critical patent/CN114563841A/zh
Application granted granted Critical
Publication of CN114563841B publication Critical patent/CN114563841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种封装集成一体的温度梯度增敏保偏光纤传感器,属于基于镀膜保偏光纤的多参量光纤传感器领域。在去掉涂覆层的保偏光纤包层表面通过脉冲激光沉积的方法镀近红外高透过率的ZnSe9:Co1纳米薄膜,使得传输光能量更集中在光纤表面。在ZnSe9:Co1纳米薄膜表面利用热蒸镀的方法镀银纳米薄膜,提高光纤的热膨胀系数。用PDMS填充毛细管封装镀膜保偏光纤,增加传感器整体热膨胀系数,最终实现温度梯度增敏的测量。

Description

一种封装集成一体的温度梯度增敏保偏光纤传感器
技术领域
本发明属于镀膜保偏光纤的多参量光纤传感器领域,具体涉及以保偏光纤(Polarization maintaining fiber,PMF)为传感器件,以ZnSe9:Co1和银作为增敏材料脉冲激光沉积和热蒸镀涂覆在保偏光纤表面,用聚二甲硅氧烷(Polydimethylsiloxane,PDMS)填充毛细管封装镀膜保偏光纤,实现温度梯度增敏的测量。
背景技术
光纤传感器由于其耐腐蚀抗干扰,传输损耗低,瞬时响应和轻便小巧的优势在工业生产和居家生活中发挥着重要的作用。
测量参数的灵敏度调节以适应不同应用场合,解决光纤传感器固有的交叉敏感问题,成为现在光纤传感器研究的热点。表面涂层和封装技术可以很好的满足光纤传感器在此方面的需求。在光纤传感器上进行单层膜的构建在以往的研究中十分普遍,但多层复合膜受制于制备方法不易实现,而且多层膜与光纤传感器之间的失配也往往使效果不尽人意。光纤传感器和膜材料的选取以及镀膜的方法十分重要。保偏光纤由于双折射系数的调制在Sagnac环路中产生典型的周期性尖锐波谷,波谷处能量的损耗恰与外界环境产生很好的相互作用。1550nm是光纤传输损耗最小的通讯波段,将1550nm附近选为信号监测的波段还可以实现远距离的实时监控。
要实现温度梯度增敏测量的光纤传感器需要达到以下要求:光纤波导层的薄膜需要高折射率和高透过率的材料。因为比光纤包层折射率高有利于传输光耦合到薄膜中,而传输波段的高透过率可以保证能量在波导层中尽量少的损耗,从而有更多的传输能量与外界环境发生作用,需要材料的热膨胀系数远远大于光纤本身,利用封装确保光纤传感器件热膨胀系数整体提高,实现温度测量灵敏度的梯度增加。设计思路:1、利用剥线钳和酒精去除PMF涂覆层并清洁表面。2、利用脉冲激光沉积方法在PMF包层表面镀近红外高透过率的ZnSe9:Co1纳米薄膜,使得传输光能量更集中在光纤表面。3、利用热蒸镀的方法在ZnSe9:Co1纳米薄膜表面镀银纳米薄膜,提高光纤的热膨胀系数。4、用PDMS填充毛细管封装镀膜保偏光纤,增加传感器整体的热膨胀系数,构成温度梯度增敏的保偏光纤传感器。
发明内容
本发明目的是发明一种封装集成一体的温度梯度增敏保偏光纤传感器及其制备方法。
一种集成一体的温度梯度光纤传感器,去掉PMF涂覆层,在包层表面通过脉冲激光沉积的方法镀ZnSe9:Co1纳米薄膜,使得传输光能量更集中在光纤表面。在ZnSe9:Co1纳米薄膜表面利用热蒸镀的方法镀银纳米薄膜,提高光纤的热膨胀系数。用PDMS填充毛细管封装镀膜保偏光纤,增加传感器整体热膨胀系数,最终实现温度梯度增敏的测量。
为实现上述目的本发明的一种封装集成一体的温度梯度增敏保偏光纤传感器,其特征在于,在去除涂覆层的PMF(1)上,激光脉冲沉积一层ZnSe9:Co1纳米薄膜(2)、在ZnSe9:Co1纳米薄膜(2)上热蒸镀一层银纳米薄膜(3),得到镀膜光纤,将镀膜光纤穿过毛细管后,在镀膜光纤与毛细管内表面之间填充PDMS(4)实现封装。
所述的去除涂覆层的PMF为:由纤芯半径、包层、应力区构成的熊猫型保偏光纤ZnS。
ZnSe9:Co1纳米薄膜厚度为50-100nm。
银纳米薄膜厚度为100-120nm。
毛细管内径为0.9-1.2mm。
集成一体温度增敏保偏光纤传感器制备方法,其特征在于,包括以下步骤:
(1)PMF涂覆层去除:
PMF的纤芯为2-3μm,包层半径为63-65μm,应力区的半径为16-18μm,用标准口径的剥线钳去除PMF涂覆层。
进一步地,用酒精擦拭3-6次光纤表面,确保光纤表面绝对清洁。
进一步地,选取6-8cm去除涂覆层的PMF两端与单模光纤用熔接机熔接。再对光纤表面用酒精擦拭3-6次确保光纤表面清洁。
(2)ZnSe9:Co1纳米薄膜的制备:
将去除涂覆层的PMF两端固定在镂空基板(铜板)上,放入真空腔中,使其平行于ZnSe9:Co1靶材间距45-50mm放置。
进一步地,采用脉冲激光沉积技术在PMF上镀ZnSe9:Co1薄膜。脉冲激光波长为355-532nm,重复频率为10-30Hz,脉宽为10-30ns,输出功率为400-500mW,经过透镜聚焦在ZnSe9:Co1靶材上。真空腔本底真空度为3-4.5×10-4Pa,沉积时间为30-45分钟。镀膜过程中,靶材自转,确保激光照射靶材均匀,每10-12分钟测量激光功率,根据偏差进行调整。
进一步地,将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜。
进一步地,用氮气吹镀有ZnSe9:Co1薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁。
(3)银纳米薄膜的制备:
将PMF两端固定在镂空基板(铜板)上,放置在热蒸镀仪器真空腔内,与靶材平局距离10-15cm。
进一步地,将真空腔的本底真空度设置为4-6x 10-4Pa。在镀有ZnSe9:Co1薄膜的保偏光纤上镀银膜。
进一步地,将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜。
进一步地,用氮气吹镀有银薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁。
(4)PDMS填充毛细管封装镀膜保偏光纤的制备
将直径0.9-1.2mm的毛细管固定在平移台上,将镀有ZnSe9:Co1和银薄膜的PMF穿过毛细管和软管。
进一步地,将PDMS与对应固化剂按照10:1-10:2的比例混合,搅拌30-45分钟后,立即将两种混合凝胶用注射器以5-6s/cm的速度平稳注入毛细管中。
进一步地,将他们放置在温控箱(恒定温度75℃-85℃)2-3小时,然后将其从温控箱中取出在室温下放置1-2天。
本发明所得温度梯度增敏的保偏光纤传感器,可用于温度灵敏度切换调节,机械温度过热远距离安全的实时监测等方面。
本发明利用激光脉冲沉积和热蒸镀的方法制备了纳米级别的薄膜,具有高折射,高透过率和高热膨胀系数的特点。解决了以往复合膜难以复合,不易制备,多层膜与光纤传感器之间的失配问题,拓展了光纤传感器在多层膜涂覆方面的应用。
本发明采用毛细管填充PDMS对镀膜PMF的封装,提高了传感器整体的热膨胀系数,对于光纤熔接处起到了很好的保护效果,实现了温度梯度增敏的实时实地测量。
附图说明
图1去除涂覆层的PMF实物图.
图2PMF固定在镂空基底镀ZnSe9:Co1薄膜实物图;
图3ZnSe9:Co1薄膜厚度SEM
图4PMF固定在镂空基底镀银薄膜实物图;
图5银薄膜厚度SEM图;
图6PDMS填充毛细管封装示意图;
图7光纤传感器温控箱加热示意图;
图8;温度梯度增敏的保偏光纤传感器实物图;
图9温度梯度增敏的保偏光纤传感器温度测量图;
图10中(a)裸保偏光纤波长漂移随温度变化关系;(b)不同镀膜保偏光纤温度灵敏度结果对比;
图11温度梯度增敏的保偏光纤传感器示意图;
去除涂覆层的保偏光纤(1)、ZnSe9:Co1薄膜(2)、银薄膜(3)、PDMS(4)填充毛细管封装。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
制备温度梯度增敏的保偏光纤传感器,其主要包括ZnSe9:Co1薄膜的制备,银薄膜的制备,以及温度灵敏度的测试。
步骤一,PMF涂覆层去除:
PMF的纤芯为2μm,包层半径为63μm,应力区的半径为16μm,用标准口径的剥线钳去除PMF涂覆层。
用酒精擦拭6次光纤表面,确保光纤表面绝对清洁。
选取6cm去除涂覆层的PMF两端与单模光纤用熔接机熔接。再对光纤表面用酒精擦拭6次确保光纤表面清洁。
步骤二,ZnSe9:Co1纳米薄膜的制备:
将去除涂覆层的PMF两端固定在镂空基板(铜板)上,放入真空腔中,使其平行于ZnSe9:Co1靶材间距45mm放置。
采用脉冲激光沉积技术在PMF上镀ZnSe9:Co1薄膜。脉冲激光波长为355nm,重复频率为10Hz,脉宽为10ns,输出功率为400mW,经过透镜聚焦在ZnSe9:Co1靶材上。真空腔本底真空度为4.5×10-4Pa,沉积时间为30分钟。镀膜过程中,靶材自转,确保激光照射靶材均匀,每10分钟测量激光功率,根据偏差进行调整。
将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜。
用氮气吹镀有ZnSe9:Co1薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁。
步骤三,银纳米薄膜的制备:
将PMF两端固定在镂空基板(铜板)上,放置在热蒸镀仪器真空腔内,与靶材平局距离10cm。
将真空腔的本底真空度设置为6x 10-4Pa。在镀有ZnSe9:Co1薄膜的保偏光纤上镀银膜。
将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜。
用氮气吹镀有银薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁。
步骤四,PDMS填充毛细管封装镀膜保偏光纤的制备
将直径1mm的毛细管固定在平移台上,将镀有ZnSe9:Co1和银薄膜的PMF穿过毛细管和软管。
将PDMS与对应固化剂按照10:1的比例混合,搅拌30分钟后,立即将两种混合凝胶用注射器以5s/cm的速度平稳注入毛细管中。
将他们放置在温控箱(恒定温度80℃)2小时,然后将其从温控箱中取出在室温下放置1天。构成封装集成一体的温度梯度增敏保偏光纤传感器。ZnSe9:Co1镀在PMF上和银、ZnSe9:Co1镀在PMF上的温度灵敏度分别为0.71nm/℃和0.91nm/℃.镀膜之后再用PDMS封装的毛细管传感器的温度灵敏度分别为1.49nm/℃.最终传感器在温度灵敏度方面获得了1.04倍,1.34倍和2.19倍的梯度递增。

Claims (5)

1.一种封装集成一体的温度梯度增敏保偏光纤传感器,其特征在于,在去除涂覆层的PMF(1)上,激光脉冲沉积一层ZnSe9:Co1纳米薄膜(2)、在ZnSe9:Co1纳米薄膜(2)上热蒸镀一层银纳米薄膜(3),得到镀膜光纤,将镀膜光纤穿过毛细管后,在镀膜光纤与毛细管内表面之间填充PDMS(4)实现封装。
2.按照权利要求1所述的一种封装集成一体的温度梯度增敏保偏光纤传感器,其特征在于,ZnSe9:Co1薄膜和银薄膜构成紧密贴合的复合结构,具有高折射率和高热膨胀系数;ZnSe9:Co1纳米薄膜厚度为50-100nm;银纳米薄膜厚度为100-120nm。
3.按照权利要求1所述的一种封装集成一体的温度梯度增敏保偏光纤传感器,其特征在于,所述的去除涂覆层的PMF为:由纤芯半径、包层、应力区构成的熊猫型保偏光纤ZnS。
4.按照权利要求1所述的一种封装集成一体的温度梯度增敏保偏光纤传感器,其特征在于,毛细管内径为0.9-1.2mm。
5.按照权利要求1所述的一种封装集成一体的温度梯度增敏保偏光纤传感器的制备方法,其特征在于,包括以下步骤:
(1)PMF涂覆层去除:
PMF的纤芯为2-3μm,包层半径为63-65μm,应力区的半径为16-18μm,用标准口径的剥线钳去除PMF涂覆层;
进一步地,用酒精擦拭3-6次光纤表面,确保光纤表面绝对清洁;
(2)ZnSe9:Co1纳米薄膜的制备:
将去除涂覆层的PMF两端固定在镂空基板上,放入真空腔中,使其平行于ZnSe9:Co1靶材间距45-50mm放置;采用脉冲激光沉积技术在PMF上镀ZnSe9:Co1薄膜;脉冲激光波长为355-532nm,重复频率为10-30Hz,脉宽为10-30ns,输出功率为400-500mW,经过透镜聚焦在ZnSe9:Co1靶材上;真空腔本底真空度为3-4.5×10-4Pa,沉积时间为30-45分钟;镀膜过程中,靶材自转,确保激光照射靶材均匀,每10-12分钟测量激光功率,根据偏差进行调整;
将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜;
用氮气吹镀有ZnSe9:Co1薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁;
(3)银纳米薄膜的制备:
将PMF两端固定在镂空基板(铜板)上,放置在热蒸镀仪器真空腔内,与靶材平局距离10-15cm;将真空腔的本底真空度设置为4-6x10-4Pa;在镀有ZnSe9:Co1薄膜的保偏光纤上镀银膜;
将固定PMF的镂空基底翻面,将最初背向靶材的一面正对靶材,对PMF另一侧进行相同参数的镀膜;
用氮气吹镀有银薄膜的PMF表面,去除多余杂质,放入真空干燥腔室内,确保光纤表面清洁;
(4)PDMS填充毛细管封装镀膜保偏光纤的制备
将直径0.9-1.2mm的毛细管固定在平移台上,将镀有ZnSe9:Co1和银薄膜的PMF穿过毛细管;将PDMS与对应固化剂按照10:1-10:2的比例混合,搅拌30-45分钟后,立即将两种混合凝胶用注射器以5-6s/cm的速度平稳注入毛细管中;
进一步地,放置在恒定温度75℃-85℃温控箱2-3小时,然后将其从温控箱中取出在室温下放置1-2天。
CN202210190316.6A 2022-02-28 2022-02-28 一种封装集成一体的温度梯度增敏保偏光纤传感器 Active CN114563841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210190316.6A CN114563841B (zh) 2022-02-28 2022-02-28 一种封装集成一体的温度梯度增敏保偏光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210190316.6A CN114563841B (zh) 2022-02-28 2022-02-28 一种封装集成一体的温度梯度增敏保偏光纤传感器

Publications (2)

Publication Number Publication Date
CN114563841A CN114563841A (zh) 2022-05-31
CN114563841B true CN114563841B (zh) 2024-02-06

Family

ID=81716259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210190316.6A Active CN114563841B (zh) 2022-02-28 2022-02-28 一种封装集成一体的温度梯度增敏保偏光纤传感器

Country Status (1)

Country Link
CN (1) CN114563841B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068107A (ja) * 2010-09-22 2012-04-05 Toshiba Corp 温度補償素子およびそれを用いたサニャック干渉型光電流センサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012291C1 (de) * 2000-03-14 2001-09-20 Reinhausen Maschf Scheubeck Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor
US9709504B2 (en) * 2008-04-23 2017-07-18 Molecular Fingerprint Sweden Ab Optical sensor unit for evanescence wave spectroscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068107A (ja) * 2010-09-22 2012-04-05 Toshiba Corp 温度補償素子およびそれを用いたサニャック干渉型光電流センサ

Also Published As

Publication number Publication date
CN114563841A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN104316040B (zh) 一种基于光子晶体光纤的新型光纤陀螺干涉光路
CN102261967B (zh) 基于同轴光纤的温度和应力双参量光纤传感器
KR870002463A (ko) 저손실 섬유광학 결합기 및 그 제조방법
CN108731712B (zh) 一种基于飞秒激光刻写波导的光纤线上马赫-曾德干涉仪
USRE33296E (en) Method of making a polarization-insensitive, evanescent-wave, fused coupler with minimal environmental sensitivity
CN103217124A (zh) 一种基于马赫曾德干涉的光纤传感器
CN113983945B (zh) 控制光纤光栅中心波长的传感器制作装置
CN102445435A (zh) 聚合物基复合材料凝胶点的光栅监测方法
CN108279039A (zh) 一种基于光纤错位结构和Sagnac环的温度和折射率双参数传感装置
CN114563841B (zh) 一种封装集成一体的温度梯度增敏保偏光纤传感器
Li et al. Dual-parameter optical fiber sensor for temperature and humidity based on PMMA-microsphere and FBG composite structure
CN107702659A (zh) 碳纤维预浸料封装的分布式温度‑应变传感器及制作方法
Wang et al. Compact fiber optic sensor for temperature and transverse load measurement based on the parallel vernier effect
Liang et al. Ultra-sensitive temperature sensor of cascaded dual PDMS-cavity based on enhanced vernier effect
CN113281303A (zh) 一种游标增敏的半填充聚酰亚胺光纤fpi湿度传感器
CN101221126A (zh) 一种光学玻璃折射率温度系数测量仪及其测量方法
Chen et al. In-line interferometric temperature sensor based on dual-core fiber
CN112254840A (zh) 一种基于sts结构测量磁场和温度的光纤spr传感器
CN108279079B (zh) 一种基于无芯光纤径向大错位结构涂覆聚二甲基硅氧烷的点式温度传感装置
CN111609874A (zh) 一种基于光纤内倾斜分束器的反射式马赫-曾德尔干涉仪
Liu et al. Simple in-line M–Z interferometer based on dual-core photonic crystal fiber
CN106772812A (zh) 一种具有吸光涂覆层的单偏振光纤偏振器结构
Yang et al. MZI interferometric fiber optic temperature sensor based on MFC
CN1350174A (zh) 复合材料光纤固化监测方法及专用光纤
Zeng et al. High sensitivity micro-displacement sensor based on fiber Bragg grating and amplification substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant