CN114561614A - 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法 - Google Patents

一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法 Download PDF

Info

Publication number
CN114561614A
CN114561614A CN202210213710.7A CN202210213710A CN114561614A CN 114561614 A CN114561614 A CN 114561614A CN 202210213710 A CN202210213710 A CN 202210213710A CN 114561614 A CN114561614 A CN 114561614A
Authority
CN
China
Prior art keywords
lead
steel material
irradiation
steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210213710.7A
Other languages
English (en)
Other versions
CN114561614B (zh
Inventor
恽迪
徐钰雯
严伟
李艳芬
顾龙
邱杰
郭少强
柳文波
姚存峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210213710.7A priority Critical patent/CN114561614B/zh
Priority to US17/697,945 priority patent/US20230282377A1/en
Publication of CN114561614A publication Critical patent/CN114561614A/zh
Application granted granted Critical
Publication of CN114561614B publication Critical patent/CN114561614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • C23C10/54Diffusion of at least chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明属于核反应堆材料技术领域,公开了一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,选取含有Mn元素和Cr元素的钢铁材料,采用裂变产生的高能快中子作为辐照源,对所述钢铁材料进行辐照,使得所述钢铁材料中的Mn元素和Cr元素向所述钢铁材料的表面扩散形成致密氧化膜,即完成对所述钢铁材料防腐蚀性能的提高。本发明通过辐照增强致密结构氧化层的形成,该氧化层具有较好的保护性,且在辐照环境下具有自修复的特性,为增强钢在铅和铅铋冷却剂快堆中的抗腐蚀性能提出新的解决思路。

Description

一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法
技术领域
本发明涉及核反应堆材料技术领域,尤其涉及一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法。
背景技术
快中子反应堆(简称快堆)可以大大提高铀资源利用率并实现燃料闭式循环,铅和铅铋共晶合金是快堆的候选冷却剂之一。
高温下,铅和铅铋冷却剂对作为容器和结构材料的钢有严重侵蚀,钢的选择性溶解和铅铋的晶间腐蚀会使材料失效,而流动的冷却剂会进一步加速腐蚀。针对钢铁材料在铅和铅铋中的腐蚀及其力学性能降解的问题,目前主要有两种应对方式:第一,材料表面氧化;第二,材料表面涂层。材料表面氧化是指,控制铅或铅铋中氧含量使材料表面形成氧化层以保护材料,氧化层破裂也可以使内部的钢继续氧化,形成可以一定程度自愈合的氧化层。例如,在400℃和700℃下,铅合金中合适的氧含量分别为10-4wt%和10-6wt%。以形成氧化层的方式保护钢铁材料对冷却剂控氧提出了较高要求,过高的氧含量会导致冷却剂的氧化,可能造成冷却剂堵塞等严重后果,过低的氧含量则会导致氧化层的溶解乃至钢材料基体受到侵蚀,高温情况下,当冷却剂对钢铁的溶解侵蚀加剧,这种保护方式可能失效。材料表面涂层,例如在材料表面施加铝合金镀层,在550℃控氧的液态铅中1500小时后仍有保护性,但表面涂层的缺点是其有剥落失效的风险。
为了解决上述问题,提高钢铁结构材料在铅或铅铋中的抗腐蚀能力,延长材料服役寿命,本发明提出了一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法。
发明内容
为了解决上述现有技术中的不足,本发明提供一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,从而提升结构材料的服役时间或燃料包壳的寿命,从而提高快堆的经济性和安全性。
本发明的一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法是通过以下技术方案实现的:
一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,包括以下步骤:
选取含有Mn元素和Cr元素的钢铁材料,采用裂变产生的高能快中子作为辐照源,对所述钢铁材料进行辐照处理,即完成对所述钢铁材料防腐蚀性能的提高。
进一步地,所述钢铁材料为铁素体马氏体钢,其中,Cr含量为8~10wt%,Mn含量为0.5~1.5wt%。
进一步地,所述辐照处理的辐照剂量1~700dpa。
进一步地,所述辐照处理的温度为400~700℃。
进一步地,所述致密氧化膜的厚度≥30nm。
进一步地,所述辐照处理的时间≥10min。
进一步地,所述辐照处理是在真空条件下进行的,且其真空度≤5×10-4Pa。
本发明与现有技术相比,具有以下有益效果:
本发明首先利用辐照在钢铁材料表面形成一层富含Cr、Mn的连续、均一、紧密的氧化层,使之在进入铅或铅铋环境后在冷却剂运行的早期阶段对钢铁材料有保护作用。之后,反应堆运行期间会承受中子辐照,辐照加速的扩散可以提高该层氧化层的生成,可防止由于铅或铅铋溶解腐蚀导致氧化层不断减薄,以达到氧化层持久的保护性。另外,利用钢铁材料本身生成氧化层的特点,在出现氧化层致密化丧失的情况下,新的辐照加速扩散的元素会对被溶解元素进行补充,形成自修复能力。
本发明通过辐照增强致密结构氧化层的形成,该氧化层具有较好的保护性,且在辐照环境下具有自修复的特性,为增强钢在铅和铅铋冷却剂快堆中的抗腐蚀性能提出新的解决思路。
本发明的方法提高了钢铁材料在铅或铅铋中的抗腐蚀能力,降低了氧化腐蚀对钢铁材料的消耗;且本发明利用堆内辐照环境促进氧化层的生长,使该氧化层具有自修复能力。
附图说明
图1为实施例1通过辐照加速形成的氧化层的示意图;
图2为Fe元素在实施例1通过辐照加速形成的氧化层中的分布图;
图3为Cr元素在实施例1通过辐照加速形成的氧化层中的分布图;
图4为Mn元素在实施例1通过辐照加速形成的氧化层中的分布图;
图5为O元素在实施例1通过辐照加速形成的氧化层中的分布图;
图6为V元素在实施例1通过辐照加速形成的氧化层中的分布图;
图7为钢铁材料表面的氧化层在辐照加速扩散自愈合的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本发明提供一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,包括以下步骤:
利用裂变产生的14MeV高能快中子,于700℃的温度下对钢铁材料进行辐照处理,辐照剂量为700dpa,使得所述钢铁材料中的Mn元素和Cr元素向所述钢铁材料的表面扩散形成致密氧化膜,辐射10min至致密氧化膜的厚度为30nm,即完成对所述钢铁材料防腐蚀性能的提高;
其中,所述钢铁材料为铁素体马氏体钢,铁素体马氏体钢中,Cr含量为10wt%,Mn含量为1.5wt%。
实施例2
本发明提供一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,包括以下步骤:
利用裂变产生的14MeV高能快中子,于500℃的温度下对钢铁材料进行辐照处理,辐照剂量为300dpa,使得所述钢铁材料中的Mn元素和Cr元素向所述钢铁材料的表面扩散形成致密氧化膜,辐射10h至致密氧化膜的厚度为40nm,即完成对所述钢铁材料防腐蚀性能的提高;
其中,所述钢铁材料为铁素体马氏体钢,铁素体马氏体钢中,Cr含量为9wt%,Mn含量为1wt%。
实施例3
本发明提供一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,包括以下步骤:
利用裂变产生的14MeV高能快中子,于400℃的温度下对钢铁材料进行辐照处理,辐照剂量为100dpa,使得所述钢铁材料中的Mn元素和Cr元素向所述钢铁材料的表面扩散形成致密氧化膜,辐射30h至致密氧化膜的厚度为50nm,即完成对所述钢铁材料防腐蚀性能的提高;
其中,所述钢铁材料为铁素体马氏体钢,铁素体马氏体钢中,Cr含量为8wt%,Mn含量为0.5wt%。
实施例4
本实施例与实施例1的区别在于:
本实施例中,辐照剂量为1dpa,辐照时间为60h。
为了验证本发明方法的效果,本实施例进行了以下模式试验:
于550℃、真空度为5×10-4Pa的条件下,采用3MeV的Fe离子对细晶MX-ODS钢辐照,辐照67小时后辐照剂量为70dpa,停止辐照。
为了验证本发明的处理方法的效果,对于本发明方法处理前后的MX-ODS钢分别进行了以下试验。
(一)氧化层的厚度测定
经测定表明:本发明方法处理前的MX-ODS钢的氧化层厚度为3nm;经过本发明方法处理后,MX-ODS钢的氧化层厚度为40nm。
经过本发明方法处理后,MX-ODS钢的氧化层的厚度是处理前的10倍以上,说明经过本发明方法处理后,显著增强了MX-ODS钢的氧化情况,增强了钢铁材料表面致密结构氧化层的形成,从而增强了对钢铁材料的保护性,进而增强了钢铁材料在铅和铅铋冷却剂快堆中的抗腐蚀性能。
(二)氧化层的元素分布
对经过本发明方法处理后的MX-ODS钢的表面氧化层的元素分布进行了测定,结果如图1-图6所示,可以看出,本发明方法处理后,在MX-ODS钢的表面形成了Cr、Mn尖晶石氧化层,该氧化层从样品表面向外生长,连续、完整,且与基体附着良好。
如图7所示,本发明这种辐照选择性增强Mn、Cr元素向表面扩散形成致密氧化膜,同时在液态铅或铅铋中能够补充被溶解掉的Mn元素及愈合辐照引入的非致密化缺陷。
辐照条件下,合金基体内产生大量点缺陷,高浓度的空位与辐照过程中的级联碰撞大大增强了元素扩散,氧化层的主要构成元素Cr、Mn作为置换型溶质原子可利用空位扩散,有利于在氧化层/基体界面处维持元素浓度。钢铁中的Cr、Mn元素的添加有利于增强其抗腐蚀能力,因为这些元素的氧化物更加致密,可以阻止Fe向外扩散。Cr、Mn氧化物相对于Fe生成自由能更低、更稳定,但由于它们在铁素体-马氏体钢中含量并不高,如Cr含量在10wt%左右,Mn常被控制在1wt%以内,当氧化持续进行时,它们常由于浓度过低而不足以生成氧化物。本发明利用辐照增强Cr、Mn元素的扩散,使氧化层/基体界面处的Cr、Mn元素可以得到补充,在出现氧化层腐蚀溶解、氧化层致密性降低等情况后,Cr、Mn元素有机会补充生成氧化层。
本发明形成氧化层采用堆内运行相同温度、较高剂量的Fe离子辐照实验,实验本身旨在检验样品的辐照特性,模拟了堆内环境,因而该氧化层在实际堆内运行情况也可生成。离子辐照与堆内中子辐照有着相似的基本物理过程与材料损伤结果,与中子辐照相比,离子辐照有着实验条件可控程度大、试验周期短、成本低、无需考虑残留放射性问题等优点,其中重离子辐照与中子辐照对材料造成的影响最具相似性,因而大量研究使用重离子辐照来模拟堆内中子辐照,以便对材料在堆内环境可能受到的影响进行研究。与表面处理后预氧化的方式形成的氧化层相比,本方法中的氧化层具有可持续补充的特点,在堆内运行中即使出现小范围剥落情况,也有机会重新生成该种氧化层。
显然,上述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (7)

1.一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法,其特征在于,包括以下步骤:
选取含有Mn元素和Cr元素的钢铁材料,采用裂变产生的高能快中子作为辐照源,对所述钢铁材料进行辐照处理,使得Mn元素和Cr元素向所述钢铁材料的表面扩散形成致密氧化膜,即完成对所述钢铁材料防腐蚀性能的提高。
2.如权利要求1所述的处理方法,所述钢铁材料为铁素体马氏体钢,其中,Cr含量为8~10wt%,Mn含量为0.5~1.5wt%。
3.如权利要求1所述的处理方法,其特征在于,所述辐照处理的辐照剂量1~700dpa。
4.如权利要求1所述的处理方法,其特征在于,所述辐照处理的温度为400~700℃。
5.如权利要求1所述的处理方法,其特征在于,所述辐照处理的时间≥10min。
6.如权利要求1所述的处理方法,其特征在于,所述致密氧化膜的厚度≥30nm。
7.如权利要求1所述的处理方法,其特征在于,所述辐照处理是在真空条件下进行的,且其真空度≤5×10-4Pa。
CN202210213710.7A 2022-03-04 2022-03-04 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法 Active CN114561614B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210213710.7A CN114561614B (zh) 2022-03-04 2022-03-04 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法
US17/697,945 US20230282377A1 (en) 2022-03-04 2022-03-18 Processing method for improving corrosion resistance of iron and steel materials in lead or lead-bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210213710.7A CN114561614B (zh) 2022-03-04 2022-03-04 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法

Publications (2)

Publication Number Publication Date
CN114561614A true CN114561614A (zh) 2022-05-31
CN114561614B CN114561614B (zh) 2023-03-14

Family

ID=81718755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210213710.7A Active CN114561614B (zh) 2022-03-04 2022-03-04 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法

Country Status (2)

Country Link
US (1) US20230282377A1 (zh)
CN (1) CN114561614B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354227A (zh) * 2022-08-22 2022-11-18 中国核动力研究设计院 一种反应堆燃料包壳材料用铁素体马氏体钢及其热处理工艺
CN115838913A (zh) * 2022-12-06 2023-03-24 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943209A (zh) * 2012-11-16 2013-02-27 中国科学院金属研究所 一种与Pb和Pb-Bi具有良好相容性的耐辐射马氏体耐热钢
CN105297034A (zh) * 2014-07-30 2016-02-03 中国科学院金属研究所 一种提高低活化铁素体/马氏体钢耐铅铋腐蚀性能的方法
JP2016060939A (ja) * 2014-09-17 2016-04-25 株式会社ソディック 金型の強化方法および強化金型
CN106835099A (zh) * 2016-12-26 2017-06-13 安徽宝恒新材料科技有限公司 一种提高不锈钢表面质量的方法
CN110359006A (zh) * 2019-07-18 2019-10-22 中国科学院金属研究所 一种提高耐热钢耐液态金属腐蚀的方法
US20210010125A1 (en) * 2018-03-15 2021-01-14 Mannesmann Precision Tubes France Method for forming a layer of single-phase oxide (fe, cr)2o3 with a rhombohedral structure on a steel or super alloy substrate
CN112646957A (zh) * 2020-12-01 2021-04-13 中国科学院金属研究所 一种提高铁素体-马氏体钢耐铅铋腐蚀性能的预处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943209A (zh) * 2012-11-16 2013-02-27 中国科学院金属研究所 一种与Pb和Pb-Bi具有良好相容性的耐辐射马氏体耐热钢
CN105297034A (zh) * 2014-07-30 2016-02-03 中国科学院金属研究所 一种提高低活化铁素体/马氏体钢耐铅铋腐蚀性能的方法
JP2016060939A (ja) * 2014-09-17 2016-04-25 株式会社ソディック 金型の強化方法および強化金型
CN106835099A (zh) * 2016-12-26 2017-06-13 安徽宝恒新材料科技有限公司 一种提高不锈钢表面质量的方法
US20210010125A1 (en) * 2018-03-15 2021-01-14 Mannesmann Precision Tubes France Method for forming a layer of single-phase oxide (fe, cr)2o3 with a rhombohedral structure on a steel or super alloy substrate
CN110359006A (zh) * 2019-07-18 2019-10-22 中国科学院金属研究所 一种提高耐热钢耐液态金属腐蚀的方法
CN112646957A (zh) * 2020-12-01 2021-04-13 中国科学院金属研究所 一种提高铁素体-马氏体钢耐铅铋腐蚀性能的预处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354227A (zh) * 2022-08-22 2022-11-18 中国核动力研究设计院 一种反应堆燃料包壳材料用铁素体马氏体钢及其热处理工艺
CN115838913A (zh) * 2022-12-06 2023-03-24 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法
CN115838913B (zh) * 2022-12-06 2023-11-17 西安交通大学 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法

Also Published As

Publication number Publication date
US20230282377A1 (en) 2023-09-07
CN114561614B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN114561614B (zh) 一种提高钢铁材料在铅或铅铋中抗腐蚀性能的处理方法
Tang et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings
Schuster et al. On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel
Tapping et al. The composition and morphology of oxide films formed on type 304 stainless steel in lithiated high temperature water
Jiang et al. Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors
Antill et al. The effect of surface implantation of yttrium and cerium upon the oxidation behaviour of stainless steels and aluminized coatings at high temperatures
Pan et al. In steam short-time oxidation kinetics of FeCrAl alloys
Zhao et al. High-temperature oxidation behavior of Zr-4 and Zr-Sn-Nb alloy in different oxidation ambient
Meng et al. Investigations of oxidation behavior and establishment of life-cycle model during the steam oxidation of Cr-coated Zry-4 at 1200° C
Ma et al. Corrosion behavior of Cr-coated zirconium alloy cladding in LiOH/H3BO3-containing water at 360℃
Johnson Effects of nuclear radiation on the corrosion, hydriding, and oxide properties of six zirconium alloys
McGowan Application of warm prestressing effects to fracture mechanics analyses of nuclear reactor vessels during severe thermal shock
LeSurf The corrosion behavior of 2.5 Nb zirconium alloy
Khoma et al. Effect of sulfides on the hydrogen overvoltage and hydrogenation of U8 steel in chloride-hydrogen-sulfide media
Li et al. Review on performance of chromium-coated zirconium and its failure mechanisms
CN115838913B (zh) 耦合温控和辐照效应提高材料耐高温铅/铅铋腐蚀的方法
Hide et al. Intergranular cracking of irradiated thermally sensitized type 304 stainless steel in high-temperature water and inert gas
Eucken Zirconium in the nuclear industry: ninth international symposium
Klueh et al. Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365° C
Valeeva et al. Ni-based protective-lubricant coatings for zirconium alloys
CA2932546C (en) Method for inner-contour passivation of steel surfaces of a nuclear reactor
Stobbs et al. Effects of radiation on metallic corrosion
Kim et al. Development of Basic Technology for FeCrAl-based LWR Cladding
Kim et al. Development and Validation of Cr Diffusion Model for Coated Zircaloy Accident Tolerant Fuel Cladding
Groeneveld et al. Hydrogen stress cracking overview and controls

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant