CN114547865B - 一种工作状态下小间距加筋土桥台筋材内力计算方法 - Google Patents

一种工作状态下小间距加筋土桥台筋材内力计算方法 Download PDF

Info

Publication number
CN114547865B
CN114547865B CN202210076762.4A CN202210076762A CN114547865B CN 114547865 B CN114547865 B CN 114547865B CN 202210076762 A CN202210076762 A CN 202210076762A CN 114547865 B CN114547865 B CN 114547865B
Authority
CN
China
Prior art keywords
abutment
internal force
bridge
layer
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210076762.4A
Other languages
English (en)
Other versions
CN114547865A (zh
Inventor
沈盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Investigation Design and Research Institute Co Ltd SIDRI
Original Assignee
Shanghai Investigation Design and Research Institute Co Ltd SIDRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Investigation Design and Research Institute Co Ltd SIDRI filed Critical Shanghai Investigation Design and Research Institute Co Ltd SIDRI
Priority to CN202210076762.4A priority Critical patent/CN114547865B/zh
Publication of CN114547865A publication Critical patent/CN114547865A/zh
Application granted granted Critical
Publication of CN114547865B publication Critical patent/CN114547865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Structural Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明提供一种工作状态下小间距加筋土桥台筋材内力计算方法,包括以下步骤:S1、计算各层筋材所受的最大内力总和ΣT;S2、假定各层筋材所受的最大内力T沿桥台高度均匀分布,计算出各层筋材所受的最大内力T;在步骤S1中,计算由桥跨结构载荷引起的水平主动土压力合力ΔEa时,需考虑砌块面板的影响;本发明的筋材内力计算方法充分考虑了砌块面板对附加竖向应力扩散的影响,并利用了小间距加筋使得加筋土结构内部各层筋材内力沿结构高度及筋材长度的分布更均匀的特点,结合现有土压力理论快速计算出各层筋材所受的最大内力总和,获得各层筋材所受最大内力;整个计算过程简单、方便,计算结果比较科学,便于推广使用。

Description

一种工作状态下小间距加筋土桥台筋材内力计算方法
技术领域
本发明属于公路桥梁桥台技术领域,具体涉及一种工作状态下小间距加筋土桥台筋材内力计算方法。
背景技术
桥台是位于桥跨结构两端,用于支撑桥跨结构的建筑物。桥台有多种结构类型,其中,加筋土桥台因具有成本低廉、施工简便、台下放坡占地需求小等优点被广泛应用于中小跨度桥梁建设中。加筋土桥台包括砌块面板和位于砌块面板后侧的加筋复合体,其中,加筋复合体由压实填土与筋材交替铺设形成。与一般的加筋土挡墙相比,加筋土桥台承受较大的桥跨结构载荷(包括桥跨结构自重及车辆载荷)。因此,加筋土桥台的筋材竖向间距不大于0.3m,并且在加筋土复合体区域上部的承载区域采用辅筋加密筋材间距以控制加筋土桥台自身在桥跨结构载荷的变形。
加筋土桥台的内部稳定性设计计算的重点在于准确确定各层筋材的内力,为了便于加筋土桥台的推广应用,需采用一种合理易用的内力计算方法对筋材内力进行计算分析。由于正常工作状态下和极限状态下的筋土相互作用差别较大,在计算筋材内力时需区别对待。目前,大多数的加筋土结构筋材内力计算方法是针对加筋土挡墙而言的。加筋土挡墙与加筋土桥台本质的区别为:加筋土挡墙作为支挡结构,其顶部不受外荷载作用或受较小的均布荷载作用,计算筋材内力时无需考虑顶部均布荷载随深度的扩散效应;而加筋土桥台作为承重结构,其顶部受较大的桥跨结构局部荷载作用,该局部荷载随深度扩散、且扩散宽度受桥台临空面的影响(即受桥台砌块面板的影响),使得现有的针对加筋土挡墙的筋材内力计算方法无法适用于计算加筋土桥台筋材内力。
此外,现行的针对加筋土桥台筋材内力计算方法,有美国联邦公路局提出的W系数法以及公告号为CN105332339B的发明专利公布的一种柔性加筋土桥台筋材内力计算方法。美国联邦公路局提出的W系数法以下几个缺陷:(1)该方法采用布辛涅斯克解计算由桥跨结构引起的局部荷载随深度的扩散,无法反映桥台临空面的影响(即认为桥台为半无限空间,桥跨结构引起的局部荷载在半无限空间内扩散);(2)该方法是基于加筋土单元体在极限状态下的极限强度反推得到的,并不适用于计算工作状态下加筋土桥台内部筋材内力。而公告号为CN105332339B的发明专利公布的一种柔性加筋土桥台筋材内力计算方法是典型的非弹性增量计算方法,该计算方法存在计算步骤复杂,需要反复迭代的缺陷,无法实现各层筋材内力的快速获取。
发明内容
鉴于以上现有技术的缺点,本发明的目的在于提供一种工作状态下小间距加筋土桥台筋材内力计算方法,其考虑砌块面板具有挡土功能的基础上,结合水平主动土压力理论设计了一种可用于快速计算加筋土桥台工作状态下各层筋材内力的计算方法,该计算方法具有计算步骤简单,计算科学的特点,便于推广使用。
为实现上述目的及其他相关目的,本发明提供一种工作状态下小间距加筋土桥台筋材内力计算方法,该方法包括以下步骤:
S1、计算各层筋材所受的最大内力总和ΣT:各层筋材所受的最大内力总和ΣT由填土自重引起的水平主动土压力合力Ea及由桥跨结构荷载引起的水平主动土压力合力ΔEa确定,其满足:ΣT=Ea+ΔEa
S2、假定各层筋材所受的最大内力T沿桥台高度均匀分布,计算出各层筋材所受的最大内力T,计算公式为:
Figure BDA0003484361110000021
其中:Sv为筋材间的竖向间距;H为加筋土桥台的桥台高度;
在步骤S1中,由填土自重引起的水平主动土压力合力
Figure BDA0003484361110000022
其中,γ为桥台填料重度;Ka为水平主动土压力系数;
在步骤S1中,由桥跨结构载荷引起的水平主动土压力合力ΔEa由以下公式确定:
Figure BDA0003484361110000023
其中,z为任一层筋材埋置深度,即任一层筋材距桥台顶部的距离;
Δσ(z)为深度z处由桥跨结构载荷引起的附加竖向应力;
Lb为桥跨结构长度;
Db为桥跨结构厚度;
γb为桥跨结构重度;
qLL为桥跨结构上方车辆荷载的等效均布荷载;
D(z)为考虑砌块面板影响时,深度z处的附加竖向应力扩散宽度。
优选地,深度z处的附加竖向应力扩散宽度D(z)由以下公式获得:
Figure BDA0003484361110000024
其中:b为桥梁基座宽度;z0为应力扩散线与砌块面板相交处距桥台顶部的距离,由公式
Figure BDA0003484361110000031
确定,ab为桥梁基座偏移距;θ为应力扩散角,即应力扩散线与垂直线的夹角;d为桥梁基座中心线距砌块面板背后距离,由公式
Figure BDA0003484361110000032
确定。
优选地,应力扩散角θ满足:
Figure BDA0003484361110000033
优选地,水平主动土压力系数
Figure BDA0003484361110000034
为桥台填料内摩擦角。
如上,本发明的一种工作状态下小间距加筋土桥台筋材内力计算方法,具有以下有益效果:
本发明的加筋土桥台筋材内力计算方法充分考虑了砌块面板对附加竖向应力扩散的影响,还有效利用了小间距加筋使得加筋土结构内部各层筋材内力沿结构高度及筋材长度的分布更均匀的优势,结合现有土压力理论快速计算出各层筋材所受的最大内力总和,并根据“各层筋材所受最大内力沿桥台高度均匀分布”假定获得各层筋材所受最大内力;整个计算过程简单、方便,计算结果比较科学,便于推广使用。
附图说明
图1为加筋土桥台的受力示意图。
图2为填土自重引起的水平主动土压力沿桥台高度的理论假定分布图,
图3为桥跨结构载荷引起的水平主动土压力沿桥台高度的理论假定分布图。
图4为本发明工作状态下加筋土桥台筋材内力计算方法的流程示意图。
附图标记说明
筋材1,桥台填料2,砌块面板3,桥跨结构载荷4。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图4。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1所示,加筋土桥台由筋材1、桥台填料2以及砌块面板3组成;加筋土桥台顶部支撑桥跨结构,桥台上表面承受由桥跨结构的自重及桥跨结构上方车辆荷载的等效均布荷载qLL构成的桥跨结构载荷4;桥台上表面用于承受桥跨结构载荷4的部位为桥梁基座,桥梁基座宽度为b;桥梁基座偏移距为ab;筋材层之间的竖向间距为Sv,桥台高度为H;任一层筋材距桥台上表面的距离为z。
如图4所示,本发明提供一种工作状态下小间距加筋土桥台筋材内力计算方法,该方法包括以下步骤:
S1、计算各层筋材所受的最大内力总和ΣT:各层筋材所受的最大内力总和ΣT由填土自重引起的水平主动土压力合力Ea及由桥跨结构荷载引起的水平主动土压力合力ΔEa确定,其满足:ΣT=Ea+ΔEa(1))
由填土自重引起的水平主动土压力合力Ea通过以下方式确定:
a)通过水平主动土压力理论可知,由填土自重引起的水平主动土压力σa满足公式(2):
σa=γ·z·Ka (2)
其中,γ为桥台填料重度;Ka为水平主动土压力系数;z为任一层筋材埋置深度。
可以理解的是,主动土压力系数可采用库仑主动土压力理论计算,其满足:
Figure BDA0003484361110000041
其中,
Figure BDA0003484361110000042
为桥台填料内摩擦角,ω为砌块面板与竖直方向的夹角;δ为填土与砌块面板之间的摩擦角;β为桥台顶部倾角。当桥台砌块面板3直立或近似直立(ω=0)、桥台填料2与砌块面板3间无摩擦(δ=0)、桥台顶部水平(β=0)时,库仑主动土压力理论退化为郎肯主动土压力理论,其满足
Figure BDA0003484361110000043
为了降低计算难度,本实施例计算时优选采用郎肯主动土压力理论计算Ka
b)通过公式(2)计算出:
由填土自重引起的位于桥台顶部的水平土压力σa1=0;
由填土自重引起的位于桥台底部的书评土压力σa2=γ·H·Ka
c)如图2所示,通过计算三角形面积最终求得由填土自重引起的水平主动土压力合力Ea
Figure BDA0003484361110000044
如图3所示,由桥跨结构载荷引起的水平主动土压力合力ΔEa可根据由桥跨结构荷载引起的附加水平土压力的分布面积求得:
Figure BDA0003484361110000051
其中,z为任一层筋材埋置深度;Δσ(z)为深度z处由桥跨结构载荷引起的附加竖向应力,Δσ(z)的计算方式如下:
如图1所示,在考虑砌块面板3影响的基础下,根据应力扩散解理论,求得深度z处由桥跨结构载荷引起的附加竖向应力Δσ(z)满足公式(5):
Figure BDA0003484361110000052
其中,Lb为桥跨结构长度;Db为桥跨结构厚度;γb为桥跨结构重度;qLL为桥跨结构上方车辆荷载的等效均布荷载;D(z)为考虑砌块面板影响时,深度z处的附加竖向应力扩散宽度。
如图1所示,深度z处的附加竖向应力扩散宽度D(z)由公式(6)获得:
Figure BDA0003484361110000053
其中:b为桥梁基座宽度;z0为应力扩散线与砌块面板相交处距桥台顶部的距离,由公式
Figure BDA0003484361110000054
确定,ab为桥梁基座宽度偏移距;θ为应力扩散角,即应力扩散线与垂直线的夹角;d为桥梁基座宽度中心线距砌块面板背后距离,由公式
Figure BDA0003484361110000055
确定。
根据实验可知,加筋土桥台的应力扩散角θ满足
Figure BDA0003484361110000056
或者
Figure BDA0003484361110000057
为了进一步降低计算难度,本发明优选选用
Figure BDA0003484361110000058
Figure BDA0003484361110000059
代入公式(6)中,深度z处的附加竖向应力扩散宽度D(z)的最终计算公式:
Figure BDA00034843611100000510
其中:b为桥梁基座宽度;z0=2ab,ab为桥梁基座宽度偏移距;
Figure BDA00034843611100000511
S2、假定各层筋材所受的最大内力T沿桥台高度均匀分布,计算出各层筋材所受的最大内力T,计算公式为:
Figure BDA0003484361110000061
其中:Sv为筋材间的竖向间距;H为加筋土桥台的桥台高度。
假定各层筋材所受连接应力T0与该层筋材所受最大内力T相等,计算出各层筋材所受的连接应力:T0=T (9)。
以下为本发明的具体实施例:
加筋土桥台高H=2.4m,筋材间的竖向间距Sv=0.2m,桥台填料2采用砂砾石土,内摩擦角
Figure BDA0003484361110000062
桥台填料重度γ=16.17kN/m3;桥台顶部有一长Lb=5m、厚Db=0.4m、重度γb=25kN/m3的桥跨结构,桥跨结构上车辆的均布载荷qLL=0;桥台顶部用于承受桥跨结构载荷的部件为桥梁基座,桥梁基座宽度b=0.6m,桥梁基座偏移距ab=0.2m。
采用公式(3)计算出由桥台填料自重引起的水平主动土压力合力Ea:
Figure BDA0003484361110000063
采用公式(5)和公式(7)计算不同深度z处由桥跨结构荷载引起的附加竖向应力Δσ(z),结果如表1所示:
表1不同深度处由桥跨结构局部荷载引起的附加竖向应力
Figure BDA0003484361110000064
采用公式(4)计算出由桥跨结构载荷引起的各层筋材最大内力总和ΔEa
Figure BDA0003484361110000065
采用公式(8)计算出各层筋材所受最大内力T:
Figure BDA0003484361110000066
采用公式(9)计算出各层筋材所受连接应力T0
T0=T=1.20kN/m。
综上所述,本发明充分考虑了砌块面板对附加竖向应力扩散的影响,在实现筋材内力快速、方便计算的同时,保证计算结果的科学性,便于推广使用。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (2)

1.一种工作状态下小间距加筋土桥台筋材内力计算方法,其特征在于,该方法包括以下步骤:
S1、计算各层筋材所受的最大内力总和ΣT:各层筋材所受的最大内力总和ΣT由填土自重引起的水平主动土压力合力Ea及由桥跨结构荷载引起的水平主动土压力合力ΔEa确定,其满足:ΣT=Ea+ΔEa
S2、假定各层筋材所受的最大内力T沿桥台高度均匀分布,计算出各层筋材所受的最大内力T,计算公式为:
Figure FDA0004103560190000011
其中:Sv为筋材间的竖向间距;H为加筋土桥台的桥台高度;
在步骤S1中,由填土自重引起的水平主动土压力合力
Figure FDA0004103560190000012
其中,γ为桥台填料重度;Ka为水平主动土压力系数,由公式
Figure FDA0004103560190000013
确定,
Figure FDA0004103560190000014
为桥台填料内摩擦角;
在步骤S1中,由桥跨结构载荷引起的水平主动土压力合力ΔEa由以下公式确定:
Figure FDA0004103560190000015
其中,z为任一层筋材埋置深度,即任一层筋材距桥台顶部的距离;
Δσ(z)为深度z处由桥跨结构载荷引起的附加竖向应力;
Lb为桥跨结构长度;
Db为桥跨结构厚度;
γb为桥跨结构重度;
qLL为桥跨结构上方车辆荷载的等效均布荷载;
D(z)为考虑砌块面板影响时,深度z处的附加竖向应力扩散宽度;
深度z处的附加竖向应力扩散宽度D(z)由以下公式获得:
Figure FDA0004103560190000016
其中:b为桥梁基座宽度;z0为应力扩散线与砌块面板相交处距桥台顶部的距离,由公式
Figure FDA0004103560190000017
确定,ab为桥梁基座偏移距,θ为应力扩散角,即应力扩散线与垂直线的夹角;d为桥梁基座宽度中心线距砌块面板背后距离,由公式
Figure FDA0004103560190000018
确定。
2.根据权利要求1所述的一种工作状态下小间距加筋土桥台筋材内力计算方法,其特征在于,应力扩散角θ满足:
Figure FDA0004103560190000021
CN202210076762.4A 2022-01-24 2022-01-24 一种工作状态下小间距加筋土桥台筋材内力计算方法 Active CN114547865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210076762.4A CN114547865B (zh) 2022-01-24 2022-01-24 一种工作状态下小间距加筋土桥台筋材内力计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210076762.4A CN114547865B (zh) 2022-01-24 2022-01-24 一种工作状态下小间距加筋土桥台筋材内力计算方法

Publications (2)

Publication Number Publication Date
CN114547865A CN114547865A (zh) 2022-05-27
CN114547865B true CN114547865B (zh) 2023-04-25

Family

ID=81671632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210076762.4A Active CN114547865B (zh) 2022-01-24 2022-01-24 一种工作状态下小间距加筋土桥台筋材内力计算方法

Country Status (1)

Country Link
CN (1) CN114547865B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114969927B (zh) * 2022-05-30 2024-05-24 西安理工大学 考虑墙趾阻力的加筋土挡墙筋材拉力的计算方法
CN114969951B (zh) * 2022-07-27 2022-10-25 中国长江三峡集团有限公司 加筋土结构的数值计算方法、装置、存储介质及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230563B (zh) * 2008-02-21 2011-01-26 北京公科固桥技术有限公司 一种不中断交通更换桥梁支座的方法及其专用装置
CN105332339B (zh) * 2015-11-25 2016-10-05 华中科技大学 一种柔性加筋土桥台筋材内力计算方法
CN110344315A (zh) * 2019-07-12 2019-10-18 山东省交通规划设计院 一种大跨径钢混组合桥梁结构及施工工艺
CN112504843B (zh) * 2020-11-30 2022-02-18 同济大学 静动荷载条件下Trapdoor模型试验装置及其试验方法

Also Published As

Publication number Publication date
CN114547865A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN114547865B (zh) 一种工作状态下小间距加筋土桥台筋材内力计算方法
CN110046407B (zh) 一种用于确定挡土结构中滑动土体破裂面的方法
CN104988918B (zh) 一种深基坑预应力锚杆最优锚固长度的测定方法
CN108978651A (zh) 岩质边坡预应力锚杆加固参数的优化测定方法
JP2023514619A (ja) 既存の釣り合い重り式擁壁の滑り止めおよび転倒防止の安全性を改善するための方法
CN109208610B (zh) 一种近接大荷载偏压基坑开挖横支撑预应力动态调整方法
CN111259478B (zh) 一种抑制既有路堑重力式挡墙变形的方法
CN111539051B (zh) 一种架空式桩板结构的三维静力计算方法
CN111985020A (zh) 一种汽车式起重机行走及起重荷载计算系统及计算方法
CN111199070A (zh) 桩托二层挡土墙的设计方法
Moghadam et al. Experimental and analytical investigation into crack strength determination of infilled steel frames
Choudhary et al. Influence of soil density on performance of geocell-reinforced vertical anchor in sand
CN111488643A (zh) 一种履带式起重机行走及起重荷载计算系统及计算方法
CN105586974B (zh) 一种基坑支挡结构设计方法
CN111090829B (zh) 铁路既有线灌浆螺旋钢桩斜向加固路基后沉降量确定方法
CN113987645B (zh) 一种山区斜坡直-斜组合桩基简化的内力计算方法
CN116815819A (zh) 顺层路堑边坡抗剪锚杆支护与挡墙加固设计方法及装置
CN106836851A (zh) 深基坑悬挂式施工楼梯及其施工方法
CN114912177B (zh) 一种考虑荷载作用的库仑土压力简化计算方法
CN208934293U (zh) 竖井楼梯
CN212611699U (zh) 一种用于高速铁路加固结构、路基组件和路基系统
CN109518555B (zh) 一种岩溶地区连续配筋混凝土板跨越方法
CN111985021A (zh) 一种盾构开挖面的遍布节理流固耦合的安全度分析方法
Al-Shayea et al. A new approach for estimating thickness of mat foundations under certain conditions
CN111832109B (zh) 无外倾结构面的岩质边坡重力式挡墙设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant