WO2020103234A1 - 钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法 - Google Patents
钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法Info
- Publication number
- WO2020103234A1 WO2020103234A1 PCT/CN2018/121020 CN2018121020W WO2020103234A1 WO 2020103234 A1 WO2020103234 A1 WO 2020103234A1 CN 2018121020 W CN2018121020 W CN 2018121020W WO 2020103234 A1 WO2020103234 A1 WO 2020103234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel tube
- concrete
- column
- node
- end plate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/24—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/185—Connections not covered by E04B1/21 and E04B1/2403, e.g. connections between structural parts of different material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/30—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2415—Brackets, gussets, joining plates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2418—Details of bolting
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2451—Connections between closed section profiles
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2454—Connections between open and closed section profiles
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B2001/2466—Details of the elongated load-supporting parts
- E04B2001/2478—Profile filled with concrete
Definitions
- the invention relates to a calculation method for the bending bearing capacity and bending moment-rotation curve of a concrete-filled steel tube column-steel beam through-bolt connection node, which is suitable for the semi-rigid design of such nodes, and belongs to a concrete-filled steel tube column-steel beam through-bolt Connected node design field.
- the invention proposes a calculation method for the bending bearing capacity and bending moment-rotation curve of a concrete-filled steel tube column-steel beam through-bolt connection node, and the calculation method is applicable to four types of concrete-filled steel tube column-steel beam through-bolts Connection nodes: non-stiffened outboard end plate through-bolt connection nodes, stiffened outboard end plate through-hole bolt connection nodes, flush end plate through-hole bolt connection nodes, and T-piece through-hole bolt connection nodes, the specific process is as follows:
- the yield line parameter L 1 is calculated as follows:
- b p represents the width of the end plate
- h 1 represents the distance from the first row of bolts to the lower surface of the compression flange
- h 2 represents the distance from the second row of bolts to the lower surface of the compression flange
- p fi represents the second row of bolts
- p fe is the distance from the centroid of the first row of bolts to the upper surface of the tension flange
- g is the column distance between the bolts; The distance from the center of the second row of bolts to the edge of the yield line;
- d e represents the distance from the center of the first row of bolts to the outer edge of the end plate
- p represents the line spacing between two rows of bolts
- the yield line parameter L 4 is calculated as follows:
- f y is the yield strength of the end plate
- t ep is the thickness of the end plate or T-piece flange
- L is the yield line parameter of each connection type, that is, L 1 , L 2 , L 3 or L 4 ;
- f y, cw is the yield strength of the steel tube web in the concrete-filled steel tube column
- a vc is the shear cross-sectional area of the steel tube web in the concrete-filled steel tube column
- ⁇ is the effect of the axial force on the bearing capacity of the steel tube in the concrete-filled steel tube column Coefficient
- a c is the cross-sectional area of the core concrete in the CFST column
- f cd is the design value of the compressive strength of the core concrete cylinder
- ⁇ is the inclination of the hypotenuse of the node domain
- N is the axial force of the design of the concrete column, N U ultimate compressive bearing capacity of the concrete column;
- the inclination ⁇ of the hypotenuse of the node domain is calculated according to the following formula:
- w c is the width of the concrete-filled steel tube column
- t cf is the thickness of the steel tube flange of the concrete-filled steel tube column
- z is the length of the bending arm of the node, and its value is (h b -t bf ) , For T-piece through-bolt connection, its value is (h b + t bf );
- M c [2 ⁇ k cw b eff, cw t cw f y, cw + 0.85k c b eff, c (d c -2t cw ) f cd ] ⁇ (h b -t bf ) (14)
- M c [2 ⁇ k cw b eff, cw t cw f y, cw + 0.85k c b eff, c (d c -2t cw ) f cd ] ⁇ (h b + t bf ) (15)
- ⁇ is the relative slenderness ratio of the steel tube web in the concrete-filled steel tube column; when the steel tube is rolled, t is the fillet radius of the rolled steel tube, when the steel tube is welded, t is the welding leg of the steel tube weld Size; E is the elastic modulus of the steel tube;
- ⁇ col is the axial stress in the steel tube in the concrete-filled steel tube column
- ⁇ c is the axial stress in the core concrete
- h e is the effective height of the weld and the end plate flange steel beam
- s p is the lateral diffusion of the pressure plate along the width of the end, the minimum thickness of the end plate, not more than 2 times the maximum plate thickness
- f yb is the yield strength of the steel beam
- W p is the plastic section modulus of the steel beam
- the minimum value of the bending resistance of the five failure modes calculated above is the actual bending resistance of the node, and the corresponding failure mode is the actual failure mode of the node, namely:
- S j is the initial rotational stiffness of the node, which is obtained through experiment or numerical simulation or theoretical calculation; the calculation method is applicable to the four types of connection of the concrete-filled steel tube column-steel beam through-bolt connection node: non-stiffened overhang Core bolt connection nodes, stiffened outboard end plate through-bolt connection nodes, flush end plate through-hole bolt connection nodes, and T-piece through-hole bolt connection nodes
- the beneficial effect of the present invention is that, based on the initial rotation stiffness calculation method of the concrete-filled steel tube column-steel beam through-bolt connection node proposed earlier, as long as the detailed structure and material properties of the node are given, the invention can be simple and fast without test data Obtain the bending bearing capacity and bending moment-rotation curve of concrete-filled steel tube through-bolt joints, so as to avoid the large number of joint tests required to determine the semi-rigid design parameters of such joints in actual engineering, which greatly saves manpower, The cost of material resources, financial resources, time, etc .; the present invention provides important parameters for semi-rigid design using the frame of the concrete-filled steel tube column-steel beam through-bolt connection node, and provides a theoretical basis for the application of this type of node in actual construction.
- FIG. 1 is a schematic diagram of a three-dimensional structure of two types of four types of nodes applicable to the present invention.
- FIG. 2 is a schematic plan view of a non-stiffened overhanging end plate through-bolt connection node applicable to the present invention.
- FIG. 3 is a schematic plan view of a stiffened overhanging end plate through-bolt connection node applicable to the present invention.
- FIG. 4 is a schematic plan view of a flush end plate through-bolt connection node with only one row of bolts in a tension zone applicable to the present invention.
- FIG. 5 is a schematic plan view of a flush end plate through-bolt connection node with two rows of bolts in a tension zone applicable to the present invention.
- Fig. 6 is a schematic plan view of a T-piece through-bolt connection node applicable to the present invention.
- FIG. 7 is a structural diagram of a stiffened outboard end plate through-bolt connection node.
- Fig. 8 is a bending moment-rotation curve diagram of a stiffened outboard end plate through-bolt connection node.
- FIG. 1 shows a three-dimensional structure diagram of two of the four types of connection nodes to which the present invention is adapted.
- Figures 2 to 6 are plan schematic diagrams of four types of connected nodes. The diagrams indicate the physical meanings corresponding to the symbols in the calculation formulas of the yield line parameters of various types of nodes.
- FIG. 7 is a structural diagram of a connection node of this embodiment. The node is a stiffened outboard end plate through-bolt connection node. The relevant parameters are derived from previous literature, as shown in Table 1:
- the node type of this embodiment is a stiffened outboard end plate through-bolt connection node, and the yield line parameters should be calculated according to formula (2):
- the bending resistance capacity M ep of the node when the end plate or the flange of the T-shaped member is damaged by bending is:
- 118.82KN ⁇ m is the node failure mode corresponding to the calculation result of step 1), that is, the actual failure mode of the node, that is, the failure mode of the stiffened outgoing end plate through-bolt connection node is that the end plate is damaged by bending.
- the initial rotational stiffness of the node obtained through experiments in previous literature is 33405KN ⁇ m / rad
- the bending moment-rotation curve of the node can be obtained by substituting it and the flexural bearing capacity into the bending moment-rotation model of (24) relationship:
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Physics & Mathematics (AREA)
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法,其中节点抗弯承载力计算如下:计算当节点发生端板或T形件翼缘受弯破坏、穿心螺栓受拉破坏、柱横向受压破坏、节点域受剪破坏、钢梁形成塑性铰破坏时对应的节点抗弯承载力,这五个抗弯承载力的最小值即为节点的实际抗弯承载力,对应的破坏模式为节点的实际破坏模式。节点弯矩-转角曲线计算如下:通过试验或模拟或理论计算得到节点的初始转动刚度,然后将其和节点抗弯承载力代入提出的节点弯矩-转角关系的指数模型中得到节点的弯矩-转角曲线。该计算方法避免了该类节点设计中以往需要进行的大量的试验或模拟,具有计算简便、省时、省力、成本低等优点。
Description
本发明涉及钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法,适用于该类节点的半刚性设计,属于钢管混凝土柱-钢梁穿心螺栓连接节点设计领域。
钢管混凝土柱-钢梁穿心螺栓连接节点是通过利用穿心螺栓和端板或T形件将钢管混凝土柱和钢梁连接在一起的一种新型节点。钢管混凝土柱是一种受压承载力高、塑性韧性好、局部稳定性好的构件;螺栓连接节点具有施工方便、延性好等特点,因此钢管混凝土柱-钢梁穿心螺栓连接节点综合了两者的优点。已有的试验研究表明钢管混凝土柱-钢梁穿心螺栓连接节点具有承载力高、初始转动刚度大、延性好、施工简便,施工质量易保证等特点,在实际工程中具有良好的应用前景,尤其适用于高烈度抗震设防地区。
钢管混凝土柱-钢梁穿心螺栓连接节点应用于实际工程需要有该类新型节点的设计方法作为支撑。在进行节点设计时,一般假定节点刚性连接或者铰接,但实际上节点绝大部分都是半刚性的;这导致按照假定刚接进行设计计算时偏于不安全,而按照假定铰接进行设计计算时偏于保守。同时,我国的《钢结构设计标准》GB50017-2017中的第5.1.4条规定:梁柱采用半刚性连接时,应计入梁柱交角变化的影响,在内力分析时,应假定连接的弯矩-转角曲线,并在节点设计时保证节点的构造与假定的弯矩-转角曲线符合。因此,对于钢管混凝土柱-钢梁穿心螺栓连接节点的半刚性设计的关键参数初始转动刚度、抗弯承载力及弯矩-转角曲线的研究很有必要。目前,国内外对钢结构中的梁柱螺栓连接半 刚性节点进行了大量的研究,建立了钢结构螺栓连接节点初始转动刚度的计算方法、抗弯承载力的计算方法以及弯矩-转角曲线模型,其中针对钢结构螺栓连接节点的弯矩-转角模型有:线性模型、多线性模型、多项式模型、指数函数模型、幂函数模型、反三角函数模型等。然而,这些计算方法和弯矩-转角曲线模型是针对钢结构连接节点的,不能直接应用于钢管混凝土柱-钢梁穿心螺栓连接节点。此外,以往应用于钢结构螺栓连接的弯矩-转角曲线模型往往需要大量的试验数据拟合,并且模型的精度还需要进一步提高。对于钢管混凝土柱-钢梁穿心螺栓连接节点,通过试验确定其弯矩-转角曲线费时、费力且需要较大的经济成本。因此,有必要提出该类节点抗弯承载力的理论计算方法和实用的弯矩-转角曲线模型,这样可以避免为得到该类节点半刚性设计关键参数而需要进行的大量试验,大大节约了时间和经济成本。
发明内容
本发明提出了钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法,该计算方法适用于四种连接类型的钢管混凝土柱-钢梁穿心螺栓连接节点:非加劲外伸端板穿心螺栓连接节点、加劲外伸端板穿心螺栓连接节点、平齐端板穿心螺栓连接节点以及T形件穿心螺栓连接节点,具体过程如下:
1)计算当发生端板或T形件翼缘受弯破坏时节点的抗弯承载力:
首先计算四种连接类型节点的屈服线参数:
对于非加劲外伸端板穿心螺栓连接节点,屈服线参数L
1按下式计算:
其中,b
p表示端板宽度;h
1表示第一排螺栓到受压翼缘下表面的距离;h
2表示第二排螺栓到受压翼缘下表面的距离;p
fi表示第二排螺栓形心到受拉翼缘 下表面的距离;p
fe表示第一排螺栓形心到受拉翼缘上表面的距离;g表示螺栓之间的列距;
表示第二排螺栓的形心到屈服线边缘的距离;
对于加劲外伸端板穿心螺栓连接节点,当d
e≤s时,屈服线参数L
2按下式计算:
其中,d
e表示第一排螺栓形心到端板外边缘的距离;
当d
e≥s时,则屈服线参数L
2按下式计算:
对于平齐端板穿心螺栓连接节点,当受拉区只有一排螺栓时,屈服线参数L
3按下式计算:
当受拉区有两排螺栓时,屈服线参数L
3按下式计算:
其中,p表示两排螺栓之间的行距;
对于T形件穿心螺栓连接节点,屈服线参数L
4按下式计算:
然后,将上面计算得到的节点的屈服线参数L代入式(7),得到当各连接类型发生端板或T形件翼缘受弯破坏时节点的抗弯承载力M
ep:
M
ep=f
yt
ep
2L (7)
式中,f
y为端板的屈服强度,t
ep为端板或T形件翼缘的厚度,L为各连接类型的屈服线参数,即L
1、L
2、L
3或L
4;
2)计算当发生穿心螺栓受拉破坏时节点的抗弯承载力:
当节点发生穿心螺栓受拉破坏时,对于采用端板穿心螺栓连接的节点,抗弯承载力按下式计算:
M
bo=n
t·min(0.9f
ubA
s,0.48πd
mt
epf
up)·(h
b-t
bf) (8)
对于采用T形件穿心螺栓连接节点,抗弯承载力按下式计算:
M
bo=n
t·min(0.9f
ubA
s,0.48πd
mt
epf
up)·(h
b+t
bf) (9)
式中,n
t为受拉区螺栓个数;f
ub为螺栓的抗拉极限强度,A
S为螺栓的有效受拉面积,d
m为螺栓的名义直径,h
b为钢梁高度;t
bf为梁翼缘厚度;f
up为端板或T形件翼缘的极限抗拉强度;
3)计算当发生节点域受剪破坏时节点的抗弯承载力:
当节点发生节点域受剪破坏时,对于采用端板穿心螺栓连接的节点,抗弯承载力按下式计算:
对于采用T形件穿心螺栓连接节点,抗弯承载力按下式计算:
式中,f
y,cw为钢管混凝土柱中钢管腹板的屈服强度;A
vc为钢管混凝土柱中钢管腹板抗剪截面面积;ν为钢管混凝土柱中钢管承受的轴力对承载力的影响系数;A
c为钢管混凝土柱中核心混凝土的截面面积;f
cd为核心混凝土圆柱体抗压强度设计值;α为节点域斜边的倾角;
其中,钢管混凝土柱中的轴力对承载力的影响系数ν根据下式计算:
式中,N为钢管混凝土柱的设计轴力,N
u为钢管混凝土柱的极限抗压承载 力;
节点域斜边的倾角α根据下式计算:
α=arctan[(w
c-2t
cf)/z] (13)
式中,w
c为钢管混凝土柱的宽度;t
cf为钢管混凝土柱钢管翼缘的厚度;z为节点抗弯力臂长度,对于端板穿心螺栓连接其值为(h
b-t
bf),对于T形件穿心螺栓连接其值为(h
b+t
bf);
4)计算当发生柱横向受压破坏时节点的抗弯承载力:
当节点发生柱横向受压破坏时,对于采用端板穿心螺栓连接的节点,抗弯承载力按下式计算:
M
c=[2ωρk
cwb
eff,cwt
cwf
y,cw+0.85k
cb
eff,c(d
c-2t
cw)f
cd]·(h
b-t
bf) (14)
对于采用T形件穿心螺栓连接的节点,抗弯承载力按下式计算:
M
c=[2ωρk
cwb
eff,cwt
cwf
y,cw+0.85k
cb
eff,c(d
c-2t
cw)f
cd]·(h
b+t
bf) (15)
式中,ω为节点域剪力对钢管混凝土柱中钢管腹板横向受压承载力的影响系数;ρ为考虑钢管混凝土柱中钢管腹板屈曲时的影响系数;k
cw和k
c分别为钢管混凝土柱中的轴力对钢管混凝土柱中钢管腹板和核心混凝土横向受压承载力的影响系数;b
eff,cw和b
eff,c分别为钢管混凝土柱中钢管和核心混凝土横向受压的有效宽度;d
c为钢管混凝土柱的截面高度;t
cw为钢管混凝土柱中钢管的腹板厚度;
其中,节点域剪力对钢管混凝土柱中钢管腹板横向受压承载力的影响系数ω根据下式计算:
考虑钢管混凝土柱中钢管腹板屈曲时的影响系数ρ根据下式计算:
式中,λ为钢管混凝土柱中钢管腹板的相对长细比;当钢管采用轧制截面时,t为轧制钢管的圆角半径,当钢管采用焊接时,t为钢管焊缝的焊脚尺寸;E为钢管的弹性模量;
钢管混凝土柱中的轴力对钢管混凝土柱中钢管腹板和核心混凝土横向受压承载力的影响系数k
cw、k
c根据下式计算:
式中,σ
col为钢管混凝土柱中钢管中的轴向应力,σ
c为核心混凝土的轴向应力;
钢管混凝土柱中钢管和核心混凝土横向受压的有效宽度b
eff,cw、b
eff,c根据下式计算:
式中,h
e为钢梁翼缘与端板的焊缝有效高度;s
p为横向压力沿端板扩散的宽度,最小为端板厚度,最大不超过2倍的端板厚度;
5)计算当发生钢梁形成塑性铰时节点的抗弯承载力:
当节点发生钢梁形成塑性铰破坏时,节点的抗弯承载力按下式计算:
M
b=f
ybW
p (22)
式中,f
yb为钢梁的屈服强度,W
p为钢梁的塑性截面模量;
6)计算节点的实际抗弯承载力及破坏模式:
以上计算得到的五种破坏模式的节点抗弯承载力中的最小值即为节点的实际抗弯承载力,对应的破坏模式即为节点的实际破坏模式,即:
M
u=min(M
ep,M
bo,M
pz,M
c,M
b) (23)
钢管混凝土柱-钢梁穿心螺栓连接节点弯矩-转角曲线的一种计算方法,采用上述的计算方法获得的M
u构建弯矩M与转角θ曲线的数学模型:
式中,S
j为节点初始转动刚度,通过试验或数值模拟或理论计算得到;该计算方法适用于四种连接类型的钢管混凝土柱-钢梁穿心螺栓连接节点:非加劲外伸端板穿心螺栓连接节点、加劲外伸端板穿心螺栓连接节点、平齐端板穿心螺栓连接节点以及T形件穿心螺栓连接节点。
本发明的有益效果在于,基于前期提出的钢管混凝土柱-钢梁穿心螺栓连接节点初始转动刚度计算方法,只要给出节点的细部构造和材料属性,该发明不需要试验数据就可以简单快速地得到钢管混凝土穿心螺栓接节点的抗弯承载力和弯矩-转角曲线,从而避免实际工程中为确定该类节点的半刚性设计参数而需要进行的大量的节点试验,大大地节省了人力、物力、财力、时间等成本;本发明为采用钢管混凝土柱-钢梁穿心螺栓连接节点的框架进行半刚性设计提供重要的参数,为该类节点应用于实际工提供了理论基础。
图1为本发明适用的四种节点类型中的两种节点的三维构造示意图。
图2为本发明适用的非加劲外伸端板穿心螺栓连接节点的平面示意图。
图3为本发明适用的加劲外伸端板穿心螺栓连接节点的平面示意图。
图4为本发明适用的受拉区只有一排螺栓的平齐端板穿心螺栓连接节点的平面示意图。
图5为本发明适用的受拉区有两排螺栓的平齐端板穿心螺栓连接节点的平面示意图。
图6为本发明适用的T形件穿心螺栓连接节点的平面示意图。
图7为某一加劲外伸端板穿心螺栓连接节点的构造图。
图8为某一加劲外伸端板穿心螺栓连接节点的弯矩-转角曲线图。
为了让本发明的上述特征更易懂,下文结合附图及具体实施例对本发明的计算方法作详细说明。
图1给出了本发明适应的四种连接节点类型中的两种的三维构造示意图。图2~6为四种连接节点类型的平面示意图,图中标注了各类节点类型屈服线参数计算公式中的符号所对应的物理意义。图7为本实施例的连接节点构造图,该节点为加劲外伸端板穿心螺栓连接节点,其相关参数来源于前人文献,具体如表1所示:
表1.节点相关参数
本实施例提供的钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法,按照以下步骤进行:
1)计算当节点发生端板受弯破坏时节点的抗弯承载力:
本实施例的节点类型为加劲外伸端板穿心螺栓连接节点,应根据公式(2)计算屈服线参数为:
根据式(7)计算得到当节点发生端板或T形件翼缘受弯破坏时节点的抗弯承载力M
ep为:
M
ep=f
yt
ep
2L=118.82 KN·m
2)根据式(8)计算当节点发生穿心螺栓受拉破坏时节点的抗弯承载力:
M
bo=n
t·min(0.9f
ubA
s,0.48πd
mt
epf
up)·(h
b-t
bf)=146.9 KN·m
3)计算当节点发生节点域受剪破坏时节点的抗弯承载力:
根据式(12)计算考虑钢管柱中的轴力对承载力的影响系数ν为:
根据式(13)计算节点域斜边的倾角α为:
α=arctan[(w
c-2t
cf)/z]=33.02°
根据式(10)计算当节点发生穿心螺栓受拉破坏时节点的抗弯承载力M
pz为:
4)计算当节点发生柱横向受压破坏时节点的抗弯承载力:
根据式(16)计算节点域剪力对钢管柱腹板横向受压承载力的影响系数ω为:
根据式(17)、(18)计算考虑钢管柱腹板屈曲时的影响系数ρ为:
ρ=(λ-0.2)/λ
2=0.89
根据式(19)、(20)计算钢管混凝土柱中的轴力对钢管柱腹板和核心混凝土横向受压承载力的影响系数k
cw和k
c为:
k
cw=1
k
c=2
根据式(21)计算钢管柱和核心混凝土横向受压的有效宽度b
eff,cw和b
eff,c为:
根据式(14)计算当节点发生柱横向受压破坏时节点的抗弯承载力M
c为:
M
c=[2ωρk
cwb
eff,cwt
cwf
y,cw+0.85k
cb
eff,c(d
c-2t
cw)f
cd]·(h
b-t
bf)=336.11 KN·m
5)根据式(22)计算当节点发生钢梁形成塑性铰时节点的抗弯承载力:
M
b=f
ybW
p=194.97 KN·m
6)根据式(23)计算节点的实际抗弯承载力及破坏模式:
M
u=min{M
ep;M
bo;M
pz;M
c;M
b}=118.82 KN·m
118.82KN·m即步骤1)的计算结果对应的节点破坏模式即该节点的实际破坏模式,即该加劲外伸端板穿心螺栓连接节点的破坏模式为端板受弯破坏。
7)计算节点的弯矩-转角曲线:
通过前人文献中试验得到的该节点的初始转动刚度为33405KN·m/rad,将其和抗弯承载力代入式(24)的弯矩-转角模型中即可得到节点的弯矩-转角曲线关系:
M=118.82·(1-e
-281.14θ)
图8为本实施例通过本发明的计算方法所计算得到的节点弯矩-转曲线与前人文献中的试验结果对比图,可以看出本发明的计算方法能很好地预测本实施例的抗弯承载力和弯矩-转角曲线。
Claims (2)
- 钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力的一种计算方法,其特征在于,所述的计算方法适用于四种连接类型的钢管混凝土柱-钢梁穿心螺栓连接节点:非加劲外伸端板穿心螺栓连接节点、加劲外伸端板穿心螺栓连接节点、平齐端板穿心螺栓连接节点以及T形件穿心螺栓连接节点;计算过程包括如下步骤:1)计算当发生端板或T形件翼缘受弯破坏时节点的抗弯承载力:首先计算四种连接类型节点的屈服线参数:对于非加劲外伸端板穿心螺栓连接节点,屈服线参数L 1按下式计算:其中,b p表示端板宽度;h 1表示第一排螺栓到受压翼缘下表面的距离;h 2表示第二排螺栓到受压翼缘下表面的距离;p fi表示第二排螺栓形心到受拉翼缘下表面的距离;p fe表示第一排螺栓形心到受拉翼缘上表面的距离;g表示螺栓之间的列距; 表示第二排螺栓的形心到屈服线边缘的距离;对于加劲外伸端板穿心螺栓连接节点,当d e≤s时,屈服线参数L 2按下式计算:其中,d e表示第一排螺栓形心到端板外边缘的距离;当d e≥s时,则屈服线参数L 2按下式计算:对于平齐端板穿心螺栓连接节点,当受拉区只有一排螺栓时,屈服线参数L 3按下式计算:当受拉区有两排螺栓时,屈服线参数L 3按下式计算:其中,p表示两排螺栓之间的行距;对于T形件穿心螺栓连接节点,屈服线参数L 4按下式计算:然后,将上面计算得到的节点的屈服线参数L代入式(7),得到当各连接类型发生端板或T形件翼缘受弯破坏时节点的抗弯承载力M ep:M ep=f yt ep 2L (7)式中,f y为端板的屈服强度,t ep为端板或T形件翼缘的厚度,L为各连接类型的屈服线参数,即L 1、L 2、L 3或L 4;2)计算当发生穿心螺栓受拉破坏时节点的抗弯承载力:当节点发生穿心螺栓受拉破坏时,对于采用端板穿心螺栓连接的节点,抗弯承载力按下式计算:M bo=n t·min(0.9f ubA s,0.48πd mt epf up)·(h b-t bf) (8)对于采用T形件穿心螺栓连接节点,抗弯承载力按下式计算:M bo=n t·min(0.9f ubA s,0.48πd mt epf up)·(h b+t bf) (9)式中,n t为受拉区螺栓个数;f ub为螺栓的抗拉极限强度,A S为螺栓的有效受拉面积,d m为螺栓的名义直径,h b为钢梁高度;t bf为梁翼缘厚度;f up为端板或T形件翼缘的极限抗拉强度;3)计算当发生节点域受剪破坏时节点的抗弯承载力:当节点发生节点域受剪破坏时,对于采用端板穿心螺栓连接的节点,抗弯 承载力按下式计算:对于采用T形件穿心螺栓连接节点,抗弯承载力按下式计算:式中,f y,cw为钢管混凝土柱中钢管腹板的屈服强度;A vc为钢管混凝土柱中钢管腹板抗剪截面面积;ν为钢管混凝土柱中钢管承受的轴力对承载力的影响系数;A c为钢管混凝土柱中核心混凝土的截面面积;f cd为核心混凝土圆柱体抗压强度设计值;α为节点域斜边的倾角;其中,钢管混凝土柱中的轴力对承载力的影响系数ν根据下式计算:式中,N为钢管混凝土柱的设计轴力,N u为钢管混凝土柱的极限抗压承载力;节点域斜边的倾角α根据下式计算:α=arctan[(w c-2t cf)/z] (13)式中,w c为钢管混凝土柱的宽度;t cf为钢管混凝土柱钢管翼缘的厚度;z为节点抗弯力臂长度,对于端板穿心螺栓连接其值为(h b-t bf),对于T形件穿心螺栓连接其值为(h b+t bf);4)计算当发生柱横向受压破坏时节点的抗弯承载力:当节点发生柱横向受压破坏时,对于采用端板穿心螺栓连接的节点,抗弯承载力按下式计算:M c=[2ωρk cwb eff,cwt cwf y,cw+0.85k cb eff,c(d c-2t cw)f cd]·(h b-t bf) (14)对于采用T形件穿心螺栓连接的节点,抗弯承载力按下式计算:M c=[2ωρk cwb eff,cwt cwf y,cw+0.85k cb eff,c(d c-2t cw)f cd]·(h b+t bf) (15)式中,ω为节点域剪力对钢管混凝土柱中钢管腹板横向受压承载力的影响系数;ρ为考虑钢管混凝土柱中钢管腹板屈曲时的影响系数;k cw和k c分别为钢管混凝土柱中的轴力对钢管混凝土柱中钢管腹板和核心混凝土横向受压承载力的影响系数;b eff,cw和b eff,c分别为钢管混凝土柱中钢管和核心混凝土横向受压的有效宽度;d c为钢管混凝土柱的截面高度;t cw为钢管混凝土柱中钢管的腹板厚度;其中,节点域剪力对钢管混凝土柱中钢管腹板横向受压承载力的影响系数ω根据下式计算:考虑钢管混凝土柱中钢管腹板屈曲时的影响系数ρ根据下式计算:式中,λ为钢管混凝土柱中钢管腹板的相对长细比;当钢管采用轧制截面时,t为轧制钢管的圆角半径,当钢管采用焊接时,t为钢管焊缝的焊脚尺寸;E为钢管的弹性模量;钢管混凝土柱中的轴力对钢管混凝土柱中钢管腹板和核心混凝土横向受压承载力的影响系数k cw、k c根据下式计算:式中,σ col为钢管混凝土柱中钢管中的轴向应力,σ c为核心混凝土的轴向应力;钢管混凝土柱中钢管和核心混凝土横向受压的有效宽度b eff,cw、b eff,c根据下式计算:式中,h e为钢梁翼缘与端板的焊缝有效高度;s p为横向压力沿端板扩散的宽度,最小为端板厚度,最大不超过2倍的端板厚度;5)计算当发生钢梁形成塑性铰时节点的抗弯承载力:当节点发生钢梁形成塑性铰破坏时,节点的抗弯承载力按下式计算:M b=f ybW p (22)式中,f yb为钢梁的屈服强度,W p为钢梁的塑性截面模量;6)计算节点的实际抗弯承载力及破坏模式:以上计算得到的五种破坏模式的节点抗弯承载力中的最小值即为节点的实际抗弯承载力,对应的破坏模式即为节点的实际破坏模式,即:M u=min(M ep,M bo,M pz,M c,M b) (23)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/969,883 US11821806B2 (en) | 2018-11-23 | 2018-12-14 | Calculation method of ultimate moment resistance and moment-rotation curve for steel beam to concrete-filled steel tube column connections with bidirectional bolts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811402976.6 | 2018-11-23 | ||
CN201811402976.6A CN109610650B (zh) | 2018-11-23 | 2018-11-23 | 一种钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的计算方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020103234A1 true WO2020103234A1 (zh) | 2020-05-28 |
Family
ID=66004435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/121020 WO2020103234A1 (zh) | 2018-11-23 | 2018-12-14 | 钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11821806B2 (zh) |
CN (1) | CN109610650B (zh) |
WO (1) | WO2020103234A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111985027A (zh) * | 2020-08-13 | 2020-11-24 | 宁波大学 | 组合梁抗弯承载力的计算方法 |
CN112784359A (zh) * | 2021-01-18 | 2021-05-11 | 浙江工业大学 | 薄壁梁约束扭转极限承载力迭代计算方法 |
CN113139225A (zh) * | 2021-04-20 | 2021-07-20 | 杭州铁木辛柯建筑结构设计事务所有限公司 | 一种防火装饰一体化钢梁抗弯承载力的提高方法 |
CN113378354A (zh) * | 2021-05-17 | 2021-09-10 | 浙江工业大学 | 一种考虑剪力作用的薄壁梁弯曲极限强度计算方法 |
CN113654885A (zh) * | 2021-07-28 | 2021-11-16 | 广州大学 | 钢管超高性能混凝土短柱轴压承载力预测方法及预测装置 |
CN113836658A (zh) * | 2021-09-17 | 2021-12-24 | 中信建筑设计研究总院有限公司 | 一种y型铸钢节点抗压设计承载力的计算方法 |
CN115270327A (zh) * | 2022-07-19 | 2022-11-01 | 西南交通大学 | 一种重组竹-钢夹板螺栓连接节点承载力计算方法 |
JP7565222B2 (ja) | 2021-01-20 | 2024-10-10 | ミサワホーム株式会社 | 梁接合部鋼管壁板厚選定システム及びプログラム |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110263484B (zh) * | 2019-07-02 | 2022-05-06 | 杭州铁木辛柯建筑结构设计事务所有限公司 | L形钢管混凝土柱在复合受力下的截面极限承载判断方法 |
CN110849323A (zh) * | 2019-12-12 | 2020-02-28 | 中国电建集团成都勘测设计研究院有限公司 | 一种伸缩沉降管、沉降变形监测系统及方法 |
CN111206681B (zh) * | 2020-01-08 | 2022-04-29 | 亚鹰建筑科技集团有限公司 | 一种装配式建筑用钢结构抗震节点及其施工方法 |
CN111400795B (zh) * | 2020-03-10 | 2024-03-15 | 浙江越宫钢结构有限公司 | 对穿螺栓多腔钢管混凝土抗震墙稳定性预测方法 |
CN111456237B (zh) * | 2020-05-12 | 2024-10-18 | 浙江工业大学 | 装配式矩形钢管节点及其设计计算方法 |
CN112231862B (zh) * | 2020-10-20 | 2024-02-20 | 杭州铁木辛柯建筑结构设计事务所有限公司 | 复合受力状态下的矩形钢管混凝土柱截面极限承载判断方法 |
CN112214822B (zh) * | 2020-10-20 | 2024-02-20 | 杭州铁木辛柯建筑结构设计事务所有限公司 | 一种宽钢管混凝土柱单向压弯稳定极限承载提高方法 |
CN112417552B (zh) * | 2020-11-06 | 2024-03-08 | 中国建筑第七工程局有限公司 | 低多层装配式混凝土梁柱半刚性连接节点的设计方法 |
CN113076585B (zh) * | 2021-04-13 | 2022-07-08 | 中南林业科技大学 | 一种木结构钢夹板销栓连接承载力的计算方法 |
CN113516833B (zh) * | 2021-04-16 | 2022-11-11 | 上海隧道工程有限公司 | 地下连续墙变形风险预警系统及预警方法 |
CN113094999B (zh) * | 2021-04-29 | 2022-07-15 | 中山大学 | 一种基于神经网络的钢管混凝土纯弯构件承载力预测方法 |
CN113408024B (zh) * | 2021-05-11 | 2023-10-27 | 北京城建设计发展集团股份有限公司 | 装配式地下结构注浆式榫槽接头抗弯承载能力计算方法 |
US20220412072A1 (en) * | 2021-05-12 | 2022-12-29 | Arup IP Management Ltd. | Connection system for volumetric modular construction |
CN113505469B (zh) * | 2021-06-10 | 2024-02-06 | 中国建筑第八工程局有限公司 | 钢筋混凝土柱抗剪承载力的计算方法 |
CN113673131B (zh) * | 2021-08-27 | 2024-03-15 | 河南城建学院 | 输电钢管塔管板节点加劲板分配荷载计算方法 |
CN113849937B (zh) * | 2021-10-14 | 2024-06-21 | 哈电发电设备国家工程研究中心有限公司 | 一种由附加力矩引起的螺栓应力计算方法、设备及存储介质 |
CN114439246A (zh) * | 2022-03-04 | 2022-05-06 | 深圳市雅鑫智能房屋有限公司 | 一种钢结构连接点安装施工工艺 |
CN116049940A (zh) * | 2022-12-26 | 2023-05-02 | 安徽省交通规划设计研究总院股份有限公司 | 一种空心方墩承载力包络曲线快速绘制方法 |
CN116561994B (zh) * | 2023-04-26 | 2024-05-10 | 青岛理工大学 | 一种模块化、标准化、定型化基坑爬梯立柱承载力的确定方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102002982A (zh) * | 2010-11-24 | 2011-04-06 | 沈阳建筑大学 | 内置cfrp圆管的方钢管混凝土梁柱节点 |
JP2011162978A (ja) * | 2010-02-08 | 2011-08-25 | Takenaka Komuten Co Ltd | プレキャストコンクリート部材の接合構造、構造物 |
CN203583672U (zh) * | 2013-11-13 | 2014-05-07 | 大连海事大学 | 装配式钢管混凝土柱-钢梁节点连接结构 |
CN103953123A (zh) * | 2014-05-14 | 2014-07-30 | 天津城建大学 | 梁端部分约束的h型钢框架节点及其施工方法 |
WO2015045104A1 (ja) * | 2013-09-27 | 2015-04-02 | 日立機材株式会社 | 設計支援プログラム及び構造計算プログラム |
CN206034647U (zh) * | 2016-09-21 | 2017-03-22 | 武汉科技大学 | 一种钢管混凝土柱与钢梁t形件连接节点的结构 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3546374B2 (ja) * | 2000-03-06 | 2004-07-28 | 晧 杉山 | 構造材同士の接合工法及び金物 |
US6773650B1 (en) * | 2001-03-21 | 2004-08-10 | Power Poles, Inc. | Prestressed concrete casting apparatus and method |
US20030093961A1 (en) * | 2001-11-21 | 2003-05-22 | Grossman Stanley J. | Composite structural member with longitudinal structural haunch |
JP4000452B2 (ja) * | 2002-03-10 | 2007-10-31 | 賢次郎 緒方 | 引張雇いほぞ |
CN100547183C (zh) * | 2004-10-28 | 2009-10-07 | 湖南大学 | 用于梁柱连接的圆钢管混凝土柱节点及其制造方法 |
CN102650579A (zh) * | 2011-12-22 | 2012-08-29 | 上海同吉建筑工程设计有限公司 | 预应力型钢混凝土结构的框架梁抗弯承载力设计方法 |
CN104727570B (zh) * | 2015-04-08 | 2017-08-11 | 山东工艺美术学院 | 一种多层、高层钢结构抗侧力体系及承载力计算方法 |
CN105863080B (zh) * | 2016-05-20 | 2018-09-07 | 西安建筑科技大学 | 一种通过下翼缘连接的双侧板节点及装配方法 |
CN108518003A (zh) * | 2018-04-19 | 2018-09-11 | 沈阳建筑大学 | 可拆卸预制装配式钢-混凝土组合梁板 |
-
2018
- 2018-11-23 CN CN201811402976.6A patent/CN109610650B/zh active Active
- 2018-12-14 WO PCT/CN2018/121020 patent/WO2020103234A1/zh active Application Filing
- 2018-12-14 US US16/969,883 patent/US11821806B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011162978A (ja) * | 2010-02-08 | 2011-08-25 | Takenaka Komuten Co Ltd | プレキャストコンクリート部材の接合構造、構造物 |
CN102002982A (zh) * | 2010-11-24 | 2011-04-06 | 沈阳建筑大学 | 内置cfrp圆管的方钢管混凝土梁柱节点 |
WO2015045104A1 (ja) * | 2013-09-27 | 2015-04-02 | 日立機材株式会社 | 設計支援プログラム及び構造計算プログラム |
CN203583672U (zh) * | 2013-11-13 | 2014-05-07 | 大连海事大学 | 装配式钢管混凝土柱-钢梁节点连接结构 |
CN103953123A (zh) * | 2014-05-14 | 2014-07-30 | 天津城建大学 | 梁端部分约束的h型钢框架节点及其施工方法 |
CN206034647U (zh) * | 2016-09-21 | 2017-03-22 | 武汉科技大学 | 一种钢管混凝土柱与钢梁t形件连接节点的结构 |
Non-Patent Citations (2)
Title |
---|
HUANG, PIN ET AL.: "Calculation of Moment-rotation Curve of Steel-reinforced Concrete Square Column and Steel Beam Joint with Bolted End-plate", JOURNAL OF CENTRAL SOUTH UNIVERSITY (SCIENCE AND TECHNOLOGY), vol. 44, no. 10, January 2013 (2013-01-01), pages 4273 - 4280, DOI: 8640403 * |
YANG, SONGSEN ET AL.: "Research on the Moment Capacity of Fully Assembled Column-beam Joint Composed of Outer Sleeve and Strengthed Extended End-plate", INDUSTRIAL CONSTRUCTION, vol. 47, no. 12, 20 December 2017 (2017-12-20), pages 157 - 166, XP055709758, DOI: 8640402 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111985027A (zh) * | 2020-08-13 | 2020-11-24 | 宁波大学 | 组合梁抗弯承载力的计算方法 |
CN111985027B (zh) * | 2020-08-13 | 2023-09-01 | 宁波大学 | 组合梁抗弯承载力的计算方法 |
CN112784359A (zh) * | 2021-01-18 | 2021-05-11 | 浙江工业大学 | 薄壁梁约束扭转极限承载力迭代计算方法 |
CN112784359B (zh) * | 2021-01-18 | 2024-04-16 | 浙江工业大学 | 薄壁梁约束扭转极限承载力迭代计算方法 |
JP7565222B2 (ja) | 2021-01-20 | 2024-10-10 | ミサワホーム株式会社 | 梁接合部鋼管壁板厚選定システム及びプログラム |
CN113139225B (zh) * | 2021-04-20 | 2023-03-17 | 杭州铁木辛柯建筑结构设计事务所有限公司 | 一种防火装饰一体化钢梁抗弯承载力的提高方法 |
CN113139225A (zh) * | 2021-04-20 | 2021-07-20 | 杭州铁木辛柯建筑结构设计事务所有限公司 | 一种防火装饰一体化钢梁抗弯承载力的提高方法 |
CN113378354A (zh) * | 2021-05-17 | 2021-09-10 | 浙江工业大学 | 一种考虑剪力作用的薄壁梁弯曲极限强度计算方法 |
CN113378354B (zh) * | 2021-05-17 | 2024-04-12 | 浙江工业大学 | 一种考虑剪力作用的薄壁梁弯曲极限强度计算方法 |
CN113654885A (zh) * | 2021-07-28 | 2021-11-16 | 广州大学 | 钢管超高性能混凝土短柱轴压承载力预测方法及预测装置 |
CN113654885B (zh) * | 2021-07-28 | 2023-07-04 | 广州大学 | 钢管超高性能混凝土短柱轴压承载力预测方法及预测装置 |
CN113836658A (zh) * | 2021-09-17 | 2021-12-24 | 中信建筑设计研究总院有限公司 | 一种y型铸钢节点抗压设计承载力的计算方法 |
CN113836658B (zh) * | 2021-09-17 | 2024-02-27 | 中信建筑设计研究总院有限公司 | 一种y型铸钢节点抗压设计承载力的计算方法 |
CN115270327A (zh) * | 2022-07-19 | 2022-11-01 | 西南交通大学 | 一种重组竹-钢夹板螺栓连接节点承载力计算方法 |
CN115270327B (zh) * | 2022-07-19 | 2023-08-01 | 西南交通大学 | 一种重组竹-钢夹板螺栓连接节点承载力计算方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200408626A1 (en) | 2020-12-31 |
CN109610650B (zh) | 2020-07-14 |
CN109610650A (zh) | 2019-04-12 |
US11821806B2 (en) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020103234A1 (zh) | 钢管混凝土柱-钢梁穿心螺栓连接节点抗弯承载力和弯矩-转角曲线的一种计算方法 | |
CN105956256B (zh) | 既有混凝土桥梁复杂区域的承载力评估与加固计算方法 | |
Takeuchi et al. | Study on a concrete filled structure for nuclear power plants | |
Wang et al. | Seismic response investigation on CFDST column to steel beam blind-bolted connections | |
Chen et al. | Experimental study of concrete-filled multiplanar circular hollow section tubular trusses | |
Sun et al. | Experimental and theoretical modeling for predicting bending moment capacity of T-head square-neck one-side bolted endplate to tube column connection | |
CN112031180B (zh) | 一种梁柱节点连接装置及其应用 | |
Yuan et al. | Experimental and theoretical studies on the seismic performance of CFST battened built-up column piers | |
Han et al. | Curved concrete filled steel tubular (CCFST) built-up members under axial compression: experiments | |
CN111456237B (zh) | 装配式矩形钢管节点及其设计计算方法 | |
Lorkowski et al. | Experimental and numerical research of the torsion problem of built-up steel columns laced in a single plane | |
Ma et al. | Flexural behavior of concrete-filled rectangular steel tubular (CFRST) trusses | |
CN105649215A (zh) | 外套管式钢管混凝土柱与钢梁端板连接节点 | |
Zhou et al. | Hysteretic behavior and design considerations of staggered truss framing systems | |
Tian et al. | Experimental and numerical analysis of a novel tubular joint for transmission tower | |
Luan et al. | Investigation of the structural behavior of an innovative steel open-web floor system | |
CN204715539U (zh) | 一种圆钢管约束型钢混凝土柱与钢筋混凝土梁节点结构 | |
Eom et al. | Behavior of composite CFST beam-steel column joints | |
Ahmadi et al. | Cyclic testing of through-plate moment connection for beam to concrete filled and unfilled circular column | |
Chen et al. | Experimental and numerical study on compressive behavior of convex steel box section for arch rib | |
CN108875131A (zh) | 不对称钢梁方钢管柱节点剪力评价方法 | |
Shen et al. | Theoretical and experimental study on steel open-web sandwich floor with flanged cruciform section shear key | |
CN111502034B (zh) | 一种钢-混凝土组合柱与梁的节点连接装置及其应用 | |
Wang et al. | Prefabricated tubular light roof truss assembled with screwed novel modular connectors: Full-scale test and FE modelling | |
CN204715537U (zh) | 一种圆钢管约束型钢混凝土柱与钢筋混凝土梁节点结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940797 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940797 Country of ref document: EP Kind code of ref document: A1 |