Implementation method suitable for lining energy dissipation and shock absorption structure of tunnel in earthquake high-intensity area
Technical Field
The invention belongs to the technical field of tunnel construction, and particularly relates to an implementation method of a tunnel lining energy dissipation and shock absorption structure suitable for a high-intensity earthquake area.
Background
Because of the wide territory and the complex terrain in China, the tunnel becomes a necessary mode for traversing complex territories such as mountains and the like in the construction process of traffic facilities, and according to incomplete statistics, the mileage of the tunnel which is constructed and built in China currently exceeds 10000 km. Due to the influence of natural disasters such as design, construction, terrain, earthquake and the like, the phenomena of lining structure damage, tunnel water leakage, ballast bed damage and the like easily occur in the tunnel, and the normal use of the tunnel structure is further influenced. Among them, the destruction of the tunnel lining structure is one of the main causes of tunnel damage. Under the action of earthquake, the lining structure of the tunnel and the surrounding rock can interact, and a buffering and damping structure is lacked, so that the structural damage of the tunnel lining occurs.
Disclosure of Invention
The invention provides an implementation method of an energy dissipation and shock absorption structure suitable for a tunnel lining in an earthquake high-intensity area, aiming at improving the shock absorption performance of a tunnel and solving the problem that the tunnel lining structure is easy to damage in the high-intensity area due to natural disasters such as earthquakes.
Therefore, the invention adopts the following technical scheme:
an implementation method suitable for a tunnel lining energy dissipation and shock absorption structure in a seismic high-intensity area specifically comprises the following steps:
1) excavating a tunnel;
2) and (3) anchor rod installation: selecting an anchor rod installation area in an excavated tunnel, drilling holes in the surrounding rock in the same cross section of the tunnel, wherein the drilling direction is located in the cross section, the drilling positions are distributed on the top and the side of the surrounding rock in a radial manner; continuing drilling construction in the anchor rod installation area at intervals according to the method, so that the drilling hole covers the whole anchor rod installation area;
installing and fixing an anchor rod in the drilled hole, wherein the head end of the anchor rod is exposed, a damping piece is installed at the front end of the anchor rod, and the front end of the anchor rod is elastically and movably connected with the damping piece;
3) primary lining layer construction: primary lining spraying protection is carried out on the lower surface of the surrounding rock, and the anchor rod and the damping piece are wrapped in the primary lining layer, so that the anchor rod and the damping piece are prevented from leaking;
4) construction of a second lining: laying two lining reinforcing steel bar meshes in the tunnel, forming a gap between the two lining reinforcing steel bar meshes and the lower surface of the primary lining layer, then injecting secondary lining concrete to form a secondary lining layer, and leaving a gap between the formed secondary lining layer and the primary lining layer;
5) installation of the damping buffer piece: the damping buffer piece is arranged between the primary lining layer and the secondary lining layer and is positioned in the section where each anchor rod is positioned; the damping buffer piece comprises a damper and a steel spring, the steel spring is sleeved on a piston rod of the damper, and the piston rod drives the steel spring to act when being stretched; the head end of the piston rod of the damper is fixedly connected to the primary lining, and the base of the damper is fixedly connected to the upper surfaces of the two linings;
6) EPS concrete construction: installing a template in a gap between the primary lining layer and the secondary lining layer, pouring EPS concrete in the template, solidifying the lower surface of the EPS concrete and the upper surfaces of the secondary lining layers into a whole, forming a gap layer between the upper surface of the EPS concrete and the lower surface of the primary lining layer, and enabling a piston rod of the damper to leak into the gap layer;
further, a rubber pad is fixedly connected to the damper base, a steel base plate is fixedly connected to the bottom of the rubber pad and fixed to the upper surfaces of the two lining layers through screws, and the rubber pad and the steel base plate are fixed in EPS concrete in a pouring mode.
Furthermore, the steel backing plate is an arc-shaped steel plate, the radian of the steel backing plate is opposite to the radian of the upper surfaces of the two lining layers, the length of the steel backing plate is not less than 40cm, and the width of the steel backing plate is not less than 20 cm.
Furthermore, the damping piece comprises a metal sleeve, an opening is formed in the top of the metal sleeve, and the head end of the anchor rod penetrates into the metal sleeve through the opening; a movable rod vertical to the anchor rod penetrates through the metal sleeve, and the middle part of the movable rod is fixedly connected with the anchor rod; two springs are sleeved on the movable rod, one end of each spring abuts against the end part of the metal sleeve, and the other end of each spring abuts against the anchor rod; when the anchor rod swings left and right, the movable rod moves left and right along with the anchor rod; the metal sleeve is sleeved with a rubber sleeve for sealing.
Further, a screw hole is formed in the tail end of the anchor rod, an external thread is arranged in the middle of the movable rod, and the middle of the movable rod is in threaded connection with the anchor rod.
Further, the templates in the step 6) are arc-shaped, gaps are reserved on the templates, the gaps on the adjacent templates are spliced to form circular gaps, and the circular gaps are used for placing dampers.
Further, the single construction length of the two lining layers and the EPS concrete is 2-4 m.
The damping structure is characterized in that a damping piece is arranged at the tail end of the anchor rod on the basis of a primary lining layer and a secondary lining layer, an EPS concrete filling layer is poured between the primary lining layer and the secondary lining layer, and the primary lining layer and the secondary lining layer are connected with the damping piece; under the earthquake effect, the shock attenuation piece can slow down the vibrations of stock, and shock attenuation bolster and EPS concrete filling layer can slow down the impact of first lining to two linings, effectively reduces and dispersed load, prevents that the load from concentrating to realize the absorbing effect of energy dissipation.
Drawings
FIG. 1 is a schematic cross-sectional view of a tunnel of the present invention;
FIG. 2 is an enlarged view of a portion A of FIG. 1;
FIG. 3 is a partial enlarged view of portion B of FIG. 1;
FIG. 4 is a schematic view of the construction of the template of the present invention;
FIG. 5 is a schematic view of the use of the template of the present invention;
in the figure: 1-primary lining layer, 2-secondary lining layer, 3-EPS concrete, 4-gap layer, 5-anchor rod, 6-shock-absorbing piece, 61-metal sleeve, 62-movable rod, 63-spring, 64-rubber sleeve, 7-shock-absorbing buffer piece, 71-damper, 72-steel spring, 73-rubber pad, 74-steel backing plate, 75-support backing plate, 8-template and 81-circular notch.
Detailed Description
The invention will be further described with reference to the following drawings and specific embodiments:
as shown in fig. 1, an implementation method of an energy dissipation and shock absorption structure suitable for a tunnel lining in a seismic high-intensity area specifically includes the following steps:
1) excavating a tunnel: according to the line planning and the actual situation of the site, tunnel excavation operation is carried out, excavation operation can be carried out in various modes such as a heading machine or a drilling and blasting method, supporting is carried out while tunnel excavation is carried out, and according to geological reports, the damping supporting structure is adopted in high-intensity areas.
2) And (3) anchor rod installation: and (3) defining a high-intensity region as an anchor rod 5 installation region, drilling holes on the surrounding rock in the same cross section of the tunnel by using drilling equipment, ensuring that the drilling direction is positioned in the cross section, and the drilling positions are distributed on the top and the side of the surrounding rock in a radial manner. The drilling construction is continued in the installation area of the anchor rod 5 at intervals according to the above method, so that the drill hole covers the whole installation area of the anchor rod 5.
The distance between adjacent drill holes in the same cross section is 20-50cm, and the distance between the construction cross sections of the adjacent drill holes is 50-200 cm. Specific distance can be according to multiple factor integrated analysis such as tunnel size, geological activity degree, basement rock firmness, in the higher area of safe risk level, should reduce 5 intervals of stock to improve and strut intensity. Because the stress concentration of the transition part of the top surface and the side surface of the surrounding rock is easy to crack, the anchor rods 5 at the position are high in distribution density and used for improving the tunnel strength.
Installing an anchor rod 5 in the drilled hole, and pouring concrete to fix the anchor rod 5; the 5 head ends of stock expose, and the exposure distance of 5 head ends of each stock is roughly equal, makes things convenient for follow-up construction operation. BFRP combined material stock 5 is selected for use to stock 5, and intensity is high, and corrosion resistance is good, helps improving 5 life-spans of stock, then connects damping piece 6 at 5 front ends of stock, and 6 structures of damping piece are as follows:
as shown in fig. 3, the shock absorbing member 6 comprises a square metal sleeve 61, an opening is formed at the top of the metal sleeve 61, and the tail end of the anchor rod 5 penetrates into the metal sleeve 61 through the opening. Both ends are equipped with the opening about metal sleeve 61, wear to establish perpendicular stock 5's movable rod 62 in metal sleeve 61 through the opening, and the screw has been seted up to stock 5 tail end, and the movable rod 62 middle part is equipped with the external screw thread, and movable rod 62 middle part and stock 5 threaded connection. The left end and the right end of the movable rod 62 are respectively sleeved with a spring 63, one end of the spring 63 abuts against the side wall of the inner cavity of the metal sleeve 61, and the other end of the spring 63 abuts against the anchor rod 5. When the anchor rod 5 swings left and right, the movable rod 62 moves left and right, and the movable rod 62 is driven to extrude the spring 63. The metal sleeve 61 is externally sleeved with a rubber sleeve 64 for sealing, and the rubber sleeve 64 blocks each hole on the metal sleeve 61 to prevent concrete from entering the metal sleeve 61.
3) Primary lining layer construction: the primary lining is sprayed and protected on the lower surface of the surrounding rock according to the prior art and equipment, the primary lining concrete uniformly covers the bedrock, and the primary lining layer 1 wraps the head end of the anchor rod 5 and the damping piece 6 therein, so that the anchor rod 5 and the damping piece 6 are prevented from leaking.
4) Construction of a second lining: two lining reinforcing steel bar meshes are laid in the tunnel, a gap is reserved between the two lining reinforcing steel bar meshes and the lower surface of the primary lining layer 1, then secondary lining concrete is sprayed and protected to form a secondary lining layer 2, and a gap is reserved between the formed secondary lining layer 2 and the primary lining layer 1, so that subsequent construction is facilitated.
5) Installing a damping buffer piece: shock attenuation bolster 7 is installed and is being in lining 1 and two lining 2 between, and shock attenuation bolster 7 is located each stock 5 place cross sections, for convenient construction, should mark stock 5 place cross sections of being under construction during the construction of stock 5, makes the mountable of shock attenuation bolster 7 to stock 5 planes in, convenient construction. The shock absorption buffer 7 comprises a damper 71 and a steel spring 72, the steel spring 72 is sleeved on a piston rod of the damper 71, and the piston rod drives the steel spring 72 to act when being stretched; the head end of the piston rod of the damper 71 is fixedly connected to the surrounding rock through a support cushion plate 75 with a hole and a screw, and the base of the damper 71 is fixedly connected to the upper surfaces of the two lining layers 2.
When the shock absorption buffering member 7 is installed, a mounting position is reserved by removing partial concrete from the notch on the lower surface of the primary lining layer 1, the mounting position is used for placing a supporting base plate 75, the notch position and the mounting position of the anchor rod 5 are arranged in a staggered mode, and the upper end of the damper 71 is fixed through the supporting base plate 75.
As shown in fig. 2, to prevent load concentration from damaging the two liner 2 structure. A rubber pad 73 is fixedly connected to the base of the damper 71, a steel pad plate 74 is fixedly connected to the bottom of the rubber pad 73, and the steel pad plate 74 is fixed to the upper surfaces of the two lining layers 2 through screws. The steel backing plate 74 is an arc-shaped steel plate, the radian of the steel backing plate corresponds to that of the upper surface of the two lining layers 2, so that the steel backing plate 74 is in close contact with the two lining layers 2, the length of the steel backing plate 74 is not less than 40cm, and the width of the steel backing plate 74 is not less than 20 cm. The steel backing plate 74 increases the stress area and reduces the pressure, thereby reducing the risk of load concentration.
6) EPS concrete 3 construction: install template 8 in the space between first lining 1 and two linings 2, pour EPS concrete 3 in template 8, EPS concrete 3 bottom and two lining 2 upper surfaces solidify and be an organic whole, form clearance layer 4 between EPS concrete 3 upper surface and the first lining 1 lower surface, and the piston rod of attenuator 71 leaks outward to clearance layer 4 in, guarantees that attenuator 71 can normally stretch out and draw back.
As shown in fig. 4 and 5, the formwork 8 has an arcuate plate shape and can be customized according to the tunnel structure and size. The templates 8 are supported at the left side and the right side of the tunnel, and the templates 8 do not need to be supported near the top of the tunnel. The gaps are reserved on the formworks 8, the gaps on the adjacent formworks 8 are spliced into a circular gap 81, the diameter of the circular gap 81 is equal to the outer diameter of the damper 71, the circular gap 81 is used for placing the damper 71, and the formworks 8 are detached after the EPS concrete 3 is cured and molded.
The function of the damper 6: when natural disasters such as earthquakes occur, surrounding rock vibration drives the anchor rod 5 to vibrate, and as the tail end of the anchor rod 5 is connected with the damping piece 6, the movable rod 62 is driven to swing left and right in the metal sleeve 61 to release partial energy when the tail end of the anchor rod 5 swings; prevent that load from concentrating to stock 5 tail end, lead to stock 5 and the primary lining 1 junction destructive fracture, cause the tunnel structure damage.
The function of the shock absorbing bumper 7: the load that the earthquake produced acts on attenuator 71 through first lining 1, thereby attenuator 71 is compressed and absorbs partial energy, and the load passes through attenuator 71 and conducts to rubber pad 73 and steel backing plate 74 on, because steel backing plate 74 is arc and area great, helps dispersing load to two lining 2 fast on, avoids taking place to appear stress concentration phenomenon on two lining 2, and then improves the shock resistance of tunnel when the earthquake.
EPS concrete filling layer 3: a10-30 cm gap layer is formed between the EPS concrete filling layer 3 and the primary lining layer 1, and the load generated by earthquake acts on the buffer layer, so that a large amount of earthquake wave energy can be consumed, and the impact of the earthquake on the secondary lining layer 2 is reduced.