CN114536912B - 一种协同提升聚合物电介质击穿强度和介电常数的方法 - Google Patents
一种协同提升聚合物电介质击穿强度和介电常数的方法 Download PDFInfo
- Publication number
- CN114536912B CN114536912B CN202210034372.0A CN202210034372A CN114536912B CN 114536912 B CN114536912 B CN 114536912B CN 202210034372 A CN202210034372 A CN 202210034372A CN 114536912 B CN114536912 B CN 114536912B
- Authority
- CN
- China
- Prior art keywords
- hexafluoropropylene
- polyvinylidene fluoride
- film
- breakdown strength
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D7/00—Producing flat articles, e.g. films or sheets
- B29D7/01—Films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2333/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2333/12—Homopolymers or copolymers of methyl methacrylate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明提供了一种协同提升聚合物电介质击穿强度和介电常数的方法,将聚合物材料表面溅射上纳米金颗粒,利用流延法和热压法制备金属/聚合物介电复合材料,通过纳米金颗粒与聚合物之间形成的微电容来提升介电常数、纳米金颗粒引起的库伦阻塞效应来增强击穿强度,实现介电常数和击穿强度的协同提升。该方法制备的溅射少量纳米金颗粒的复合材料的介电常数最高可达11.5,击穿强度最高可达到622.87kV/mm,最高储能密度可达13.02J/cm3。该方法简单,易操作,容易实现批量化生产,且具有通用性,可用于改善其他聚合物薄膜的介电性能。
Description
技术领域
本发明涉及聚合物技术领域,具体涉及一种协同提升聚合物电介质击穿强度和介电常数的方法。
背景技术
目前,限制薄膜电容器应用的一大难题是储能密度太低。因此,为提高聚合物复合材料的储能密度,研究者提出了各种复合材料设计策略。
研究表明,通过在聚合物中引入纳米颗粒,利用纳米颗粒的特性可以获得击穿强度和介电常数的提升,以达到更高的储能密度。例如,上海交通大学黄兴溢等报道了一种类似草莓状的功能性填料,首先通过用聚多巴胺包覆BT纳米颗粒合成核壳结构,然后通过原位还原硝酸银在表面上“点缀”纳米颗粒,形成的草莓状Ag修饰BT-PDA(BT-PDA-Ag)杂化纳米粒子被用作填料制备出(BT-PDA-Ag)/P(VDF-HFP)纳米复合材料。结果显示,和BT/P(VDF-HFP)、(BT-PDA)/P(VDF-HFP)这两种材料相比,(BT-PDA-Ag)/P(VDF-HFP)纳米复合材料的介电性能得到了明显提升,这些结果表明了纳米Ag颗粒的库伦阻塞效应可以改善纳米复合材料的介电性能。同时,北京科技大学查俊伟等也报道了一种类似的草莓状功能填料。首先通过化学沉积法在BT表面“点缀”平均直径为5-10nm的Ag纳米颗粒,然后通过溶液法制备填充有BT@Ag杂化颗粒的PVDF基纳米复合材料。研究结果显示,与BT/PVDF材料相比,BT@Ag/PVDF复合材料的介电性能得到明显提高。
虽然通过引入纳米颗粒作为功能填料可以使复合材料的介电性能得到提升,但目前报道的复合材料的储能提升并不是很高,而且工艺复杂,极大地限制了其实际应用。也就是说,如何有效地实现击穿强度和介电常数的协同提升仍是介电储能材料领域亟待解决的难题。
为了实现储能密度的提升,目前报道的介电储能材料普遍采用纳米材料作为填料,引入到聚合物基质中。该设计虽然能实现储能密度的提升,但是不能协同提升纳米复合材料的击穿强度和介电常数,储能提升不明显。而且该设计是一种耗时且产量低的技术。
发明内容
为了解决上述问题,协同提升聚合物电介质的击穿强度和介电常数,本发明将聚合物材料表面溅射上纳米金颗粒,利用流延法和热压法制备金属/聚合物介电复合材料。具体技术方案如下:
一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,将聚合物材料表面溅射上纳米金颗粒,利用流延法和热压法制备金属/聚合物介电复合材料,通过纳米金颗粒与聚合物之间形成的微电容来提升介电常数、纳米金颗粒引起的库伦阻塞效应来增强击穿强度,实现介电常数和击穿强度的协同提升。
优选的,所述聚合物是聚偏二氟乙烯-六氟丙烯(即P(VDF-HFP))、聚甲基丙烯酸甲酯(即PMMA)、聚丙烯(即PP)中的任一种。
优选的,所述聚合物是P(VDF-HFP)。
优选的,所述P(VDF-HFP)的金属/聚合物介电复合材料的制备方法包括以下步骤:
a.溶液的配置:将一定量的P(VDF-HFP)颗粒加入到1-甲基-2-吡咯烷酮中,用75℃的磁力搅拌器缓慢搅拌,待P(VDF-HFP)颗粒完全溶解后,快速搅拌5h,再在室温下缓慢搅拌一夜,得纯P(VDF-HFP)溶液;
b.流延法制备单层薄膜:将耐高温的玻璃板用酒精、去离子水清洗干净烘干备用;刮刀高度设置为8μm,取适量步骤a中搅拌好的溶液置于玻璃板流延成型,随后置于鼓风式干燥箱内保温,随后将载有步骤a中溶液的玻璃板迅速置于冰水中淬冷1min左右将薄膜揭下平铺于铝箔纸上再次放入烘箱中烘干,温度设置为50℃,保温4h,得到纯P(VDF-HFP)薄膜;
c.溅射纳米金颗粒:裁剪一定大小的纯P(VDF-HFP)薄膜,将多孔泡沫镍固定到纯P(VDF-HFP)薄膜上,利用离子溅射仪通过多孔泡沫镍将金颗粒溅射到纯P(VDF-HFP)薄膜上,溅射时间为0~10min,得到表面含有纳米金颗粒的P(VDF-HFP)薄膜;
d.堆叠:裁剪相同大小的纯P(VDF-HFP)薄膜并与表面带有纳米金颗粒的P(VDF-HFP)薄膜堆叠在一起;
e.热压:在一定条件下,利用热压仪将纯P(VDF-HFP)聚合物薄膜和表面带有纳米金颗粒的P(VDF-HFP)薄膜热压在一起,得到P(VDF-HFP)-Au-P(VDF-HFP)复合材料。
优选的,所述步骤a中,P(VDF-HFP)颗粒的质量与1-甲基-2-吡咯烷酮溶液的体积比为2:10/g:ml。
优选的,所述步骤b中,保温分为两阶段,先是以1℃/min的升温速率从室温升至100°C,保温4h,再以2℃/min的升温速度从100℃升至200℃,保温5min。
优选的,所述步骤c中,多孔泡沫镍使用前需要经过预处理,处理方法为:分别用丙酮、去离子水和无水乙醇超声处理多孔泡沫镍20min,去除多孔泡沫镍中的杂质,再用加压仪器将多孔泡沫镍压薄至300微米。
优选的,所述步骤c中,利用离子溅射仪通过多孔泡沫镍将金颗粒溅射到纯P(VDF-HFP)薄膜上的时间为6min。
优选的,所述步骤e中,热压的温度为150℃,压力为7.8MPa,保温时间为26min。
优选的,溅射6min纳米金颗粒得到的P(VDF-HFP)-Au-P(VDF-HFP)复合材料的介电常数最高为11.5,击穿强度最高为622.87kV/mm,最高储能密度为13.02J/cm3。
与现有技术相比,本发明的优点和有益效果为:
1)由于纳米金颗粒与聚合物之间形成了很多微电容,介电常数得到了明显提升,由纳米金颗粒引起的库伦阻塞效应,实现了击穿强度的显著增强,最终实现了介电常数和击穿强度的协同提升;
2)溅射少量纳米金颗粒的复合材料在击穿强度方面得到了显著改善,最高可达到622.87kV/mm;
3)方法简单,易操作,容易实现批量化生产,相当于仅需要聚合物等薄膜生产流程中引入喷金和热压步骤,即可实现储能性能显著提升;
4)该策略具有通用性,可用于改善其他聚合物薄膜的介电性能。
附图说明
为了清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例制备聚合物复合材料的流程图;
图2为本发明实施例制备的表面含有纳米金颗粒的P(VDF-HFP)薄膜的X射线衍射图(左边a图)和傅里叶红外图(右边b图);
图3为本发明实施例制备的P(VDF-HFP)-Au-P(VDF-HFP)复合材料的介电常数(图a)和介电损耗频散曲线图(图c),图b、图d分别为P(VDF-HFP)-Au-P(VDF-HFP),PMMA-Au-PMMA和PP-Au-PP复合材料的介电常数和介电损耗柱状对比图;
图4为本发明实施例制备的P(VDF-HFP)-Au-P(VDF-HFP)复合材料的击穿强度(图a)和P(VDF-HFP)-Au-P(VDF-HFP),PMMA-Au-PMMA和PP-Au-PP复合材料的击穿强度柱状图(图b);
图5为本发明实施例制备的P(VDF-HFP)-Au-P(VDF-HFP)复合材料的放电能量密度(图a)和充-放电效率(图c),图b、图d分别为P(VDF-HFP)-Au-P(VDF-HFP),PMMA-Au-PMMA和PP-Au-PP复合材料的放电能量密度和充-放电效率图的柱状对比图。
具体实施方式
附图仅用于示例性说明,不能理解为对本发明的限制;为了更好说明本实施例,附图某些部件会省略、放大或缩小,并不代表实际产品的尺寸;对于本领域的技术人员来说,附图中的某些公知结构及其说明可能省略。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需使用的附图进行简单地介绍。
实施例1
如图1所示,制备P(VDF-HFP)的金属/聚合物介电复合材料的方法,包括以下步骤:
a.溶液的配置:量取10ml的1-甲基-2-吡咯烷酮置于50ml烧杯中,再加入2g聚P(VDF-HFP)颗粒。将磁力搅拌器温度设置为75℃,待温度稳定在75℃后,将烧杯置于搅拌器缓慢搅拌,待P(VDF-HFP)颗粒完全溶解后,快速搅拌5h,再在室温下缓慢搅拌一夜,得纯P(VDF-HFP)溶液。
b.流延法制备单层薄膜:将耐高温玻璃板用酒精、去离子水清洗干净烘干备用。刮刀高度设置为8μm,取适量搅拌好的溶液置于玻璃板流延成型,随后置于鼓风式干燥箱内保温;
保温分为两阶段,首先是以1℃/min的升温速率从室温升至100℃,保温4h;再以2℃/min的升温速度从100℃升至200℃,保温5min。随后将载有样品的玻璃板迅速置于冰水中淬冷1min左右将薄膜揭下平铺于铝箔纸上再次放入烘箱中烘干,温度设置为50℃,保温4h,得到纯P(VDF-HFP)薄膜。
c.溅射纳米金颗粒:分别用丙酮、去离子水和无水乙醇超声处理多孔泡沫镍20min,去除多孔泡沫镍中的杂质,再用加压仪器将多孔泡沫镍压薄至300微米;
裁剪一定大小的纯P(VDF-HFP)聚合物薄膜,将上述处理好的多孔泡沫镍固定到纯P(VDF-HFP)聚合物薄膜上,利用离子溅射仪通过多孔泡沫镍将金颗粒溅射到纯P(VDF-HFP)聚合物薄膜上,溅射时间为0~10min,得到表面含有纳米金颗粒的P(VDF-HFP)薄膜。
d.堆叠:裁剪相同大小的纯P(VDF-HFP)聚合物薄膜,与表面带有纳米金颗粒的P(VDF-HFP)薄膜堆叠在一起。
e.热压:在温度为150℃,压力为7.8MPa,保温时间为26min的条件下,利用热压仪将步骤d中堆叠在一起的两层薄膜热压在一起,形成最终的P(VDF-HFP)-Au-P(VDF-HFP)复合材料。
如图2所示,按照上述方法步骤,其他条件不变的情况下,溅射纳米金颗粒的时间分别为0min、2min、4min、6min、8min、10min,得到不同的P(VDF-HFP)薄膜,进而得到P(VDF-HFP)-Au-P(VDF-HFP)复合材料。其中,a图为表面含有纳米金颗粒的P(VDF-HFP)薄膜的X射线衍射图,从图中我们可以看出溅射金纳米颗粒后P(VDF-HFP)薄膜的晶体结构没有改变。b图为表面含有纳米金颗粒的P(VDF-HFP)薄膜的傅里叶红外图谱。所有样品的傅里叶红外图谱显示纯P(VDF-HFP)的典型吸收峰,表明金纳米颗粒的溅射不会产生其他意外物质。
实施例2
按照实施例1的方法步骤,制备PMMA-Au-PMMA复合材料,其他条件不变的情况下,溅射纳米金颗粒的时间也是分别为0min、2min、4min、6min、8min、10min,得到不同的PMMA薄膜,进而得到不同的PMMA-Au-PMMA复合材料。
实施例3
按照实施例1的方法步骤,制备PP-Au-PP复合材料,其他条件不变的情况下,溅射纳米金颗粒的时间也是分别为0min、2min、4min、6min、8min、10min,得到不同的PP薄膜,进而得到不同的PP-Au-PP复合材料。
对于介电性能的测试,测试前,对LCR精密分析仪(E4980A)进行开/短路补偿,在常温下,100-1Mhz的频率范围内测试复合材料的介电频散性能,介电常数由公式(εr=tC/Aε0)计算得到,其中t为样品厚度,A是电极面积,C为并联电容,ε0为自由空间绝对介电常数,一般为8.85×10-12F m-1。
如图3所示,其中,a图为P(VDF-HFP)-Au-P(VDF-HFP)复合材料的频散曲线图,b图为P(VDF-HFP)-Au-P(VDF-HFP)、PMMA-Au-PMMA和PP-Au-PP复合材料的介电常数对比柱状图,结果显示当溅射时间较短时,纳米金颗粒分散性好,数目逐渐增多,形成的微电容数目增多,介电常数逐渐增加,最高可达11.5;随溅射时间的进一步增加,纳米金颗粒开始互相接触、堆叠,尺寸开始变大,表面积减小,电容量降低,介电常数开始下降。c图为P(VDF-HFP)-Au-P(VDF-HFP)复合材料的介电损耗频散曲线图,d图为P(VDF-HFP)-Au-P(VDF-HFP)、PMMA-Au-PMMA和PP-Au-PP复合材料的介电损耗对比柱状图,可以直观地看到溅射金颗粒后的薄膜均表现出和溅射前较低的介电损耗,而较低的损耗对复合材料的充-放电效率有很大的影响。
对于击穿强度测试,通过铁电测试仪(PK-CPE1801)测试得出。升压速率设置为500V/s,最后获得样品的击穿强度。如图4所示,a图为P(VDF-HFP)-Au-P(VDF-HFP)复合材料的击穿强度,通过溅射少量纳米金颗粒的薄膜的击穿强度得到大幅提升,其中溅射6分钟金颗粒的薄膜的击穿强度达到622.87kV/mm,相当于溅射前薄膜的138%。在这里,纳米金颗粒可以作为捕获空间电荷的陷阱,当一个电子从一个纳米颗粒迁移到附近的另一个纳米颗粒时,必须克服库仑阻塞能。只有外加电压使系统释放出原来的电子,岛外的另一个电子才有可能再进入,从而阻止了电荷的迁移,提高了击穿强度。这对复合材料的储能性能有很大的益处。由b图可以清晰地看到,P(VDF-HFP)-Au-P(VDF-HFP)、PMMA-Au-PMMA和PP-Au-PP复合材料的击穿强度都随着溅射时间的增加先上升后下降,这主要归因于纳米金颗粒引起的库伦阻塞效应的出现与消失。
利用铁电测试仪(PK-CPE1801,poly-k Technologies)获得材料的电滞回线,并从电滞回线中获得充放电能量密度和效率。如图5所示,a图为P(VDF-HFP)-Au-P(VDF-HFP)复合材料的放电能量密度图,b图为P(VDF-HFP)-Au-P(VDF-HFP)、PMMA-Au-PMMA和PP-Au-PP复合材料的放电能力密度对比图,相比于没有溅射纳米金颗粒的聚合物薄膜,溅射有纳米金颗粒的薄膜的储能密度按照介电常数和击穿强度的变化趋势而变化,表现为先增加后减小,最高储能密度可达13.02J/cm3。c图为P(VDF-HFP)-Au-P(VDF-HFP)复合材料的充-放电效率图,d图为P(VDF-HFP)-Au-P(VDF-HFP)、PMMA-Au-PMMA和PP-Au-PP复合材料的充-放电效率对比图,可以直观地看到,通过溅射纳米金颗粒并没有很大的影响复合材料的效率,仍然保持着溅射前的高效率。
本说明书中的各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (5)
1.一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,将聚偏二氟乙烯-六氟丙烯表面溅射上纳米金颗粒,利用流延法和热压法制备金属/聚合物介电复合材料,通过纳米金颗粒与聚偏二氟乙烯-六氟丙烯之间形成的微电容来提升介电常数、纳米金颗粒引起的库伦阻塞效应来增强击穿强度,实现介电常数和击穿强度的协同提升;
所述聚偏二氟乙烯-六氟丙烯的金属/聚合物介电复合材料的制备方法包括以下步骤:
a.溶液的配置:将一定量的聚偏二氟乙烯-六氟丙烯颗粒加入到1-甲基-2-吡咯烷酮中,用75℃的磁力搅拌器缓慢搅拌,待聚偏二氟乙烯-六氟丙烯颗粒完全溶解后,快速搅拌5h,再在室温下缓慢搅拌一夜,得纯聚偏二氟乙烯-六氟丙烯溶液;
b.流延法制备单层薄膜:将耐高温的玻璃板用酒精、去离子水清洗干净烘干备用;刮刀高度设置为8μm,取适量步骤a中搅拌好的溶液置于玻璃板流延成型,随后置于鼓风式干燥箱内保温,随后将载有步骤a中溶液的玻璃板迅速置于冰水中淬冷1min左右将薄膜揭下平铺于铝箔纸上再次放入烘箱中烘干,温度设置为50°C,保温4h,得到纯聚偏二氟乙烯-六氟丙烯薄膜;
c.溅射纳米金颗粒:裁剪一定大小的纯聚偏二氟乙烯-六氟丙烯薄膜,将多孔泡沫镍固定到纯聚偏二氟乙烯-六氟丙烯薄膜上,利用离子溅射仪通过多孔泡沫镍将金颗粒溅射到纯聚偏二氟乙烯-六氟丙烯薄膜上,溅射时间为6min,得到表面含有纳米金颗粒的聚偏二氟乙烯-六氟丙烯薄膜;
所述多孔泡沫镍使用前需要经过预处理,处理方法为:分别用丙酮、去离子水和无水乙醇超声处理多孔泡沫镍20 min,去除多孔泡沫镍中的杂质,再用加压仪器将多孔泡沫镍压薄至300微米;
d.堆叠:裁剪相同大小的纯聚偏二氟乙烯-六氟丙烯薄膜并与表面带有纳米金颗粒的聚偏二氟乙烯-六氟丙烯薄膜堆叠在一起;
e.热压:在一定条件下,利用热压仪将步骤d中堆叠在一起的两层薄膜热压在一起,形成最终的聚偏二氟乙烯-六氟丙烯-金-聚偏二氟乙烯-六氟丙烯复合材料。
2.根据权利要求1所述的一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,所述步骤a中,聚偏二氟乙烯-六氟丙烯颗粒的质量与1-甲基-2-吡咯烷酮溶液的体积比为2:10/g:ml。
3.根据权利要求1所述的一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,所述步骤b中,保温分为两阶段,先是以1°C/min 的升温速率从室温升至100°C,保温4h,再以2°C/min的升温速度从100°C升至200°C,保温5min。
4.根据权利要求1所述的一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,所述步骤e中,热压的温度为150 ℃,压力为7.8 MPa,保温时间为26 min。
5.根据权利要求1所述的一种协同提升聚合物电介质击穿强度和介电常数的方法,其特征在于,溅射6min纳米金颗粒得到的聚偏二氟乙烯-六氟丙烯-金-聚偏二氟乙烯-六氟丙烯复合材料的介电常数最高为11.5,击穿强度最高为622.87 kV/mm,最高储能密度为13.02J/cm3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210034372.0A CN114536912B (zh) | 2022-01-13 | 2022-01-13 | 一种协同提升聚合物电介质击穿强度和介电常数的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210034372.0A CN114536912B (zh) | 2022-01-13 | 2022-01-13 | 一种协同提升聚合物电介质击穿强度和介电常数的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114536912A CN114536912A (zh) | 2022-05-27 |
CN114536912B true CN114536912B (zh) | 2023-03-10 |
Family
ID=81671218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210034372.0A Active CN114536912B (zh) | 2022-01-13 | 2022-01-13 | 一种协同提升聚合物电介质击穿强度和介电常数的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114536912B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115197452A (zh) * | 2022-06-30 | 2022-10-18 | 深圳先进电子材料国际创新研究院 | 一种耐高温聚合物电介质薄膜材料及薄膜电容器 |
CN116333434B (zh) * | 2023-03-17 | 2023-10-27 | 中国海洋大学 | 一种基于金/玻璃纤维布的聚偏氟乙烯介电复合材料 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108570201A (zh) * | 2018-05-10 | 2018-09-25 | 深圳清华大学研究院 | 介电复合材料及其制备方法 |
CN109705500A (zh) * | 2018-11-30 | 2019-05-03 | 东华理工大学 | 一种复合介电薄膜及其制备方法 |
CN110003514A (zh) * | 2019-04-16 | 2019-07-12 | 电子科技大学 | 一种高介电复合膜的制备方法和应用 |
-
2022
- 2022-01-13 CN CN202210034372.0A patent/CN114536912B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108570201A (zh) * | 2018-05-10 | 2018-09-25 | 深圳清华大学研究院 | 介电复合材料及其制备方法 |
CN109705500A (zh) * | 2018-11-30 | 2019-05-03 | 东华理工大学 | 一种复合介电薄膜及其制备方法 |
CN110003514A (zh) * | 2019-04-16 | 2019-07-12 | 电子科技大学 | 一种高介电复合膜的制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114536912A (zh) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114536912B (zh) | 一种协同提升聚合物电介质击穿强度和介电常数的方法 | |
Hao et al. | Flexible BaTiO 3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density | |
Huang et al. | Enhanced energy density in P (VDF-HFP) nanocomposites with gradient dielectric fillers and interfacial polarization | |
CN101712784B (zh) | 一种核壳结构填料/聚合物基复合材料及其制备方法 | |
Chen et al. | Core-shell TiO2@ HfO2 nanowire arrays with designable shell thicknesses for improved permittivity and energy density in polymer nanocomposites | |
CN113329608B (zh) | 高吸波性能纳米钛酸钡/四氧化三铁杂化材料制备方法 | |
US10586628B2 (en) | Aluminum metallic nanoparticle-polymer nanocomposites for energy storage | |
Xie et al. | Improved discharge energy density and efficiency of polypropylene-based dielectric nanocomposites utilizing BaTiO3@ TiO2 nanoparticles | |
Tse et al. | Enhanced dielectric properties of colossal permittivity co-doped TiO 2/polymer composite films | |
Kashir et al. | Dielectric properties of strained nickel oxide thin films | |
CN113024974B (zh) | 一种一维TiO2纳米线杂化结构掺杂的聚偏氟乙烯复合薄膜及其制备方法 | |
Mathen et al. | Fabrication of Al deposited sandwich capacitor structure with CdSe/PVA dielectric thin film by spin coating technique for high power applications: synthesis and characterizations | |
Li et al. | Composite of aromatic polythiourea/BaTiO 3 nanowires with high energy density and high discharge efficiency for energy storage applications | |
Wang et al. | Hydrothermal synthesis of dendritic BaTiO3 ceramic powders and its application in BaTiO3/P (VDF‐Tr FE) composites | |
CN112389038A (zh) | 基于电容电感协同效应的高介电、低损耗材料及制备方法 | |
Xu et al. | Dielectric properties of GaN nanoparticles | |
Suherman et al. | Impacts of low sintering temperature on microstructure, atomic bonds, and dielectric constant of barium titanate (BaTiO3) prepared by co-precipitation technique | |
CN113881079B (zh) | 一种高介电常数和低介电损耗的聚合物复合薄膜及其制备方法和应用 | |
Jiang et al. | Electrical breakdown of sandwiched polymers—The effect of dielectric properties and trapped electrons | |
Karpacheva et al. | Co-carbon nanocomposites based on IR-pyrolyzed polyacrylonitrile | |
CN110452421B (zh) | 一种基于核壳结构填料的介电复合材料 | |
CN112279639A (zh) | 高击穿高储能密度钛酸锶储能介质陶瓷材料的制备方法 | |
Khaibullin et al. | Ion metal synthesis in viscous organic matter | |
CN116333434B (zh) | 一种基于金/玻璃纤维布的聚偏氟乙烯介电复合材料 | |
Qu et al. | Ultrathin ceramic nanowires for high interface interaction and energy density in PVDF nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |