CN114527492A - 一种电离层异常环境下的周跳实时探测方法 - Google Patents

一种电离层异常环境下的周跳实时探测方法 Download PDF

Info

Publication number
CN114527492A
CN114527492A CN202210150328.6A CN202210150328A CN114527492A CN 114527492 A CN114527492 A CN 114527492A CN 202210150328 A CN202210150328 A CN 202210150328A CN 114527492 A CN114527492 A CN 114527492A
Authority
CN
China
Prior art keywords
cycle slip
data
delta
seconds
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210150328.6A
Other languages
English (en)
Other versions
CN114527492B (zh
Inventor
李伟
宋淑丽
周伟莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Astronomical Observatory of CAS
Original Assignee
Shanghai Astronomical Observatory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Astronomical Observatory of CAS filed Critical Shanghai Astronomical Observatory of CAS
Priority to CN202210150328.6A priority Critical patent/CN114527492B/zh
Publication of CN114527492A publication Critical patent/CN114527492A/zh
Application granted granted Critical
Publication of CN114527492B publication Critical patent/CN114527492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种电离层异常环境下的周跳实时探测方法,包括以下步骤:S1:对于同一个测站,获取30秒和1秒采样率数据的GF组合历元间差分值,分别记为30s‑ΔGF和1s‑ΔGF;S2:将1s‑ΔGF按每30秒划分为一个基本单元,每个所述基本单元的首历元的时间是30秒的整倍数。本发明所确定的周跳探测阈值,在电离层异常期间,有效将电离层变化与周跳进行区分,对于30秒采样间隔的观测数据,较原周跳探测方法相比,新的周跳探测方法减少了周跳的误判,对于GPS一天的数据,最高可减少300个周跳的误判,满足使用需求。

Description

一种电离层异常环境下的周跳实时探测方法
技术领域
本发明涉及周跳实时探测技术领域,尤其涉及一种电离层异常环境下的周跳实时探测方法。
背景技术
GNSS观测数据中的整周跳变是指由于外部影响使得快速的相位变化导致频繁的多普勒频移超过接收机的锁相环带宽,最终导致接收机未能连续计数卫星的载波相位观测值的现象,简称周跳,自二十世纪八十年代以来,研究者提出了大量周跳探测与修复的算法,以及课题研究,例如基于GNSS观测水汽时数据的气候变化特征挖掘(课题号:Y846011001),多源异构GNSS数据高效融合处理方法研究(课题号:E046381001),天地联合多时空尺度近地空间环境监测(课题号:Y636241001),还例如电离层残差算法(Goad1987),Melbourne-Wübbena(MW)算法(Melbourne1985;WübbenaG1985),多项式拟合算法(Lichtenegger1989),以及Turboedit算法(Blewitt1990),其中Turboedit算法联合使用电离层残差算法和MW算法进行周跳探测和修复,其因有效地避免了周跳探测的盲点而被广泛应用,以上探测方法普遍认为观测值随时间平稳变化,但是这一假设在电离层活跃期间,尤其是对低采样率的数据并不成立,这使得低采样率的观测数据的周跳探测与修复在电离层活跃期内更具挑战性,针对这一限制,有学者提出了基于Turboedit的改进算法:刘志赵(2011)提出基于总电子含量变化率的方法探测和修复周跳;蔡昌盛(2013)提出了一个基于MW组合的前后向滑动窗平均算法联合电离层残差二阶时间差分算法来探测并修复周跳;张小红(2017)提出构建阈值模型改善Turboedit算法,指出0.15米可以作为电离层残差法在电离层异常期间30秒采样间隔数据的周跳探测的经验阈值;
针对不同的应用,周跳探测与修复有不同的策略,比如在精密定位方面,在保证足够观测量的前提下,为了确保参与解算的数据精度,周跳探测往往采取更严格的阈值来排除掉疑似周跳的数据;在电离层建模或电离层异常监测方面,更多的数据意味着更多的电离层穿刺点,也就意味着更好的建模或监测效果;因此一个较为宽松或更合理的阈值对电离层建模或监测更有利,为了解决这一问题,本发明提出了一种电离层异常环境下的周跳实时探测方法。
发明内容
基于背景技术存在的技术问题,本发明提出了一种电离层异常环境下的周跳实时探测方法。
本发明提出的一种电离层异常环境下的周跳实时探测方法,包括以下步骤:
S1:对于同一个测站,获取30秒和1秒采样率数据的GF组合历元间差分值,分别记为30s-ΔGF和1s-ΔGF;
S2:将1s-ΔGF按每30秒划分为一个基本单元,每个所述基本单元的首历元的时间是30秒的整倍数;
S3:将每个30s-ΔGF与划分后的1s-ΔGF的每个基本单元进行比较,当1s-ΔGF未发生周跳及短时失锁时,提取对应时刻30s-ΔGF的差分GF,确定这些点的变化范围和百分比,确定出30秒采样间隔的数据在电离层异常期间,其相邻历元间的电离层变化的范围,通过统计这些点的变化范围和百分比确定出电离层的变化范围,该值作为确定30秒数据周跳探测阈值的一个参考,若1s-ΔGF发生周跳时,以单元为对象统计发生周跳的数量;
S4:以传统阙值0.15米作为30秒采样间隔数据的GF组合探测周跳的阈值,确定电离层闪烁期间30秒数据的周跳数量;
S5:确定划分后的1秒数据的周跳数量,确定方法为:只要某个基本单元(30秒内)内有数据发生了周跳,则认为该基本单元发生了周跳,且不论该基本单元内有多少数据发生周跳,该基本单元只会被认为发生了一次周跳,只有当该基本单元内没有数据发生周跳时,才认为该基本单元没有发生周跳;
S6:将S4中确定的周跳数量作为因变量y,将S5中确定的周跳数量作为因变量x,对x和y进行线性回归分析,确定两者的关系,记为y=ax+b;
S7:根据前面的分析,理论上30秒数据的周跳数量应当与划分后的1秒数据的周跳数量相等且周跳发生的位置也相同,根据S6确定的回归关系,反算30秒采样间隔数据的周跳数量的理论值:ytheoretical=x=(y-b)/a;
S8:对30s-ΔGF的序列按降序排列,认为序列中前ytheoretical个值为更合理的周跳,第ytheoretical个值为所要确定的周跳探测阈值,对确定的所有的周跳探测阈值进行取平均,为最终的30秒数据在电离层异常环境下的周跳探测阈值;
S9:用MW组合联同GF组合进行周跳探测。
优选地,所述S6中,使用线性回归关系进行反算,当得到负值时,将负值置为零后再进行一轮拟合。
优选地,所述S1中,GF组合为无几何距离组合,且GF的全称为Geometry Free。
优选地,所述S9中,周跳检测的方程为:
Figure BDA0003510084200000041
其中Δ为差分符号,LGF和NMW分别为GF组合和MW组合,λMW是宽巷波长。
优选地,所述S4中,30秒数据的周跳数量与同站1秒数据(按每30秒进行划分后)的周跳数量进行对比,并确定两者的线性回归关系,并根据确定的线性回归关系反算30秒数据理论上的周跳数量,记为n,并对30秒数据GF组合的差分序列按降序进行排列,认为该序列前n个值为发生周跳的序列,那么该序列第n个值则为所确定的30秒数据GF组合探测周跳的更合理的阈值,由每颗卫星所确定的阈值进行取平均,再参考前面确定的电离层变化的范围,确定出最终的周跳探测阈值。
优选地,所述实时的周跳探测方法涉及到的基本方程为GNSS伪距和相位观测方程:
Figure BDA0003510084200000051
其中i是频率项,j是卫星项;P代表伪距,单位为米;φ和
Figure BDA0003510084200000052
均代表载波相位,φ的单位是米,
Figure BDA0003510084200000053
的单位是周;ρ代表卫星和接收机的几何距离;λ为波长;N代表整周模糊度;δr和δj分别代表接收机和卫星的钟差;γi=f1 2/fi 2为频率因子;Ij代表电离层延迟;Tj代表对流层延迟;bi j和di j分别代表接收机和卫星的硬件延迟。
与现有的技术相比,本发明的有益效果是:
本发明所确定的周跳探测阈值,在电离层异常期间,有效将电离层变化与周跳进行区分,对于30秒采样间隔的观测数据,较原周跳探测方法相比,新的周跳探测方法减少了周跳的误判,对于GPS一天的数据,最高可减少300个周跳的误判,满足使用需求。
附图说明
图1为本发明提出的一种电离层异常环境下的周跳实时探测方法的流程图;
图2为1秒和30秒数据的ΔGF在不同的电离层环境下,其值在预设阈值之内及超过预设阈值的百分比;
图3为S3中当1秒数据未发生周跳时,30秒数据的GF组合历元间差分序列的分布范围和对应的累积直方图;
图4为S6中基于旧的周跳探测阈值统计得到的30秒数据的周跳数量和1秒数据周跳数量的线性回归关系;
图5为基于回归关系所得30秒数据周跳数量的理论值与1秒数据周跳数量的线性回归关系;
图6为新的周跳探测方法较旧的周跳探测方法相比减少的周跳误判数量图。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
实施例
参照图1-6,本实施例提出了一种电离层异常环境下的周跳实时探测方法,包括以下步骤:
S1:对于同一个测站,获取30秒和1秒采样率数据的GF组合历元间差分值,分别记为30s-ΔGF和1s-ΔGF,GF组合为无几何距离组合,且GF的全称为Geometry Free;
S2:将1s-ΔGF按每30秒划分为一个基本单元,每个所述基本单元的首历元的时间是30秒的整倍数;这样做是为了能够在后续的比较中将1秒数据和30秒数据进行对齐。
S3:将每个30s-ΔGF与划分后的1s-ΔGF的每个基本单元进行比较,当1s-ΔGF未发生周跳以及短时失锁时,提取对应时刻30s-ΔGF的差分GF,确定这些点的变化范围和百分比,确定出30秒采样间隔的数据在电离层异常期间,其相邻历元间的电离层变化的范围,通过统计这些点的变化范围和百分比大致确定出电离层的变化范围,该值作为确定30秒数据周跳探测阈值的一个参考,1s-ΔGF发生周跳时,以传统阈值0.15米作为30秒数据GF组合探测周跳的阈值;
S4:S3中的1s-ΔGF发生周跳时,并进行统计30秒数据的周跳数量,并将其与同站1秒数据(按每30秒进行划分后)的周跳数量进行对比,并确定两者的线性回归关系,并根据确定的线性回归关系反算30秒数据理论上的周跳数量,记为n,并对30秒数据GF组合的差分序列按降序进行排列,认为该序列前n个值为发生周跳的序列,那么该序列第n个值则为所确定的30秒数据GF组合探测周跳的更合理的阈值,由每颗卫星所确定的阈值进行取平均,再参考前面确定的电离层变化的范围,即可确定出最终的周跳探测阈值;
S5:确定划分后的1秒数据的周跳数量,确定方法为:只要某个基本单元(30秒内)有数据发生了周跳,则认为该基本单元发生了周跳,且不论该基本单元内有多少数据发生周跳,该基本单元只会被认为发生了一次周跳,只有当该基本单元内没有数据发生周跳时,才认为该基本单元没有发生周跳。
S6:将S4中确定的周跳数量作为因变量y,将S5中确定的周跳数量作为因变量x,对x和y进行线性回归分析,确定两者的关系,记为y=ax+b,使用线性回归关系在进行反算,当得到负值时,将负值置为零后再进行一轮拟合;
S7:根据前面的分析,理论上30秒数据的周跳数量应当与划分后的1秒数据的周跳数量相等且周跳发生的位置也相同,根据S6确定的回归关系,反算30秒采样间隔数据的周跳数量的理论值:ytheoretical=x=(y-b)/a;
S8:对30s-ΔGF的序列按降序排列,认为序列中前ytheoretical个值为更合理的周跳,即第ytheoretical个值为所要确定的周跳探测阈值,对确定的所有的周跳探测阈值进行取平均,为最终的30秒数据在电离层异常环境下的周跳探测阈值,其中周跳检测的方程为:
Figure BDA0003510084200000081
其中Δ为差分符号,LGF和NMW分别为GF组合和MW组合,λMW是宽巷波长;
S9:用MW组合联同GF组合(基于确定的新阈值)进行周跳探测,其中实时的周跳探测方法涉及到的基本方程为GNSS伪距和相位观测方程:
Figure BDA0003510084200000082
其中i是频率项,j是卫星项;P代表伪距,单位为米;φ和
Figure BDA0003510084200000083
均代表载波相位,φ的单位是米,
Figure BDA0003510084200000084
的单位是周;ρ代表卫星和接收机的几何距离;λ为波长;N代表整周模糊度;δr和δj分别代表接收机和卫星的钟差;γi=f1 2/fi 2为频率因子;Ij代表电离层延迟;Tj代表对流层延迟;bi j和di j分别代表接收机和卫星的硬件延迟。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种电离层异常环境下的周跳实时探测方法,其特征在于,包括以下步骤:
S1:对于同一个测站,获取30秒和1秒采样率数据的GF组合历元间差分值,分别记为30s-ΔGF和1s-ΔGF;
S2:将1s-ΔGF按每30秒划分为一个基本单元,每个所述基本单元的首历元的时间是30秒的整倍数;
S3:将每个30s-ΔGF与划分后的1s-ΔGF的每个基本单元进行比较,当1s-ΔGF未发生周跳以及短时失锁时,提取对应时刻30s-ΔGF的差分GF,确定这些点的变化范围和百分比,确定出30秒采样间隔的数据在电离层异常期间,其相邻历元间的电离层变化的范围,通过统计这些点的变化范围和百分比确定出电离层的变化范围,该值作为确定30秒数据周跳探测阈值的一个参考,若1s-ΔGF发生周跳时,以单元为对象统计发生周跳的数量;
S4:以传统阈值0.15米作为30秒采样间隔数据的GF组合探测周跳的阈值,确定电离层闪烁期间30秒数据的周跳数量;
S5:确定划分后的1秒数据的周跳数量,确定方法为:只要某个基本单元(30秒)内有数据发生了周跳,则认为该基本单元发生了周跳,且不论该基本单元内有多少数据发生周跳,该基本单元只会被认为发生了一次周跳,只有当该基本单元内没有数据发生周跳时,才认为该基本单元没有发生周跳;
S6:将S4中确定的周跳数量作为因变量y,将S5中确定的周跳数量作为因变量x,对x和y进行线性回归分析,确定两者的关系,记为y=ax+b;
S7:根据前面的分析,理论上30秒数据的周跳数量应当与划分后的1秒数据的周跳数量相等且周跳发生的位置也相同,根据S6确定的回归关系,反算30秒采样间隔数据的周跳数量的理论值:ytheoretical=x=(y-b)/a;
S8:对30s-ΔGF的序列按降序排列,认为序列中前ytheoretical个值为更合理的周跳,第ytheoretical个值为所要确定的周跳探测阈值,对确定的所有的周跳探测阈值进行取平均,为最终的30秒数据在电离层异常环境下的周跳探测阈值;
S9:用MW组合联同GF组合进行周跳探测。
2.根据权利要求1所述的一种电离层异常环境下的周跳实时探测方法,其特征在于,所述S6中,使用线性回归关系进行反算,当得到负值时,将负值置为零后再进行一轮拟合。
3.根据权利要求1所述的一种电离层异常环境下的周跳实时探测方法,其特征在于,所述S1中,GF组合为无几何距离组合,且GF的全称为Geometry Free。
4.根据权利要求1所述的一种电离层异常环境下的周跳实时探测方法,其特征在于,所述S9中,周跳检测的方程为:
Figure FDA0003510084190000021
其中Δ为差分符号,LGF和NMW分别为GF组合和MW组合,λMW是宽巷波长。
5.根据权利要求1所述的一种电离层异常环境下的周跳实时探测方法,其特征在于,所述S4中,30秒数据的周跳数量与同站1秒数据(按每30秒进行划分后)的周跳数量进行对比,并确定两者的线性回归关系,并根据确定的线性回归关系反算30秒数据理论上的周跳数量,记为n,并对30秒数据GF组合的差分序列按降序进行排列,认为该序列前n个值为发生周跳的序列,那么该序列第n个值则为所确定的30秒数据GF组合探测周跳的更合理的阈值,由每颗卫星所确定的阈值进行取平均,再参考前面确定的电离层变化的范围,确定出最终的周跳探测阈值。
6.根据权利要求1所述的一种电离层异常环境下的周跳实时探测方法,其特征在于,所述实时的周跳探测方法涉及到的基本方程为GNSS伪距和相位观测方程:
Figure FDA0003510084190000031
其中i是频率项,j是卫星项;P代表伪距,单位为米;φ和
Figure FDA0003510084190000033
均代表载波相位,φ的单位是米,
Figure FDA0003510084190000032
的单位是周;ρ代表卫星和接收机的几何距离;λ为波长;N代表整周模糊度;δr和δj分别代表接收机和卫星的钟差;γi=f1 2/fi 2为频率因子;Ij代表电离层延迟;Tj代表对流层延迟;bi j和di j分别代表接收机和卫星的硬件延迟。
CN202210150328.6A 2022-02-18 2022-02-18 一种电离层异常环境下的周跳实时探测方法 Active CN114527492B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210150328.6A CN114527492B (zh) 2022-02-18 2022-02-18 一种电离层异常环境下的周跳实时探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210150328.6A CN114527492B (zh) 2022-02-18 2022-02-18 一种电离层异常环境下的周跳实时探测方法

Publications (2)

Publication Number Publication Date
CN114527492A true CN114527492A (zh) 2022-05-24
CN114527492B CN114527492B (zh) 2022-09-16

Family

ID=81623642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210150328.6A Active CN114527492B (zh) 2022-02-18 2022-02-18 一种电离层异常环境下的周跳实时探测方法

Country Status (1)

Country Link
CN (1) CN114527492B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299561A (zh) * 2023-03-02 2023-06-23 中国科学院上海天文台 一种降低电离层不规则体对精密单点定位影响的方法
CN117148392A (zh) * 2023-10-31 2023-12-01 中国测绘科学研究院 Gnss数据质量可信度评估方法、系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150234093A1 (en) * 2012-11-30 2015-08-20 Atmospheric & Space Technology Research Associates Llc System and method for determining characteristics of traveling ionospheric distrubances
CN109212563A (zh) * 2017-06-29 2019-01-15 同济大学 北斗/gps三频周跳探测与修复方法
KR101979184B1 (ko) * 2018-12-28 2019-05-16 세종대학교산학협력단 전리층 변화율 추정을 이용한 다중 주파수 위성항법 반송파 측정치의 사이클 슬립 검출장치 및 그 방법
CN110275182A (zh) * 2019-06-25 2019-09-24 中国科学院国家空间科学中心 一种临近空间大气温度和压强廓线探测系统
CN111239786A (zh) * 2020-02-28 2020-06-05 同济大学 一种无人驾驶定位测姿的载波相位整周模糊度测定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150234093A1 (en) * 2012-11-30 2015-08-20 Atmospheric & Space Technology Research Associates Llc System and method for determining characteristics of traveling ionospheric distrubances
CN109212563A (zh) * 2017-06-29 2019-01-15 同济大学 北斗/gps三频周跳探测与修复方法
KR101979184B1 (ko) * 2018-12-28 2019-05-16 세종대학교산학협력단 전리층 변화율 추정을 이용한 다중 주파수 위성항법 반송파 측정치의 사이클 슬립 검출장치 및 그 방법
CN110275182A (zh) * 2019-06-25 2019-09-24 中国科学院国家空间科学中心 一种临近空间大气温度和压强廓线探测系统
CN111239786A (zh) * 2020-02-28 2020-06-05 同济大学 一种无人驾驶定位测姿的载波相位整周模糊度测定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRIAN BREITSCH: "Triple-Frequency GNSS Cycle Slip Detection Performance in the Presence of Diffractive Ionosphere Scintillation:", 《2020 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS)》 *
WEI WEI: "Study on the Calculation Strategies of Ionospheric Scintillation Index ROTI from GPS", 《IGARSS 2019 - 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM》 *
王含宇: "GNSS偏差及其研究进展", 《天文学进展》 *
耿威: "低纬电离层闪烁对GPS观测值及其导航定位的影响", 《中国博士学位论文全文数据库 基础科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299561A (zh) * 2023-03-02 2023-06-23 中国科学院上海天文台 一种降低电离层不规则体对精密单点定位影响的方法
CN117148392A (zh) * 2023-10-31 2023-12-01 中国测绘科学研究院 Gnss数据质量可信度评估方法、系统及电子设备

Also Published As

Publication number Publication date
CN114527492B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN114527492B (zh) 一种电离层异常环境下的周跳实时探测方法
CN102998681B (zh) 一种卫星导航系统的高频钟差估计方法
US9244174B2 (en) Mitigation of scintillations in signals of global navigation satellite systems caused by ionospheric irregularities
CN104407359B (zh) 一种北斗接收机非差观测值噪声评估方法
CN109444935B (zh) 一种低采样率的多普勒周跳探测和修复方法
EP3030922A1 (en) Detection of scintillations in signals of global navigation satellite systems caused by lonospheric irregularities
CN112946698B (zh) 一种基于强化学习的卫星信号周跳探测方法
CN106199659A (zh) 基于模糊数学的gnss单站双频观测数据周跳探测及处理方法
US9298532B2 (en) Device and method for determining a physical quantity
CN106226785B (zh) 电离层异常监测模型建立方法和装置
CN116299561A (zh) 一种降低电离层不规则体对精密单点定位影响的方法
CN102798867A (zh) 一种机载雷达与红外传感器航迹关联方法
CN109633690B (zh) 一种电离层梯度参数的确定方法、装置及系统
CN104596544A (zh) 一种电离层闪烁下航空导航性能预测的方法
CN101950026A (zh) 用于局域增强系统的测量值质量监测方法
CN111856525B (zh) 一种基于lstm神经网络的周跳探测和修复方法
CN103630912B (zh) 一种卫星接收机静止的检测方法
CN114152961A (zh) 一种导航系统的周跳处理方法和装置
Yifei et al. Accuracy analysis of ionospheric prediction models for repairing cycle slips for beidou triple-frequency observations
CN114252896A (zh) 一种单频实时精密单点定位方法
CN111580136B (zh) 一种接收机自主完好性故障检测方法
CN105068092B (zh) 一种应用于星基增强系统机载接收机的周跳检测与修复方法
Gao et al. Incipient anomalous ionospheric divergence fast detection for coastal differential Global Navigation Satellite System
Pu Using the mixed Gaussian distribution method to design of a threshold for CCD monitor
CN118244307B (zh) 一种复杂环境下gnss周跳探测自适应阈值确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant