CN114524940A - 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法 - Google Patents

一种基于等离子体和超支化耦合对小麦秸秆表面改性方法 Download PDF

Info

Publication number
CN114524940A
CN114524940A CN202210165184.1A CN202210165184A CN114524940A CN 114524940 A CN114524940 A CN 114524940A CN 202210165184 A CN202210165184 A CN 202210165184A CN 114524940 A CN114524940 A CN 114524940A
Authority
CN
China
Prior art keywords
wheat straw
hyperbranched
plasma
coupling
straw powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210165184.1A
Other languages
English (en)
Other versions
CN114524940B (zh
Inventor
徐锐
徐磊
严旎娜
张晓美
蒋希芝
汪敏
冯敏
陈敬文
陈罡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN202210165184.1A priority Critical patent/CN114524940B/zh
Publication of CN114524940A publication Critical patent/CN114524940A/zh
Application granted granted Critical
Publication of CN114524940B publication Critical patent/CN114524940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Table Devices Or Equipment (AREA)

Abstract

本发明公开了一种基于等离子体和超支化耦合的小麦秸秆表面改性方法,该方法采用等离子体处理机对小麦秸秆进行等离子体处理,使小麦秸秆表面粗糙度增加,在秸秆纤维表面产生大量极性自由基,从而可以在不破坏秸秆的组成结构性质的条件下达到秸秆表面改性的目的。再通过聚硅氧烷超支化改性对经过等离子体处理过的小麦秸秆耦合改性,使小麦秸秆表面接枝极性官能团,增加表面接触面积,改善小麦秸秆表面的浸润性,提高其在溶液中的分散性,有利于小麦秸秆进一步的高值化利用。

Description

一种基于等离子体和超支化耦合对小麦秸秆表面改性方法
技术领域
本发明涉及一种小麦秸秆表面改性方法,尤其涉及一种基于等离子体和超支化耦合对小麦秸秆表面改性方法,属于环保技术领域。
背景技术
作为农业生产大国,随着粮食的种植产量增加,所产生的秸秆废弃物也随之增加,其中,每年产生的农作物秸秆废弃物约达7.2亿吨,列居世界第一,这是一笔非常庞大的可再生资源。根据全国农作物秸秆资源调查报告,其中玉米秸秆约2.65亿吨,水稻秸秆约有2.05亿吨,小麦秸秆约1.50亿吨,占据农作物秸秆废弃物的前三位。可惜的是,其中有超过2亿吨的秸秆未被利用,反而被用于焚烧或者自然腐烂,对环境造成了严重的危害。为了解决大量秸秆随意处理带来的环境问题,秸秆的高值化利用成为当今的研究热点之一。
等离子体处理技术是一种新兴物理改性手段,它能够改变材料表面的浸润性,同时对材料性质几乎没有影响,受到了研究者们的关注。用等离子体对生物质表面进行短时间的照射,可以使生物质表面产生大量的自由基,引发生物质与烯类单体发生接枝共聚反应,实现烯类单体在生物质表面的接枝共聚,从而建立以化学结合为主的界面,达到表面改性的效果。如姚日生等人(中国专利CN201110053193.3,公开日期2013.02.20)通过低温等离子体处理秸秆表面,再用稀碱水溶液浸泡,可以获得更易于糖化的纤维素。Mayara等(International Journal of Biological Macromolecules 2021,183:2009-2016)研究了介质阻挡放电等离子体对玉米淀粉基薄膜亲水性、透水性和拉伸性能的影响,结果表明等离子体处理进一步提高了淀粉膜的拉伸强度和刚度,降低了亲水性和水溶性。但是由于淀粉的主要成分为多糖,结构简单,容易被改性,而小麦秸秆组成成分丰富,结构复杂,仅仅使用等离子体对其表面进行改性,效果不明显。
超支化改性技术作为一种操作简便、绿色无污染的制备树状高分子聚合物的化学接枝手段,最大的突出特点就是能够获得准球形分子结构的产物,且末端官能团的可控性,即设计和控制末端基团的数量和类型,从而使分子具备不同的功能。然而,由于秸秆组成复杂,表面还存在一层生物质脂质组分,因此在对其进行超支化改性之前,通常需要做一些预处理。高恒东等人(中国专利CN201710805320.8,公开日期2020.09.01)通过粉碎、蒸汽爆破、热水提取、醇溶制备水稻秸秆纤维素,再用环氧氯丙烷和超支化多氨基化合物进行改性,从而得到具有丰富氨基官能团的、可用于水体重金属吸附的改性纤维素。但是,蒸汽爆破、热水提取、醇溶等预处理,都会破坏秸秆自身的组成结构,从而影响了秸秆高值化利用后材料的力学性能。
秸秆中主要的组成成分是纤维素、半纤维素、木质素,它们的分子结构中存在着大量的极性官能团,如酚羟基、醇羟基等,在溶液中分散性较差。为了改善秸秆的表面浸润性,提高其在溶液中的分散性,传统方法是对秸秆进行机械粉碎或者研磨成细小的颗粒,然而该方法对物料的脆性和水分含量要求较高。因此,找到合适的方法对秸秆表面进行改性处理是突破秸秆高值化利用的关键。目前并没有将等离子体表面处理技术与超支化改性技术耦合对秸秆表面基团进行改性,从而将秸秆的进一步高值化利用的报道。
发明内容
发明目的:本发明目的是提供一种基于等离子体和超支化耦合对小麦秸秆表面改性方法,对小麦秸秆表面进行处理,改善小麦秸秆表面的浸润性,提高其在溶液中的分散性。
技术方案:本发明所述一种基于等离子体和超支化耦合的小麦秸秆表面改性方法,包括以下步骤:
(1)用水将小麦秸秆清洗,烘干,粉碎,过筛,得到超细小麦秸秆粉;
(2)在超细小麦秸秆粉中加入水,混合搅拌,形成小麦秸秆泥;
(3)将小麦秸秆泥铺平后进行等离子体处理,烘干,研磨,得到等离子体处理后的小麦秸秆粉;
(4)将等离子体处理后的小麦秸秆粉加入到乙醇中,混合搅拌,入加聚硅氧烷超支化试剂,搅拌进行超支化改性反应,抽滤,用乙醇洗涤沉淀,烘干沉淀,研磨,得到超支化耦合改性小麦秸秆粉。
进一步地,步骤(1)中,所述烘干温度为50-60℃,所述过筛是过400-600目筛。
进一步地,步骤(2)中,所述超细小麦秸秆粉与水的重量比为1:10-15。
进一步地,步骤(2)中,所述混合搅拌时间为10-15min。
进一步地,步骤(3)中,所述等离子体处理使用的是等离子体处理机,其型号为等离子体果蔬保鲜处理机BXSY-01型。
进一步地,步骤(3)中,所述等离子处理时等离子体处理机的功率为600-800W,所述处理时间为3-5min。
进一步地,步骤(3)中,所述烘干温度为50-60℃,所述烘干时间为20-24h。
进一步地,步骤(4)中,所述聚硅氧烷超支化试剂是通过硅烷偶联剂KH-560、KH-570中的任一种或几种超支化聚合制备得到。
进一步地,步骤(4)中,所述等离子体处理过的秸秆粉与乙醇的重量比为1:50-100。
进一步地,步骤(4)中,所述等离子体处理过的秸秆粉与超支化试剂重量比为1:10-15。
进一步地,步骤(4)中,所述混合搅拌时间为30-60min。
进一步地,步骤(4)中,所述搅拌进行超支化改性反应是在60-70℃回流磁力搅拌20-24h。
进一步地,步骤(4)中,所述烘干温度为50-60℃。
等离子处理及超支化耦合改性的机理:
首先,等离子体中存在高能电子、离子和激发态分子等多种活性中心,可以使麦秸表面被刻蚀和接枝,表面层中产生大量的自由基,生成羟基、羰基、羧基等含氧极性官能团,从而提高秸秆表面的浸润性,有助于进一步对秸秆进行超支化改性;
其次,通过聚硅氧烷对秸秆表面进行超支化接枝改性,机理反应如下:
Figure BDA0003514638720000031
聚硅氧烷中的环氧乙烷结构与秸秆中的纤维素组分的醇羟基发生亲核取代,形成超支化产物。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明提供的小麦秸秆表面改性方法,采用等离子体处理机对小麦秸秆进行等离子体处理,使小麦秸秆表面粗糙度增加,在秸秆纤维表面产生大量极性自由基,从而可以在不破坏秸秆的组成结构性质的条件下达到秸秆表面改性的目的;
(2)本发明提供的小麦秸秆改性方法,采用聚硅氧烷超支化改性与等离子体处理耦合改性的方式,可以使小麦秸秆表面接枝极性官能团,增加表面接触面积,改善小麦秸秆表面的浸润性,提高其在溶液中的分散性,有利于小麦秸秆进一步的高值化利用。
附图说明
图1为小麦秸秆表面接触角测试图;
图2为小麦秸秆粉在水中的分散效果图;
图3为小麦秸秆粉的扫描电镜图;
图4为仅经过超支化改性后的小麦秸秆粉的表面接触角测试图、在水中的分散效果图和扫描电镜图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1聚硅氧烷超支化试剂的制备
聚硅氧烷超支化试剂是通过硅烷偶联剂KH-560和KH-570混合超支化聚合制备得到:
(1)将硅烷偶联剂KH-560和等重量的KH-570混合置于三角烧瓶中,加入1.5倍重量的无水乙醇,60℃混合搅拌;
(2)向反应溶液中加入0.1倍重量的去离子水,混合搅拌3小时;
(3)反应结束后冷却至室温,减压蒸馏,获得聚硅氧烷超支化试剂。
实施例2制备改性小麦秸秆粉
(1)将小麦秸秆用自来水清洗干净,60℃低温烘干,粉碎机粉碎,过500目筛,60℃低温烘干,得到超细小麦秸秆粉末,备用;
(2)将超细小麦秸秆粉末置于烧杯中,加入15倍重量份的去离子水,混合搅拌10min,使其充分混合,形成泥状,得到小麦秸秆泥;
(3)将小麦秸秆泥仔细平铺在玻璃片上,用BXSY-01型等离子体果蔬保鲜处理机在600W功率下处理小麦秸秆泥5min,再将处理过的秸秆泥置于烘箱中60℃低温干燥24h,研磨,等离子体处理过的小麦秸秆粉;
(4)将等离子体处理过的小麦秸秆粉分散到100倍重量份的乙醇中,混合搅拌30min,再加入10倍重量份的实施例1制得的超支化试剂,65℃回流磁力搅拌24h,抽滤,用乙醇洗涤沉淀,将沉淀置于烘箱中60℃低温干燥,研磨,得到超支化耦合改性小麦秸秆粉。
实施例3
(1)将小麦秸秆用自来水清洗干净,50℃低温烘干,粉碎机粉碎,过400目筛,50℃低温烘干,得到超细小麦秸秆粉末,备用;
(2)将超细小麦秸秆粉末置于烧杯中,加入10倍重量份的去离子水,混合搅拌10min,使其充分混合,形成泥状,得到小麦秸秆泥;
(3)将小麦秸秆泥仔细平铺在玻璃片上,用BXSY-01型等离子体果蔬保鲜处理机在600W功率下处理小麦秸秆泥3min,再将处理过的秸秆泥置于烘箱中50℃低温干燥20h,研磨,等离子体处理过的小麦秸秆粉;
(4)将等离子体处理过的小麦秸秆粉分散到50倍重量份的乙醇中,混合搅拌30min,再加入10倍重量份的实施例1制得的超支化试剂,60℃回流磁力搅拌20h,抽滤,用乙醇洗涤沉淀,将沉淀置于烘箱中50℃低温干燥,研磨,得到超支化耦合改性小麦秸秆粉。
实施例4
(1)将小麦秸秆用自来水清洗干净,60℃低温烘干,粉碎机粉碎,过600目筛,60℃低温烘干,得到超细小麦秸秆粉末,备用;
(2)将超细小麦秸秆粉末置于烧杯中,加入15倍重量份的去离子水,混合搅拌15min,使其充分混合,形成泥状,得到小麦秸秆泥;
(3)将小麦秸秆泥仔细平铺在玻璃片上,用BXSY-01型等离子体果蔬保鲜处理机在800W功率下处理小麦秸秆泥5min,再将处理过的秸秆泥置于烘箱中60℃低温干燥24h,研磨,等离子体处理过的小麦秸秆粉;
(4)将等离子体处理过的小麦秸秆粉分散到100倍重量份的乙醇中,混合搅拌60min,再加入10倍重量份的实施例1制得的超支化试剂,70℃回流磁力搅拌24h,抽滤,用乙醇洗涤沉淀,将沉淀置于烘箱中60℃低温干燥,研磨,得到超支化耦合改性小麦秸秆粉。
实施例5
准确称取0.1g的实施例2获得的超细小麦秸秆粉末、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆粉,并通过压片机压片,再使用接触角测定仪进行接触角测试。结果如图1所示。图1为超细小麦秸秆粉末、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆粉表面接触角图,其中,a为超细小麦秸秆粉末,b为等离子体处理过的小麦秸秆粉,c为超支化耦合改性小麦秸秆粉。由图1可知,超细小麦秸秆粉表面接触角为78°,经过等离子体处理过的小麦秸秆粉表面接触角为57°,经超支化耦合改性后小麦秸秆粉表面接触角为45°。接触角越小,秸秆表面的浸润性越高。由测试结果可以看出,仅仅对秸秆粉进行等离子体处理,秸秆粉表面的浸润性改善程度不大,而再经过超支化耦合改性后,浸润性有了较大程度的提高。
实施例6
准确称取10mg的实施例2中得到的超细小麦秸秆粉分、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆置于三个不同的离心管中,加入10mL去离子水,充分震荡,静置30s观察其分散性能。
结果如图2所示,图2为超细小麦秸秆粉末、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆粉在水中分散图,其中,a为超细小麦秸秆粉末,b为等离子体处理过的小麦秸秆粉,c为超支化耦合改性小麦秸秆粉。由图2可知,仅仅对秸秆粉进行等离子体处理,秸秆粉在水中的分散性比未进行等离子体处理改性的秸秆粉更差了,这可能是等离子体处理过程中高温使得秸秆粉末有少许团聚,降低了其在水中的分散性,而再进行超支化改性后,表面接枝了含硅基团,结构中支链增多,使其更容易分散在水中。
实施例7
称取少许的实施例2中得到的超细小麦秸秆粉分、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆粉,经过喷金预处理后,通过扫描电子显微镜进行电镜扫描,放大5000倍,观察秸秆粉改性前后的形貌变化,结果如图3所示。图3为超细小麦秸秆粉末、等离子体处理过的小麦秸秆粉、超支化耦合改性小麦秸秆粉扫描电镜图,其中,a为超细小麦秸秆粉末,b为等离子体处理过的小麦秸秆粉,c为超支化耦合改性小麦秸秆粉。由图3可知,未改性的秸秆粉,表面平滑,结构致密,仅有少量凸起结构;经过等离子体处理后,表面结构变得疏松,无序,且呈现出不同形状的凹凸裂痕;再经过超支化改性后,表面结构被破坏,裂痕增多。由上述实验可知,本发明提供的小麦秸秆表面改性方法,采用等离子体处理和超支化改性耦合的处理方式,使秸秆的表面变得更加粗糙,增加其表面接触面积,减小秸秆表面的接触角,增强秸秆表面的浸润性,提高其在溶液中的分散性,有利于秸秆进一步的高值化利用。
对比例1对小麦秸秆粉单独进行超支化改性
(1)将小麦秸秆用自来水清洗干净,60℃低温烘干,粉碎机粉碎,过500目筛,60℃低温烘干,得到超细小麦秸秆粉末,备用;
(2)将超细小麦秸秆粉分散到100倍重量份的乙醇中,混合搅拌30min,再加入10倍重量份的实施例1制得的超支化试剂,65℃回流磁力搅拌24h,抽滤,用乙醇洗涤沉淀,将沉淀置于烘箱中60℃低温干燥,研磨,得到超支化改性小麦秸秆粉。
称取0.1g对比例2中获得的等离子体处理过的小麦秸秆粉,通过压片机压片,再使用接触角测定仪进行接触角测试,结果如图4所示。
称取10mg对比例2中获得的等离子体处理过的小麦秸秆粉,置于离心管中,加入10mL的去离子水,充分震荡,静置30s观察其分散效果,结果如图4所示。
取少许对比例2中获得的等离子体处理过的小麦秸秆粉,经过喷金预处理后,用扫描电子显微镜进行电镜扫描,观察其形貌特征,结果如图4所示。
图4为仅经过超支化改性后的小麦秸秆粉的表面接触角测试图、在水中的分散效果图和扫描电镜图。其中,a为仅经过超支化改性后的小麦秸秆粉的表面接触角测试图,b为仅经过超支化改性后的小麦秸秆粉在水中的分散效果图,c为仅经过超支化改性后的小麦秸秆粉的扫描电镜图。由图4中a可知,仅经过超支化改性后的小麦秸秆粉的表面接触角为63°,秸秆表面的浸润性得到轻微改善;由图4中b可知,仅经过超支化改性后的小麦秸秆粉的在水中的分散时可以看到较多沉淀,说明仅仅对秸秆粉进行超支化改性并不能对其在水中的分散性有所改善;由图4中c可知,仅经过超支化改性后的小麦秸秆粉表面结构有少许裂痕,但改善并不明显。
综上所述,通过单独等离子体处理和单纯超支化改性后的小麦秸秆,虽然都可以对秸秆表面的浸润性有所改善,对秸秆表面形貌也有轻微改变,但均不能提高小麦秸秆在水中的分散性;而通过等离子体处理和超支化耦合改性的小麦秸秆粉不仅浸润性好,表面结构粗糙,利于其他分子渗透,而且在水中的分散性也提高很多,适合用于进一步的高值化利用。

Claims (8)

1.一种基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,包括以下步骤:
(1)用水将小麦秸秆清洗,烘干,粉碎,过筛,得到超细小麦秸秆粉;
(2)在超细小麦秸秆粉中加入水,混合搅拌,形成小麦秸秆泥;
(3)将小麦秸秆泥铺平后进行等离子体处理,烘干,研磨,得到等离子体处理后的小麦秸秆粉;
(4)将等离子体处理后的小麦秸秆粉加入到乙醇中,混合搅拌,加入聚硅氧烷超支化试剂,搅拌进行超支化改性反应,抽滤,用乙醇洗涤沉淀,烘干沉淀,研磨,得到超支化耦合改性小麦秸秆粉。
2.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(1)中,所述烘干温度为50-60℃,所述过筛是过400-600目筛。
3.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(2)中,所述超细小麦秸秆粉与水的重量比为1:10-15,所述混合搅拌时间为10-15min。
4.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(3)中,所述等离子处理时的功率为600-800W,所述处理时间为3-5min。
5.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(3)中,所述烘干温度为50-60℃,所述烘干时间为20-24h。
6.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(4)中,所述聚硅氧烷超支化试剂是通过硅烷偶联剂KH-560、KH-570中的任一种或几种超支化聚合制备得到。
7.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(4)中,所述等离子体处理过的秸秆粉与乙醇的重量比为1:50-100,所述等离子体处理过的秸秆粉与超支化试剂重量比为1:10-15。
8.根据权利要求1所述的基于等离子体和超支化耦合的小麦秸秆表面改性方法,其特征在于,步骤(4)中,所述混合搅拌时间为30-60min,所述搅拌进行超支化改性反应是在60-70℃回流磁力搅拌20-24h,所述烘干温度为50-60℃。
CN202210165184.1A 2022-02-22 2022-02-22 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法 Active CN114524940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210165184.1A CN114524940B (zh) 2022-02-22 2022-02-22 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210165184.1A CN114524940B (zh) 2022-02-22 2022-02-22 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法

Publications (2)

Publication Number Publication Date
CN114524940A true CN114524940A (zh) 2022-05-24
CN114524940B CN114524940B (zh) 2023-05-26

Family

ID=81624302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210165184.1A Active CN114524940B (zh) 2022-02-22 2022-02-22 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法

Country Status (1)

Country Link
CN (1) CN114524940B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115946201A (zh) * 2022-11-30 2023-04-11 优优新材料股份有限公司 一种基于Plamsa的人造板用秸秆纤维处理工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709664A (zh) * 2005-07-12 2005-12-21 南京林业大学 利用等离子体改善农作物秸秆与脲醛树脂界面胶合性能的方法
US20090163657A1 (en) * 2005-10-25 2009-06-25 Nissan Chemical Industries, Ltd. Polymer Structure Whose Surface and/or Interface Is Modified, and Method for Producing the Same
JP2010222228A (ja) * 2009-03-25 2010-10-07 Tokyo Metropolitan Univ 表面ハイパーブランチまたはデンドリマー修飾無機ナノ粒子および気体分離膜
CN103194002A (zh) * 2013-05-02 2013-07-10 东北林业大学 一种用于难粘的聚烯烃基木塑复合材料的协同表面处理的方法
CN103334308A (zh) * 2013-04-26 2013-10-02 苏州大学 一种改性芳纶纤维及其制备方法
CN105032362A (zh) * 2015-03-05 2015-11-11 中霖中科环境科技(安徽)股份有限公司 一种对秸秆进行等离子体处理后吸附印染废水的方法
CN106012492A (zh) * 2016-05-30 2016-10-12 哈尔滨工业大学 一种双官能超支化硅氧烷改善pbo纤维抗紫外性能的方法
CN106061089A (zh) * 2016-06-21 2016-10-26 南京林业大学 一种利用甲醛介质阻挡放电等离子体增强农作物秸秆胶合性能的方法
CN106079012A (zh) * 2016-06-21 2016-11-09 南京林业大学 一种利用水蒸气介质阻挡放电等离子体增强农作物秸秆胶合性能的方法
CN107586091A (zh) * 2017-10-23 2018-01-16 安徽展大生物科技有限公司 一种秸秆砖的制备方法
CN110564172A (zh) * 2019-09-03 2019-12-13 界首市宏茂塑业有限公司 一种废旧塑料颗粒的再利用处理方法
CN111269482A (zh) * 2020-03-31 2020-06-12 镇江恒达包装股份有限公司 一种硅铝微珠共混改性聚乙烯复合材料及其制备方法
CN113878684A (zh) * 2020-07-01 2022-01-04 阜阳市宏桥秸秆科技有限公司 一种破坏小麦秸秆表面腊质层的方法
US20220033587A1 (en) * 2018-12-04 2022-02-03 Evonik Operations Gmbh Reactive siloxanes

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709664A (zh) * 2005-07-12 2005-12-21 南京林业大学 利用等离子体改善农作物秸秆与脲醛树脂界面胶合性能的方法
US20090163657A1 (en) * 2005-10-25 2009-06-25 Nissan Chemical Industries, Ltd. Polymer Structure Whose Surface and/or Interface Is Modified, and Method for Producing the Same
JP2010222228A (ja) * 2009-03-25 2010-10-07 Tokyo Metropolitan Univ 表面ハイパーブランチまたはデンドリマー修飾無機ナノ粒子および気体分離膜
CN103334308A (zh) * 2013-04-26 2013-10-02 苏州大学 一种改性芳纶纤维及其制备方法
CN103194002A (zh) * 2013-05-02 2013-07-10 东北林业大学 一种用于难粘的聚烯烃基木塑复合材料的协同表面处理的方法
CN105032362A (zh) * 2015-03-05 2015-11-11 中霖中科环境科技(安徽)股份有限公司 一种对秸秆进行等离子体处理后吸附印染废水的方法
CN106012492A (zh) * 2016-05-30 2016-10-12 哈尔滨工业大学 一种双官能超支化硅氧烷改善pbo纤维抗紫外性能的方法
CN106061089A (zh) * 2016-06-21 2016-10-26 南京林业大学 一种利用甲醛介质阻挡放电等离子体增强农作物秸秆胶合性能的方法
CN106079012A (zh) * 2016-06-21 2016-11-09 南京林业大学 一种利用水蒸气介质阻挡放电等离子体增强农作物秸秆胶合性能的方法
CN107586091A (zh) * 2017-10-23 2018-01-16 安徽展大生物科技有限公司 一种秸秆砖的制备方法
US20220033587A1 (en) * 2018-12-04 2022-02-03 Evonik Operations Gmbh Reactive siloxanes
CN110564172A (zh) * 2019-09-03 2019-12-13 界首市宏茂塑业有限公司 一种废旧塑料颗粒的再利用处理方法
CN111269482A (zh) * 2020-03-31 2020-06-12 镇江恒达包装股份有限公司 一种硅铝微珠共混改性聚乙烯复合材料及其制备方法
CN113878684A (zh) * 2020-07-01 2022-01-04 阜阳市宏桥秸秆科技有限公司 一种破坏小麦秸秆表面腊质层的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115946201A (zh) * 2022-11-30 2023-04-11 优优新材料股份有限公司 一种基于Plamsa的人造板用秸秆纤维处理工艺

Also Published As

Publication number Publication date
CN114524940B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Mariño et al. A multistep mild process for preparation of nanocellulose from orange bagasse
CN102230284B (zh) 用于农作物秸秆纤维素提取的超声波辅助汽爆预处理工艺
CN108822315B (zh) 一种高强透明疏水性纤维素纳米膜及其制备方法
US20140309414A1 (en) Method for extracting polysaccharides from higher plants and fungi through microwave chemical treatment
CN110055796B (zh) 一种微纳米木质素纤维素及其制备方法和用途
CN101173157B (zh) 利用废弃亚麻屑和/或中药渣、或者废纸为原料的保水剂及制备方法
CN114524940B (zh) 一种基于等离子体和超支化耦合对小麦秸秆表面改性方法
Xue et al. Ethanol organosolv lignin as a reactive filler for acrylamide‐based hydrogels
CN109754951B (zh) 一种纤维素-石墨烯复合透明导电膜及其制备方法
Guo et al. Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf
CN114568709B (zh) 一种提高方竹笋水溶性膳食纤维含量的提取方法
Yang et al. Impact of dimethyl sulfoxide treatment on morphology and characteristics of nanofibrillated cellulose isolated from corn husks
Qian et al. Cellulose nanowhiskers from moso bamboo residues: extraction and characterization
CN114197233B (zh) 一种从农林固废物中分离提取纤维素纳米纤维的方法
CN112709090B (zh) 一种制备含木素的纤维素纳米纤丝的方法
Debnath et al. Microwave-assisted quick synthesis of microcrystalline cellulose from black tea waste (Camellia sinensis) and characterization
CN110092947B (zh) 一种微纳米纤维素复合物、及其制备方法和用途
CN113292747B (zh) 一种生物质木质素纳米球壳的制备方法及应用
CN115418875A (zh) 一种从水葫芦中提取纳米纤维素的方法
CN113999322A (zh) 一种高羧基含量的tempo氧化纤维素的低能耗制备方法
CN114045316A (zh) 一种改性谷物膳食纤维及其制备方法
CN112279926A (zh) 一种基于生物质废渣的低黏度纤维素纳米纤维分散液制备方法
CN109024037B (zh) 一种复合酶酶解制备条形纳米纤维素及其方法
CN113388651A (zh) 一种玉竹纤维纳米晶的制备方法
CN112160179A (zh) 一种菠萝皮渣木质纳米纤维素的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant