CN114517283A - 沉积在基体表面的多层涂层系统及其制备方法 - Google Patents

沉积在基体表面的多层涂层系统及其制备方法 Download PDF

Info

Publication number
CN114517283A
CN114517283A CN202210082130.9A CN202210082130A CN114517283A CN 114517283 A CN114517283 A CN 114517283A CN 202210082130 A CN202210082130 A CN 202210082130A CN 114517283 A CN114517283 A CN 114517283A
Authority
CN
China
Prior art keywords
coating
layer
tinbn
tialn
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210082130.9A
Other languages
English (en)
Inventor
邱联昌
高亚伟
谭卓鹏
史海东
聂丽灵
何珊
廖星文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Achteck Tool Technology Co ltd
Original Assignee
Ganzhou Achteck Tool Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganzhou Achteck Tool Technology Co ltd filed Critical Ganzhou Achteck Tool Technology Co ltd
Priority to CN202210082130.9A priority Critical patent/CN114517283A/zh
Publication of CN114517283A publication Critical patent/CN114517283A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Abstract

本发明提供沉积在基体表面的多层涂层系统及其制备方法,包括多层涂层,所述多层涂层由第一涂层和第二涂层彼此交替沉积而成;所述第一涂层是具有(200)晶面择优取向生长的面心立方结构的钛铝氮化物(c‑Ti1‑xAlxN),所述第二涂层是具有(200)晶面择优取向生长的面心立方结构的钛铌氮化物(c‑Ti1‑aNbaN),且所述第一涂层与所述第二涂层之间形成共格生长界面。本发明的目的在于提供一种具有c‑Ti1‑aNbaN/c‑Ti1‑ aNbaN的多层涂层系统及其制备方法,该涂层系统具有更高的硬度、耐磨性、抗粘性,以及更强的高温抗氧化性能和结合强度。

Description

沉积在基体表面的多层涂层系统及其制备方法
技术领域
本发明属于表面防护涂层技术领域,尤其涉及沉积在基体表面的多层涂层系统及其制备方法。
背景技术
纯铁硬度低,塑韧性高,变形大,断屑难,容易粘屑,加工表面粗糙,加工性较差。奥氏体不锈钢虽然强度和硬度不高,但加工硬化严重,导热系数低,塑、韧性好,不易断屑,切削性能较差。镍基高温合金的难加工特性主要表现为切削力大、切削温度高、导热性差、材料高温硬度高及材料中金属化合物和硬质点较多等问题。由于纯铁、奥氏体不锈钢、镍基高温合金等材料加工时,断屑难、容易粘屑、加工硬化严重,切削热集中在刀尖,不易散热,因此,切削产生的高温等使刀具发生严重的扩散磨损、氧化磨损和粘结磨损。
PVD方法制备的面心立方结构钛铝氮化物涂层具有高的硬度和抗氧化性,作为切削刀具涂层广泛应用于铸铁、碳钢、合金钢、不锈钢、钛合金、镍基高温合金、有色金属等材料的切削加工。PVD方法制备的NbN涂层,切削纯铁、奥氏体不锈钢、镍基高温合金时具有良好的抗粘性,但NbN涂层通常具有较高的硬度和较大的残余应力,直接沉积在c-Ti1-xAlxN涂层表面时往往结合强度较低,容易剥落。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种具有c-Ti1-aNbaN/c-Ti1-aNbaN的多层涂层系统及其制备方法,该涂层系统具有更高的硬度、耐磨性、抗粘性,以及更强的高温抗氧化性能和结合强度。
本申请方案提供沉积在基体表面的多层涂层系统,包括:多层涂层,所述多层涂层由第一涂层和第二涂层彼此交替沉积而成;所述第一涂层是具有(200)晶面择优取向生长的面心立方结构的钛铝氮化物(c-Ti1-xAlxN),所述第二涂层是具有(200)晶面择优取向生长的面心立方结构的钛铌氮化物(c-Ti1-aNbaN),且所述第一涂层与所述第二涂层之间形成共格生长界面。
进一步地,所述第一涂层c-Ti1-xAlxN中,x为Al元素的原子百分比,Al元素与Ti元素的原子百分比总和等于1,x的取值范围是0<x≤0.65;所述第一涂层的X射线衍射峰面积比为R1,1.0≤R1≤5.0,R1=Ic-TiAlN(200)/(Ic-TiAlN(200)+Ic-TiAlN(111)),式中Ic-TiAlN(200)和Ic-TiAlN(111)分别是从利用Cu-Kα辐射对于c-Ti1-xAlxN(200)和c-Ti1-xAlxN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
进一步地,所述第二涂层c-Ti1-aNbaN中,a为Nb元素的原子百分比,Nb元素与Ti元素的原子百分比总和等于1,a的取值范围是0<a≤0.30;所述第二涂层的X射线衍射峰面积比为R2,1.0≤R2≤3.0,R2=Ic-TiNbN(200)/(Ic-TiNbN(200)+Ic-TiNbN(111)),且Ic-TiNbN(200)和Ic-TiNbN(111)分别是从利用Cu-Kα辐射对于c-Ti1-aNbaN(200)和c-Ti1-aNbaN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
进一步地,所述第一涂层的厚度和所述第二涂层的厚度之和不大于6.0μm,所述多层涂层总厚度在3.0~12.0μm之间。
进一步地,所述第一涂层厚度与所述第二涂层厚度之比R的取值范围是:1≤R≤3。
进一步地,还包括沉积在基体表面和所述多层涂层之间的结合层。
进一步地,所述结合层为Ti1-xAlxN、TiN、Cr、Ti中的一种或多种。
还提供制备上述任一项技术方案所述的多层涂层系统的方法,通过在含氮气气氛中由至少一个含有钛和铝靶的多弧离子镀或磁控溅射技术来沉积形成所述第一涂层,通过在含氮气气氛中由至少一个含钛和铌靶的多弧离子镀或磁控溅射技术来沉积形成所述第二涂层;沉积形成所述多层涂层的过程中在基体上施加负偏压。
进一步地,所述的靶包括粉末冶金方法制备的靶。
进一步地,负偏压的绝对值在40~80V之间。
本申请的改进带来如下优点:
(1)本申请实施例提供的多层涂层系统在TiN基础上添加金属元素Nb,形成面心立方结构的c-Ti1-aNbaN固溶体,可显著提升TiN涂层的硬度与耐磨性。c-Ti1-aNbaN可直接沉积在c-Ti1-xAlxN(第一涂层)表面上,c-TiNbN和c-TiAlN都是沿(200)晶面生长时更易形成共格生长界面,从而提高涂层之间的结合强度。
(2)粘结磨损和氧化磨损是刀具加工纯铁、奥氏体不锈钢、镍基高温合金等材料的典型失效方式。这些材料一般不含Nb元素或者含量极低,加工时即使切削温度较高,工件材料对涂层材料的化学亲和性也较低,因此c-TiNbN涂层可以降低刀具的粘结磨损。而c-TiAlN涂层由于含有Al元素,其抗氧化性较高,一般Al含量越高,抗氧化性越好。第一涂层(c-Ti1-xAlxN)与第二涂层(c-Ti1-aNbaN)的结合在具有较高结合强度的同时,还使得多层涂层系统具有更好的高温抗氧化性能,显著降低纯铁、奥氏体不锈钢、镍基高温合金等材料加工时的粘结磨损和氧化磨损,因而显著提高切削性能和使用寿命。
(3)在加工纯铁、奥氏体不锈钢、镍基高温合金时,因为这些材料一般不含Nb元素或者含量极低,加工时即使切削温度较高,工件材料对涂层材料的化学亲和性也较低,因此c-TiNbN涂层的抗粘性好。
(4)多层涂层系统的各层均具有(200)晶面择优取向生长,各层涂层之间容易形成共格生长界面,可进一步提升涂层之间的结合强度。
(5)作为进一步改进,(111)晶面是面心立方晶体的原子最密排面,有12个滑移系。涂层以(111)晶面择优取向生长时,具有最佳的塑性变形能力,因此涂层具有更好的韧性,而涂层以(200)晶面择优取向生长时涂层具有更高的硬度。本发明通过调控(200)与(111)晶面衍射峰面积来调节涂层的力学性能,因此本发明的多层涂层系统具有高结合强度、高硬度与耐磨性、高抗氧化性和高抗粘性能,可满足纯铁、奥氏体不锈钢、镍基高温合金等材料的切削加工要求。
附图说明
图1为本发明实施例多层涂层系统的结构示意图;
图2为本发明实施例多层涂层系统的断口电子显微照片;
图3为阴极电弧离子镀技术制备的c-Ti0.50Al0.50N涂层断口电子显微照片;
图4为阴极电弧离子镀技术制备的c-Ti0.80Nb0.20N涂层断口电子显微照片;
其中,基体100,结合层210,多层涂层220,第一涂层221,第二涂层222,最外层230。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
图1为本发明多层涂层系统的结构示意图,作为一个实施例,多层涂层系统涂覆于基体100表面,由内至外包括有结合层210、多层涂层220和最外层230,多层涂层220由第一涂层221和第二涂层222彼此交替沉积形成。
基体100可以是由硬质合金、金属陶瓷、高速钢、非金属陶瓷、立方氮化硼、聚晶金刚石材料中的一种制成。
结合层210可以是Ti1-xAlxN、TiN、Cr、Ti等材料中的一种。
多层涂层220通过物理气相沉积技术沉积形成,多层涂层总厚度在3.0~12.0μm之间,优选在3.5~5.5μm之间。
第一涂层221是c-Ti1-xAlxN层,是具有(200)晶面择优取向生长的面心立方结构的钛铝氮化物。c-Ti1-xAlxN中,x为Al元素的原子百分比,Al元素与Ti元素的原子百分比总和等于1,x的取值范围是0<x≤0.65,优选0.2<x≤0.45。第一涂层的X射线衍射峰面积比为R1,1.0≤R1≤5.0,优选2.0≤R1≤4.0,R1=Ic-TiAlN(200)/(Ic-TiAlN(200)+Ic-TiAlN(111)),式中Ic-TiAlN(200)和Ic-TiAlN(111)分别是从利用Cu-Kα辐射对于c-Ti1-xAlxN(200)和c-Ti1-xAlxN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
第二涂层222是c-Ti1-aNbaN层,是具有(200)晶面择优取向生长的面心立方结构的钛铌氮化物。c-Ti1-aNbaN中,a为Nb元素的原子百分比,Nb元素与Ti元素的原子百分比总和等于1,a的取值范围是0<a≤0.30,优选0.10<a≤0.20。第二涂层的X射线衍射峰面积比为R2,1.0≤R2≤3.0,优选1.5≤R2≤2.5。R2=Ic-TiNbN(200)/(Ic-TiNbN(200)+Ic-TiNbN(111)),且Ic-TiNbN(200)和Ic-TiNbN(111)分别是从利用Cu-Kα辐射对于c-Ti1-aNbaN(200)和c-Ti1-aNbaN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
第一涂层的厚度和第二涂层的厚度之和不大于6.0μm,优选不大于4μm;第一涂层221厚度与第二涂层222厚度比R的值为1≤R≤3,优选1.5≤R≤2.5。
最外层230为不含TiNbN层,可以是TiN、NbN、TiAlN等材料中的一种或多种。
作为一个实施例,制备多层涂层系统的方法,通过多弧离子镀技术沉积结合层,并且在至少部分沉积时间内在基体上施加负偏压;通过在含氮气气氛中由至少一个含有钛和铝靶的多弧离子镀或磁控溅射技术来沉积形成第一涂层,通过在含氮气气氛中由至少一个含钛和铌靶的多弧离子镀或磁控溅射技术来沉积形成第二涂层;所述的靶包括粉末冶金方法制备的靶;沉积形成多层涂层的过程中在基体上施加负偏压,负偏压的绝对值在40~80V之间,如基体负偏压为-40V、-60V、-80V等。
实施例1:图2为本发明制备的涂层实物断口电子显微照片,基体为WC-Co基硬质合金,多层涂层结构为c-Ti0.50Al0.50N层和c-Ti0.75Nb0.25N层交替沉积,其中c-Ti0.50Al0.50N层厚度为2.4μm、c-Ti0.75Nb0.25N层厚度为0.9μm,厚度比R=2.7,采用阴极电弧离子镀技术制备。
对比例1:图3为采用阴极电弧离子镀技术制备的c-Ti0.50Al0.50N单层涂层(靶材为Ti50Al50),厚度为5.2μm。
对比例2:图4为采用阴极电弧离子镀技术制备的c-Ti0.75Nb0.25N单层涂层,厚度为5.9μm。
表1为实施例1、对比例1和对比例2的力学性能比较。
表1力学性能比较
涂层 硬度(GPa) 结合强度(N) 700℃氧化1h增重(mg)
实施例1 30.0 85 7
对比例1 28.0 90 5
对比例2 25.0 70 10
硬度的检测方法如下
将基体表面抛光成镜面,涂层沉积后用直径为20mm的轴承钢球在涂层表面对磨20秒,研磨时加入金刚石研磨剂。然后采用TTX-NHT2型纳米压痕仪(奥地利安东帕公司)测试磨痕处涂层的硬度(放大100倍),压针为金刚石玻氏压头(Berkovich),最大载荷20mN,加载速率40mN/min,卸载速率为40mN/min,保压时间5秒,为了消除基体对硬度的影响,压入深度小于涂层总厚度的1/10。共测量20个不同点的硬度,取平均值为涂层的硬度。
结合强度的检测方法如下
采用瑞士CSM公司生产的REVETEST划痕测试仪测量涂层与基体的结合强度。划痕试验法是用一个直径约200微米的半球形金刚石压头在涂层表面上滑动,在此过程中通过自动加载机构连续增加垂直载荷L,当L达到其临界载荷Lc时,涂层与基体开始剥离,涂层和基体之间的界面临界载荷Lc即压头完全划透涂层并使之从其基体上连续剥离所需要的最小载荷;同时,压头与涂层和基体的摩擦力F相应发生变化。此时,涂层会产生声发射,通过传感器获取划痕时的声发射信号、载荷的变化量、切向力的变化量,经放大处理,输入计算机经A/D转换将测量结果绘制成图形,在声发射信号-载荷曲线上临界载荷值Lc处对应得出声发射峰,此时临界载荷Lc即为涂层与基体结合强度的判据。测试参数为:线性加载,加载载荷200N,加载速率99N/min,划痕速度5mm/min,划痕长度5mm。
氧化增重的测试方法如下
将样品置于马弗炉中在空气气氛下加热至700℃,保温1h,然后将样品取出在空气中冷却至室温。采用精度为0.1mg的高精度电子天平称量样品氧化前后的重量,计算样品的氧化增重。
由表1可以看出,相比于单层的c-Ti1-xAlxN层或c-Ti1-aNbaN层,本发明提供的多层涂层具有更高的硬度与耐磨性,在结合强度和高温抗氧化性能方面也综合了单层的c-Ti1- xAlxN层和c-Ti1-aNbaN层的优点,与硬度和耐磨性取得更佳的平衡。
铣削奥氏体不锈钢对比
工件材质:316L
刀片型号:ONHU050408-WC
切削条件:切削速度140m/min、切深1.5mm、进给0.2mm,干切。
切削寿命与后刀面磨损量见表2,刀片后刀面磨损量采用带刻度标尺的OLYMPUSSZ61光学超景深显微镜测量。
表2铣削奥氏体不锈钢316L对比
涂层 切削寿命(min) 后刀面磨损量(mm)
实施例1 30 0.25
对比例1 20 0.32
对比例2 22 0.28
铣削高温合金对比
工件名称:火焰器
工件材质:GH7192
刀片型号:RPHT1204M8E-MM3
切削条件:切削速度40m/min、切深1.5mm、进给0.15mm,湿切。
切削寿命与后刀面磨损量见表3。
表3铣削高温合金GH7192对比
涂层 切削寿命(min) 后刀面磨损量(mm)
实施例1 27 0.31
对比例1 19 0.32
对比例2 17 0.29
由表2和表3可以看出,在对不同材料的工件进行切削时,相比于单层的c-Ti1- xAlxN层或c-Ti1-aNbaN层,本发明提供的多层涂层可以显著降低粘结磨损和氧化磨损,提高刀具的切削性能和使用寿命。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

1.沉积在基体表面的多层涂层系统,其特征在于,包括多层涂层,所述多层涂层由第一涂层和第二涂层彼此交替沉积而成;所述第一涂层是具有(200)晶面择优取向生长的面心立方结构的钛铝氮化物(c-Ti1-xAlxN),所述第二涂层是具有(200)晶面择优取向生长的面心立方结构的钛铌氮化物(c-Ti1-aNbaN),且所述第一涂层与所述第二涂层之间形成共格生长界面。
2.根据权利要求1所述的多层涂层系统,其特征在于,所述第一涂层c-Ti1-xAlxN中,x为Al元素的原子百分比,Al元素与Ti元素的原子百分比总和等于1,x的取值范围是0<x≤0.65;所述第一涂层的X射线衍射峰面积比为R1,1.0≤R1≤5.0,R1=Ic-TiAlN(200)/(Ic-TiAlN(200)+Ic-TiAlN(111)),式中Ic-TiAlN(200)和Ic-TiAlN(111)分别是从利用Cu-Kα辐射对于c-Ti1-xAlxN(200)和c-Ti1-xAlxN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
3.根据权利要求1所述的多层涂层系统,其特征在于,所述第二涂层c-Ti1-aNbaN中,a为Nb元素的原子百分比,Nb元素与Ti元素的原子百分比总和等于1,a的取值范围是0<a≤0.30;所述第二涂层的X射线衍射峰面积比为R2,1.0≤R2≤3.0,R2=Ic-TiNbN(200)/(Ic-TiNbN(200)+Ic-TiNbN(111)),且Ic-TiNbN(200)和Ic-TiNbN(111)分别是从利用Cu-Kα辐射对于c-Ti1-aNbaN(200)和c-Ti1-aNbaN(111)衍射峰获得的θ-2θ扫描的准Voigt峰形拟合结果中提取的X射线衍射峰面积。
4.根据权利要求1所述的多层涂层系统,其特征在于,所述第一涂层的厚度和所述第二涂层的厚度之和不大于6.0μm,所述多层涂层总厚度在3.0~12.0μm之间。
5.根据权利要求1所述的多层涂层系统,其特征在于,所述第一涂层厚度与所述第二涂层厚度之比R的取值范围是:1≤R≤3。
6.根据权利要求1所述的多层涂层系统,其特征在于,还包括沉积在基体表面和所述多层涂层之间的结合层。
7.根据权利要求6所述的多层涂层系统,其特征在于,所述结合层为Ti1-xAlxN、TiN、Cr、Ti中的一种或多种。
8.制备权利要求1-7任一项所述的多层涂层系统的方法,其特征在于,通过在含氮气气氛中由至少一个含有钛和铝靶的多弧离子镀或磁控溅射技术来沉积形成所述第一涂层,通过在含氮气气氛中由至少一个含钛和铌靶的多弧离子镀或磁控溅射技术来沉积形成所述第二涂层;沉积形成所述多层涂层的过程中在基体上施加负偏压。
9.根据权利要求8所述的方法,其特征在于,所述的靶包括粉末冶金方法制备的靶。
10.根据权利要求8所述的方法,其特征在于,负偏压的绝对值在40~80V之间。
CN202210082130.9A 2022-01-24 2022-01-24 沉积在基体表面的多层涂层系统及其制备方法 Pending CN114517283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210082130.9A CN114517283A (zh) 2022-01-24 2022-01-24 沉积在基体表面的多层涂层系统及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210082130.9A CN114517283A (zh) 2022-01-24 2022-01-24 沉积在基体表面的多层涂层系统及其制备方法

Publications (1)

Publication Number Publication Date
CN114517283A true CN114517283A (zh) 2022-05-20

Family

ID=81595891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210082130.9A Pending CN114517283A (zh) 2022-01-24 2022-01-24 沉积在基体表面的多层涂层系统及其制备方法

Country Status (1)

Country Link
CN (1) CN114517283A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756019A2 (de) * 1995-06-28 1997-01-29 Hauzer Industries B.V. PVD-Hartstoffbeschichtung
JP2004074379A (ja) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2010076083A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2011240437A (ja) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP2012157938A (ja) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN105247099A (zh) * 2013-04-26 2016-01-13 瓦尔特公开股份有限公司 具有cvd涂层的工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756019A2 (de) * 1995-06-28 1997-01-29 Hauzer Industries B.V. PVD-Hartstoffbeschichtung
JP2004074379A (ja) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2010076083A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2011240437A (ja) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP2012157938A (ja) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN105247099A (zh) * 2013-04-26 2016-01-13 瓦尔特公开股份有限公司 具有cvd涂层的工具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
任国进等: "离子镀AlTiN涂层微结构及切削性能研究", vol. 30, no. 4, pages 18 - 20 *
蔡志海等: "《CrN基微纳米复合膜的制备与应用》", 知识产权出版社, pages: 27 - 28 *

Similar Documents

Publication Publication Date Title
CN114196940B (zh) 一种复合涂层刀具及其制备方法和应用
Fernandes et al. Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure
Endrino et al. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel
Grigoriev et al. DLC-coating application to improve the durability of ceramic tools
JP5303816B2 (ja) 硬質皮膜被覆工具
JP4839120B2 (ja) 積層皮膜を有するピストンリング
JP5435326B2 (ja) ダイカスト用被覆金型およびその製造方法
US20080261058A1 (en) Coated cutting tool, cutting member or wear part
Chen et al. A comparative research on physical and mechanical properties of (Ti, Al) N and (Cr, Al) N PVD coatings with high Al content
JP5765627B2 (ja) 耐久性に優れる被覆工具およびその製造方法
CN111676449A (zh) 具有多梯度涂层的刀具及制备方法
JP3963354B2 (ja) 被覆切削工具
CN114672786B (zh) 一种耐高温氧化、自润滑的多层涂层刀具及其制备方法
Kumar et al. Comparative evaluation of performances of TiAlN-, AlCrN-and AlCrN/TiAlN-coated carbide cutting tools and uncoated carbide cutting tools on turning EN24 alloy steel
JP4357160B2 (ja) スパッタリングターゲットおよびそれを用いた硬質被膜、硬質膜被覆部材
CN116162917B (zh) 一种多层涂层刀具及制备方法
JP4827204B2 (ja) 塑性加工用被覆金型およびその製造方法
Lupicka et al. The adhesion of CrN thin films deposited on modified 42CrMo4 steel
JP2012149332A (ja) 硬質皮膜被覆金型及びその製造方法
CN114517283A (zh) 沉积在基体表面的多层涂层系统及其制备方法
Grzesik et al. Investigation of the tribological performance of AlTiN coated cutting tools in the machining of Ti6Al4V titanium alloy in terms of demanded tool life
JP5268771B2 (ja) スパッタリングターゲットの製造方法、それを用いた硬質被膜の形成方法および硬質被膜被覆部材
Roy et al. Microstructure and Wear of Cathodic Arc Physical Vapour Deposited on TiAlN, TiCrN and n-TiAlN/α-Si 3 N 4 Films.
JP4845490B2 (ja) 表面被覆切削工具
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220520