CN114486816B - 一种光波导激发纳腔表面等离激元共振的方法 - Google Patents

一种光波导激发纳腔表面等离激元共振的方法 Download PDF

Info

Publication number
CN114486816B
CN114486816B CN202210066487.8A CN202210066487A CN114486816B CN 114486816 B CN114486816 B CN 114486816B CN 202210066487 A CN202210066487 A CN 202210066487A CN 114486816 B CN114486816 B CN 114486816B
Authority
CN
China
Prior art keywords
nano
optical waveguide
metal film
cavity
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210066487.8A
Other languages
English (en)
Other versions
CN114486816A (zh
Inventor
王攀
刘璐芳
仝远彪
童利民
郭欣
郑钧升
潘陈馨钰
李志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Jiaxing Research Institute of Zhejiang University
Original Assignee
Zhejiang University ZJU
Jiaxing Research Institute of Zhejiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Jiaxing Research Institute of Zhejiang University filed Critical Zhejiang University ZJU
Priority to CN202210066487.8A priority Critical patent/CN114486816B/zh
Publication of CN114486816A publication Critical patent/CN114486816A/zh
Application granted granted Critical
Publication of CN114486816B publication Critical patent/CN114486816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种光波导激发纳腔表面等离激元共振的方法。在光波导的端面、外表面等表面上布置有由金属纳米颗粒、介质层、金属膜组成的纳腔结构;将金属膜先布置在光波导的表面上,金属纳米颗粒再通过介质层隔绝地布置在金属膜外表面上。本发明通过从金属膜下表面激发纳腔从而实现纳腔与光纤、集成光波导等光学系统的紧凑高效集成,不需要显微镜激发,易于集成、结构简单、成本廉价,满足纳腔等离激元器件小型化和集成化发展的需求。

Description

一种光波导激发纳腔表面等离激元共振的方法
技术领域
本发明涉及属于纳米光子学、表面等离激元研究领域的一种纳腔表面等离激元激发方法,特别涉及一种光波导激发纳腔表面等离激元共振的方法。
背景技术
利用金属纳米结构支持的局域表面等离激元共振(localized surface plasmonresonance,LSPR),即金属纳米结构中自由电子在外部光场作用下产生的集群振荡,可以对光场实现亚波长尺度的局域和增强,显著增强光与物质的相互作用,从而在光学传感、非线性光学、纳米激光器、微纳光子器件等领域发挥着重要作用。但是,对于单个金属纳米颗粒,其光场局域能力通常大于10nm。为了实现更强的局域和增强,通常将金属纳米结构靠近以实现两者的耦合,在纳米尺度间隙内可以获得高度局域且增强的光场。但是,受限于纳米加工制备技术,利用自上而下方法(光刻并结合金属沉积、聚焦离子束刻蚀等)制备的间隙等离激元纳米结构(如领结型金属纳米结构)虽然可以实现结构的大规模制备,但其光场局域能力不小于5nm。利用溶液中诱导团聚产生的纳米颗粒多聚体结构虽然可以实现纳米甚至亚纳米尺度的间隙,被用于增强拉曼散射、荧光和光学非线性效应等,但其制备可控性差、效率低,且难以将功能材料(如荧光分子、量子点、二维材料等)集成到纳米间隙中去以实现功能器件。近年来,基于金属纳米颗粒-介质-金属薄膜(nanoparticle-on-film,NPoF)结构的等离激元纳腔(plasmonic nanocavity)受到了人们的广泛关注。通过调节其介质间隙厚度,该结构可以轻松将光场局域到纳米甚至亚纳米尺度。同时,得益于成熟的金属薄膜和平面介质制备技术,NPoF纳腔结构容易制备,并且可以根据实际需求通过调节纳米颗粒形貌和介质层厚度灵活调节等离激元纳腔模式。因此,最近十年,基于这种灵活且多功能的NPoF纳腔平台产生了一系列突破性工作。
目前,几乎所有的NPoF纳腔都是基于厚度大于50nm的金属膜(几乎不透光)构建的。因此,通常需要从金属纳米颗粒一侧来实现NPoF纳腔的激发和相应光学信号的收集。为了实现对自由空间光束的转向或聚焦,往往需要使用大体积的光学部件如反射镜、透镜、显微物镜等,这极大地限制了基于纳腔的光子器件的小型化,也阻碍了纳腔等离激元器件和其它微纳光电子器件间的有效集成。因此,如何实现NPoF纳腔紧凑且高效的激发,是目前本领域亟待解决的问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种光波导激发纳腔表面等离激元共振的方法,本发明利用光学透明的金属膜来构建NPoF纳腔,并将其与光波导集成,利用在光波导中传播的光从金属膜下表面激发纳腔,因此利用该方法可以实现NPoF纳腔的紧凑、高效激发。
本发明解决上述技术问题采用的技术方案为:
一、一种用于光波导激发纳腔表面等离激元共振的方法
在光波导的端面、外表面等表面上布置有由金属纳米颗粒、介质层、金属膜组成的纳腔结构;将金属膜先布置在光波导的表面上,金属纳米颗粒再通过介质层隔绝地布置在金属膜外表面上。
所述的光波导为光纤或者集成光波导。
所述的光波导为非微纳光纤,非微纳光纤包括光纤包层和光纤纤芯,设置纳腔结构在非微纳光纤的端面上,具体是将金属膜布置在非微纳光纤的端面上且完整覆盖非微纳光纤的光纤纤芯,金属膜外表面布置一层介质层,介质层外表面固定上金属纳米颗粒。
所述的光波导为微纳光纤,设置纳腔结构在微纳光纤的外周面上,具体是将金属膜布置在微纳光纤的外周面上,金属膜外表面包覆一层介质层,介质层外表面固定上金属纳米颗粒。
所述的光波导为集成光波导,设置纳腔结构在集成光波导的上表面上,具体是将金属膜布置在集成光波导的上表面上,金属膜外表面包覆一层介质层,介质层外表面固定上金属纳米颗粒。
所述的金属纳米颗粒和金属膜的材料为金、银、铜、铝等。
所述的金属膜的厚度小于50nm,为采用热蒸镀、电子束蒸镀、磁控溅射等方法制备的多晶金属膜、或者化学方法合成的单晶金属片。
所述的介质层的厚度小于20nm,材料包括聚合物、有机分子、氧化硅、氧化铝等。
二、一种用于光波导激发纳腔表面等离激元共振的结构:
在光波导的端面、外表面等表面上布置有由金属纳米颗粒、介质层、金属膜组成的纳腔结构;金属膜布置在光波导的表面上,金属纳米颗粒通过介质层隔绝地布置在金属膜外表面上,使得光波导的表面向外依次布置金属膜、介质层、金属纳米颗粒。
与现有技术相比,本发明的有益效果是:
本发明利用光学透明的金属膜来构建NPoF纳腔,可通过从金属膜下表面激发纳腔从而实现纳腔与光纤、集成光波导等光学系统的紧凑高效集成,不需要显微镜激发,而避免了显微镜激发带来的设备昂贵、难以集成等问题,易于实现基于等离激元纳腔的小型化、高度集成的微纳光子器件。
本发明基于光波导提供了一种易于集成、结构简单、成本廉价的高效激发纳腔的方法,满足纳腔等离激元器件小型化和集成化发展的需求。
附图说明
图1是本发明方法在普通光纤端面上布置的结构示意图。
图2是本发明实例所用的37°角抛光的斜角光纤光学显微镜图。
图3是本发明实例所用的37°角抛光的斜角光纤和纳腔集成的光学显微镜图。
图4是本发明实例斜角光纤激发低密度纳腔的光学显微镜图。
图5是本发明实例斜角光纤激发单个纳腔的光谱曲线图。
图6是本发明实例斜角光纤激发高密度纳腔的光学显微镜图。
图7是本发明实例平整端面光纤和纳腔集成的示意图。
图8是本发明方法在微纳光纤表面布置的结构示意图。
图9是本发明实例微光纤和低密度纳腔集成的光学显微镜图。
图10是本发明实例微光纤激发低密度纳腔的光学显微镜图。
图11是本发明实例集成波导和纳腔集成的示意图。
图12是基于暗场显微镜激发纳腔的装置图。
图中,1-金属纳米颗粒、2-介质层、3-金属膜、4-光纤包层、5-光纤纤芯、6-激发光、7-非微纳光纤、8-微纳光纤、9-集成光波导、10-暗场光学显微装置。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。权利要求包括但不限于以下实施例。
如图1所示,在光波导的端面、外表面等表面上布置有由金属纳米颗粒1、介质层2、金属膜3组成的纳腔结构;将金属膜3先布置在光波导的表面上,金属纳米颗粒1再通过介质层2隔绝地布置在金属膜3外表面上,使得光波导的表面向外依次布置金属膜3、介质层2、金属纳米颗粒1。
本发明利用光学透明的金属膜3来构建NPoF纳腔,并将金属膜3、金属纳米颗粒1与光波导结合,利用在光波导中传播的光6从金属膜3下表面激发纳腔,从而实现NPoF纳腔的紧凑、高效激发。
构建NPoF纳腔形成纳腔集成包括:与光纤端面、斜抛光纤端面、微纳光纤侧壁、集成光波导侧壁的集成。
光波导为光纤或者光波导,光纤可以为非微纳光纤或者微纳光纤,光波导可以为硅光波导、氮化硅光波导、聚合物光波导等。
具体实施的金属纳米颗粒1至少为一颗,也可以是多颗。
如图1所示,光波导为非微纳光纤7,非微纳光纤7包括光纤包层4和光纤纤芯5,设置纳腔结构在非微纳光纤7的端面上,具体是将金属膜3布置在非微纳光纤7的端面上且完整覆盖非微纳光纤7的光纤纤芯5,金属膜3外表面布置一层介质层2,介质层2外表面固定上金属纳米颗粒1。激发光6从光纤纤芯5输入,达到光纤纤芯5的端面后从金属膜3下表面激发纳腔。
如图8所示,光波导为微纳光纤8,设置纳腔结构在微纳光纤8的外周面上,具体是将金属膜3布置在微纳光纤的外周面上,金属膜3外表面包覆一层介质层2,介质层2外表面固定上金属纳米颗粒1。激发光6从微纳光纤输入,达到金属膜3处后从金属膜3下表面激发纳腔。
如图11所示,光波导为集成光波导9,设置纳腔结构在集成光波导9的上表面上,具体是将金属膜3布置在集成光波导9的上表面上,金属膜3外表面包覆一层介质层2,介质层2外表面固定上金属纳米颗粒1。激发光6从集成光波导9一端入,达到金属膜3处后从金属膜3下表面激发纳腔。
金属纳米颗粒1和金属膜3的材料为金、银、铜、铝等。金属纳米颗粒1和金属膜3的材料可以相同,也可以不同。金属纳米颗粒1的形状为球形、棒形、星形、立方形等。
具体实施中,金属膜3的厚度小于50nm,为采用热蒸镀、电子束蒸镀、磁控溅射等方法制备的多晶金属膜、或者化学方法合成的单晶金属片等方法制备。介质层2的厚度小于20nm,材料包括聚合物、有机分子、氧化硅、氧化铝等。
本发明的具体实施情况如下:
首先,在光波导上制备合适尺寸的金属膜,在本发明中采用单模光纤作演示,当然也适用其它类型的光波导,同时为了实现NPoF纳腔的无背景激发,采用37°角抛光的斜角单模光纤作演示。
图2是采用的斜角单模光纤的光学显微镜图。金属膜可以采用热蒸镀、磁控溅射等方法在斜角单模光纤端面沉积,也可利用化学合成的单晶金属片,利用相应的转移方法将其转移到光纤端面,在本发明中,我们采用单晶金属片作为演示。
图3是在斜角单模光纤端面转移单晶金属片后的光学显微镜图,该单晶金属片厚度为40nm。随后,在单晶金属片区域沉积金属纳米颗粒,即可得到集成在斜角单模光纤端面的NPoF纳腔。在本发明中,作为演示,金属纳米颗粒采用化学合成的金纳米棒,平均尺寸为103nm和52nm;介质层由金纳米棒表面约1nm厚的十六烷基三甲基溴化铵和单晶金片表面约1nm厚的聚合物层构成,当然也可以用原子层沉积、聚电解质层层自组装等方法可控制备不同厚度的介质层。
当激发光耦合进入光纤后,在光纤内部传输的激发光在斜角单模光纤端面发生全内反射,其倏逝场可以穿透单晶金属片,从而实现从金属片下表面对NPoF纳腔的紧凑激发。
图4是斜抛光纤端面激发低密度NPoF纳腔的光学显微镜图,可以明显看到单个NPoF纳腔的散射光,来源于NPoF纳腔的LSPR辐射发光。图5显示的是该NPoF的散射光谱,有多个明显的散射峰,分布对应NPoF纳腔所支持的不同模式。利用自组装方法也可以构建高密度NPoF纳腔阵列,如图6所示,在37°角抛光的斜角光纤端面上高密度的纳腔被高效激发。当然,在不需要无背景激发NPoF纳腔的情况下,也可以直接使用端面平整的光纤来集成NPoF纳腔,如图7所示。在这种情况下,NPoF纳腔可以被透过金膜的激发光直接激发。
如图8所示,除了标准光纤,也可以将NPoF纳腔和微纳光纤、硅波导、氮化硅波导等微纳光波导集成起来,在本发明中采用微光纤作演示。采用火焰拉伸的方法制备直径为20μm的二氧化硅微光纤。利用转移方法将化学合成的单晶金属片转移到该微光纤外周面上,金属片厚度为20nm,如图9所示。随后,在金属区域沉积金属纳米颗粒,即可得到集成在微光纤上的NPoF纳腔。在本发明中,作为演示,金属纳米颗粒采用化学合成的金纳米棒,平均尺寸为103nm和52nm;介质层由金纳米棒表面约1nm厚的十六烷基三甲基溴化铵和单晶金片表面约1nm厚的聚合物层构成,当然也可以用原子层沉积、聚电解质层层自组装等方法可控制备不同厚度的介质层。当激发光耦合进入微光纤后,在微光纤内部传输的激发光,其倏逝场可以穿透金属片,从而实现从金属片下表面对NPoF纳腔的紧凑激发。图10是微光纤激发低密度NPoF纳腔的光学显微镜图,可以明显看到单个NPoF纳腔的散射光,来源于NPoF纳腔的LSPR辐射发光。
图11显示的是集成波导和纳腔集成的示意图。利用转移方法将金属膜转移到集成波导上表面上,在金属膜区域沉积金属纳米颗粒,即可得到集成在集成波导上的NPoF纳腔。当激发光源耦合进入后,在集成波导内部传输的激发光,其倏逝场可以穿透金属膜,从而实现从金属膜下表面对NPoF纳腔的紧凑激发。
与传统的借助暗场显微镜激发纳腔的方式(如图12所示)相比,上述各实施例结构简单、成本廉价、易于制备和集成,满足纳腔等离激元器件小型化和集成化发展的需求。

Claims (5)

1.一种光波导激发纳腔表面等离激元共振的方法,其特征在于:
在光波导的端面、外表面上布置有由金属纳米颗粒(1)、介质层(2)、金属膜(3)组成的纳腔结构;将金属膜(3)先布置在光波导的表面上,金属纳米颗粒(1)再通过介质层(2)隔绝地布置在金属膜(3)外表面上;
所述的光波导为光纤或者集成光波导(9);
所述光波导的端面、外表面具体包含斜抛光纤端面或微纳光纤侧壁或集成光波导侧壁;
所述的金属膜(3)的厚度小于50 nm,为化学方法合成的单晶金属片。
2.根据权利要求1所述的一种光波导激发纳腔表面等离激元共振的方法,其特征在于:所述的光波导为微纳光纤(8),设置纳腔结构在微纳光纤(8)的外周面上,具体是将金属膜(3)布置在微纳光纤(8)的外周面上,金属膜(3)外表面包覆一层介质层(2),介质层(2)外表面固定上金属纳米颗粒(1)。
3.根据权利要求1所述的一种光波导激发纳腔表面等离激元共振的方法,其特征在于:所述的光波导为集成光波导(9),设置纳腔结构在集成光波导(9)的上表面上,具体是将金属膜(3)布置在集成光波导(9)的上表面上,金属膜(3)外表面包覆一层介质层(2),介质层(2)外表面固定上金属纳米颗粒(1)。
4.根据权利要求1所述的一种光波导激发纳腔表面等离激元共振的方法,其特征在于:所述的金属纳米颗粒(1)和金属膜(3)的材料为金、银、铜、铝。
5.根据权利要求1所述的一种光波导激发纳腔表面等离激元共振的方法,其特征在于:所述的介质层(2)的厚度小于20 nm,材料包括聚合物、有机分子、氧化硅、氧化铝。
CN202210066487.8A 2022-01-20 2022-01-20 一种光波导激发纳腔表面等离激元共振的方法 Active CN114486816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210066487.8A CN114486816B (zh) 2022-01-20 2022-01-20 一种光波导激发纳腔表面等离激元共振的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210066487.8A CN114486816B (zh) 2022-01-20 2022-01-20 一种光波导激发纳腔表面等离激元共振的方法

Publications (2)

Publication Number Publication Date
CN114486816A CN114486816A (zh) 2022-05-13
CN114486816B true CN114486816B (zh) 2023-10-13

Family

ID=81472396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210066487.8A Active CN114486816B (zh) 2022-01-20 2022-01-20 一种光波导激发纳腔表面等离激元共振的方法

Country Status (1)

Country Link
CN (1) CN114486816B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727935A (ja) * 1993-07-12 1995-01-31 Sumitomo Metal Mining Co Ltd 光導波路型偏光子
DE19651644A1 (de) * 1995-12-14 1997-06-26 Univ Dresden Tech Anordnung zur optischen Messung von Stoffkonzentrationen
EP0822407A2 (de) * 1996-07-29 1998-02-04 Forschungszentrum Rossendorf e.V. Kompositmaterial zur Resonanzverstärkung optischer Signale und Verfahren zu dessen Herstellung
WO2002071013A1 (en) * 2001-03-01 2002-09-12 New Mexico State University Technology Transfer Corporation Optical devices and methods employing nanoparticles, microcavities, and semicontinuous metal films
WO2006132326A1 (ja) * 2005-06-09 2006-12-14 Hiroshima University 生細胞固定化法及び生細胞活性化機能測定センサー
JP2010230599A (ja) * 2009-03-28 2010-10-14 Tokyo Univ Of Agriculture & Technology 圧力センサ
CN103630515A (zh) * 2013-12-17 2014-03-12 哈尔滨工程大学 一种纳米金粒子传感器及其制作方法
JP2015078904A (ja) * 2013-10-17 2015-04-23 セイコーエプソン株式会社 光学素子、分析装置、及び電子機器
CN104834026A (zh) * 2015-06-09 2015-08-12 江西师范大学 一种宽波段光透明的连续金属膜结构及其实现方法
WO2017079882A1 (zh) * 2015-11-09 2017-05-18 杨天 一种端面具有金属微纳米结构的光纤及其制备方法和应用方法
KR101753898B1 (ko) * 2016-03-15 2017-07-04 서울대학교산학협력단 표면 플라즈몬 여기 장치
KR20180119966A (ko) * 2017-04-26 2018-11-05 한국과학기술연구원 플라즈모닉 도파관용 적층체 및 그의 제조방법
CN108982474A (zh) * 2018-09-07 2018-12-11 江西师范大学 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法
CN109632723A (zh) * 2019-02-22 2019-04-16 东北大学 一种基于多层金纳米棒的光纤spr传感器
CN109827932A (zh) * 2019-01-31 2019-05-31 马佑桥 一种基于波导耦合表面等离子体共振传感芯片
CN112850638A (zh) * 2020-12-31 2021-05-28 中国科学院微电子研究所 结构色功能纳米结构及其制备方法
CN113156554A (zh) * 2020-01-03 2021-07-23 杭州柔谷科技有限公司 光学功能薄膜及其制备方法及柔性光电子器件
CN113433067A (zh) * 2021-06-29 2021-09-24 北京大学 基于金属纳米间隙表面等离激元本征辐射的折射率传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869479B2 (en) * 2002-03-29 2005-03-22 Altair Center, Llc Method of laser-assisted fabrication of optoelectronic and photonic components
AU2005246415B8 (en) * 2004-05-19 2011-09-01 Vp Holding, Llc Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
TWI383139B (zh) * 2008-11-20 2013-01-21 Nat Chung Cheng University Inv Tubular waveguide type plasma resonance sensing device and sensing system
US20150364898A1 (en) * 2014-02-25 2015-12-17 Purdue Research Foundation Laser with sub-wavelength hole array in metal film
WO2017173289A2 (en) * 2016-04-01 2017-10-05 Massachusetts Institute Of Technology Apparatus, systems, and methods of transparent displays

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727935A (ja) * 1993-07-12 1995-01-31 Sumitomo Metal Mining Co Ltd 光導波路型偏光子
DE19651644A1 (de) * 1995-12-14 1997-06-26 Univ Dresden Tech Anordnung zur optischen Messung von Stoffkonzentrationen
EP0822407A2 (de) * 1996-07-29 1998-02-04 Forschungszentrum Rossendorf e.V. Kompositmaterial zur Resonanzverstärkung optischer Signale und Verfahren zu dessen Herstellung
WO2002071013A1 (en) * 2001-03-01 2002-09-12 New Mexico State University Technology Transfer Corporation Optical devices and methods employing nanoparticles, microcavities, and semicontinuous metal films
WO2006132326A1 (ja) * 2005-06-09 2006-12-14 Hiroshima University 生細胞固定化法及び生細胞活性化機能測定センサー
JP2010230599A (ja) * 2009-03-28 2010-10-14 Tokyo Univ Of Agriculture & Technology 圧力センサ
JP2015078904A (ja) * 2013-10-17 2015-04-23 セイコーエプソン株式会社 光学素子、分析装置、及び電子機器
CN103630515A (zh) * 2013-12-17 2014-03-12 哈尔滨工程大学 一种纳米金粒子传感器及其制作方法
CN104834026A (zh) * 2015-06-09 2015-08-12 江西师范大学 一种宽波段光透明的连续金属膜结构及其实现方法
WO2017079882A1 (zh) * 2015-11-09 2017-05-18 杨天 一种端面具有金属微纳米结构的光纤及其制备方法和应用方法
KR101753898B1 (ko) * 2016-03-15 2017-07-04 서울대학교산학협력단 표면 플라즈몬 여기 장치
KR20180119966A (ko) * 2017-04-26 2018-11-05 한국과학기술연구원 플라즈모닉 도파관용 적층체 및 그의 제조방법
CN108982474A (zh) * 2018-09-07 2018-12-11 江西师范大学 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法
CN109827932A (zh) * 2019-01-31 2019-05-31 马佑桥 一种基于波导耦合表面等离子体共振传感芯片
CN109632723A (zh) * 2019-02-22 2019-04-16 东北大学 一种基于多层金纳米棒的光纤spr传感器
CN113156554A (zh) * 2020-01-03 2021-07-23 杭州柔谷科技有限公司 光学功能薄膜及其制备方法及柔性光电子器件
CN112850638A (zh) * 2020-12-31 2021-05-28 中国科学院微电子研究所 结构色功能纳米结构及其制备方法
CN113433067A (zh) * 2021-06-29 2021-09-24 北京大学 基于金属纳米间隙表面等离激元本征辐射的折射率传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror;Rohit Chikkaraddy;《ACS Photonics》;全文 *
Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps;Tserkezis, C;《Physical Review A》;全文 *
Mercaptopyridine-Functionalized Gold Nanoparticles for Fiber-Optic Surface Plasmon Resonance Hg2+ Sensing;Huizhen Yuan;《ACS Sens.》;第704−710页 *
On-demand nanoparticle-on-mirror (NPoM) structure for cost-effective surface-enhanced Raman scattering substrates Author links open overlay panel;Puspendu Barik;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;全文 *

Also Published As

Publication number Publication date
CN114486816A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
van de Groep et al. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles
Choi et al. Compressing surface plasmons for nano-scale optical focusing
Allen et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers
Yadav et al. Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies
Wei et al. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits
Guo et al. Nanowire plasmonic waveguides, circuits and devices
Luo et al. Surface plasmon polaritons and its applications
Tuniz et al. Interfacing optical fibers with plasmonic nanoconcentrators
Huang et al. Plasmonic optical properties of a single gold nano-rod
Abolmaali et al. Photonic jets for highly efficient mid-IR focal plane arrays with large angle‐of‐view
CN108666865B (zh) 一种金属-半导体复合结构、SPPs激发方式及制备方法
US7362442B2 (en) Far-field optical microscope with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons
Xu et al. Towards the integration of nanoemitters by direct laser writing on optical glass waveguides
Regan et al. Far-field optical superlenses without metal
Butt Metal‐insulator‐metal waveguide‐based plasmonic sensors: Fantasy or truth—A critical review
Yao et al. Imaging visible light using anisotropic metamaterial slab lens
Pisco et al. Self-assembled periodic patterns on the optical fiber tip by microsphere arrays
Meng et al. Fabrication of a three-dimensional (3D) SERS fiber probe and application of in situ detection
Li et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission
Leuteritz et al. Dielectric travelling wave antennas for directional light emission
Li et al. Efficient nano-tweezers via a silver plasmonic bowtie notch with curved grooves
CN114486816B (zh) 一种光波导激发纳腔表面等离激元共振的方法
Cao et al. Super-resolution imaging of plasmonic nanostructures by microsphere-assisted microscopy
WO2022121585A1 (zh) 一种片上亚波长束缚波导及其制备方法
CN105467517B (zh) 一种基于亚波长金属v槽超强光束缚的表面等离子体波导

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant