CN114480742A - A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain - Google Patents
A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain Download PDFInfo
- Publication number
- CN114480742A CN114480742A CN202210187453.4A CN202210187453A CN114480742A CN 114480742 A CN114480742 A CN 114480742A CN 202210187453 A CN202210187453 A CN 202210187453A CN 114480742 A CN114480742 A CN 114480742A
- Authority
- CN
- China
- Prior art keywords
- variant
- seq
- primer
- nucleotide sequence
- primers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000011529 RT qPCR Methods 0.000 title claims abstract description 28
- 241000711573 Coronaviridae Species 0.000 title claims abstract description 23
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 49
- 239000000523 sample Substances 0.000 claims abstract description 47
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 230000035772 mutation Effects 0.000 claims abstract description 29
- 230000003321 amplification Effects 0.000 claims abstract description 20
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 20
- 230000003612 virological effect Effects 0.000 claims abstract description 15
- 239000002773 nucleotide Substances 0.000 claims description 36
- 125000003729 nucleotide group Chemical group 0.000 claims description 36
- 238000013461 design Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 12
- 102220590697 Spindlin-1_A67V_mutation Human genes 0.000 claims description 10
- 238000002474 experimental method Methods 0.000 claims description 6
- 238000003753 real-time PCR Methods 0.000 claims description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 108020004707 nucleic acids Proteins 0.000 abstract description 20
- 102000039446 nucleic acids Human genes 0.000 abstract description 20
- 150000007523 nucleic acids Chemical class 0.000 abstract description 20
- 230000035945 sensitivity Effects 0.000 abstract description 15
- 108020004414 DNA Proteins 0.000 description 16
- 238000003556 assay Methods 0.000 description 11
- 241000700605 Viruses Species 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 7
- 238000000605 extraction Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241001678559 COVID-19 virus Species 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 229940096437 Protein S Drugs 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 101710198474 Spike protein Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 1
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 102200110418 rs570878629 Human genes 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种鉴定新型冠状病毒Omicron变异株BA-1分枝的qRT-PCR方法。The invention belongs to the field of biotechnology, and in particular relates to a qRT-PCR method for identifying branches of novel coronavirus Omicron variant strain BA-1.
背景技术Background technique
基因测序是目前最常用新冠病毒变种鉴定技术,该技术存在如下缺点[1]:1. 从样品到结果耗时长,不可控影响因素多。从样品处理到结果报告需要6-8小时,加之大多数病毒检测单位不具备基因测序条件,需交由第三方测序公司代测,样品路途转运和可能的上机排队等待时间,使得基因测序不仅速度慢,而且不可控影响因素多;2.检测灵敏度较低。基因测序上机测试前需进行基因扩增,对低丰度核酸样品的扩增效果稍差即可影响测序;3.检测成本高。新冠病毒基因测序包括样品核酸提取、RT-PCR、PCR产物纯化、上机测试等繁琐步骤,导致检测物资和人力成本都较高,且多步骤操作易由不慎操作导致检测结果的偏差。上述缺点使得基因测序在应用于新冠肺炎疫情防控时,会影响病毒变异株的检测时效、通量和成本,并可能对检测结果造成影响,对新冠肺炎疫情防控工作产生重要影响[2]。Gene sequencing is currently the most commonly used technology for identifying new coronavirus variants. This technology has the following shortcomings [1] : 1. It takes a long time from sample to result, and there are many uncontrollable influencing factors. It takes 6-8 hours from sample processing to result reporting. In addition, most virus detection units do not have the conditions for gene sequencing, so they need to be handed over to third-party sequencing companies for testing. The speed is slow, and there are many uncontrollable influencing factors; 2. The detection sensitivity is low. Gene amplification needs to be performed before gene sequencing is tested on the computer, and the amplification effect of low-abundance nucleic acid samples may affect the sequencing; 3. The detection cost is high. The new coronavirus gene sequencing includes tedious steps such as sample nucleic acid extraction, RT-PCR, PCR product purification, and on-board testing, resulting in high testing materials and labor costs, and multi-step operations are prone to inadvertent operations leading to deviations in test results. The above shortcomings make gene sequencing, when applied to the prevention and control of the new coronary pneumonia epidemic, will affect the detection time, throughput and cost of virus variants, and may affect the test results, which will have an important impact on the prevention and control of the new coronary pneumonia epidemic [2] .
新冠病毒Omicron变异株(又称B.1.1.529分支),在病毒Spike蛋白发生T19I等42个变异[3],具有更高的复制力和传播力。2022年以来已快速取代Delta变异株成为世界主要新冠病毒流行变异株[3],新冠疫情防控工作亟需新冠病毒Omicron变异株的快速检测方法。Omicron 变异株出现后快速进化为BA-1、BA.2和BA.3等分枝,且具有不同的病原学特征,需分别监测监控各分枝[4]。Omicron变异株BA-1分枝在病毒Spike蛋白发生A67V、Δ143-145、N211I、Δ211、215EPEins、S371L、G446S、G496S、T547K、 N856K和L981F等独有突变,可用于区分Omicron变异株的BA-1和BA.2分枝和Omicron变异株与Alpha、Beta、Gamma、Delta变异株。The Omicron variant of the new coronavirus (also known as the B.1.1.529 branch) has 42 mutations such as T19I in the virus Spike protein [3] , which has higher replication and transmissibility. Since 2022, it has rapidly replaced the Delta variant as the world's major new coronavirus epidemic variant [3] . The new crown epidemic prevention and control work urgently needs a rapid detection method for the new coronavirus Omicron variant. Omicron mutants rapidly evolved into branches such as BA-1, BA.2 and BA.3 after their emergence, and had different etiological characteristics, so each branch should be monitored and monitored separately [4] . The Omicron variant BA-1 branch has unique mutations such as A67V, Δ143-145, N211I, Δ211, 215EPEins, S371L, G446S, G496S, T547K, N856K and L981F in the viral Spike protein, which can be used to distinguish the BA-1 of the Omicron variant. 1 and BA.2 branch and Omicron variants and Alpha, Beta, Gamma, Delta variants.
参考文献:references:
[1]Bezerra et al,A Sanger-based approach for scaling up screening ofSARS-CoV-2variants of interest and concern.Infection,Genetics and Evolution,2021,92:104910.[1] Bezerra et al, A Sanger-based approach for scaling up screening of SARS-CoV-2 variants of interest and concern. Infection, Genetics and Evolution, 2021, 92:104910.
[2]Vega-Magana,et al.RT-qPCR Assays for Rapid Detection of the N501Y,69-70del,K417N,and E484K SARS-CoV-2Mutations:A Screening Strategy to IdentifyVariants with Clinical Impact.Frontiers in Cellular and InfectionMicrobiology,2021,11:672562.[2] Vega-Magana, et al. RT-qPCR Assays for Rapid Detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 Mutations: A Screening Strategy to Identify Variants with Clinical Impact. Frontiers in Cellular and Infection Microbiology, 2021, 11:672562.
[3]GowrisankarA,Priyanka TM,Banerjee S"Omicron:a mysterious variantof concern".The EuropeanPhysical Journal Plus,2022,137(1):100.[3] Gowrisankar A, Priyanka TM, Banerjee S "Omicron: a mysterious variant of concern". The European Physical Journal Plus, 2022, 137(1):100.
[4]Kumar S,Karuppanan K,Subramaniam G.Omicron(BA-1)and Sub-Variants(BA-1,BA.2and BA.3)of SARS-CoV-2Spike Infectivity and Pathogenicity:AComparative Sequence and Structural-based Computational Assessment,bioRxiv,2022,doi:https://doi.org/10.1101/2022.02.11.480029.[4] Kumar S, Karuppanan K, Subramaniam G. Omicron (BA-1) and Sub-Variants (BA-1, BA.2 and BA.3) of SARS-CoV-2 Spike Infectivity and Pathogenicity: AComparative Sequence and Structural-based Computational Assessment, bioRxiv, 2022, doi: https://doi.org/10.1101/2022.02.11.480029.
发明内容SUMMARY OF THE INVENTION
针对上述问题本发明提供了一种鉴定新型冠状病毒Omicron变异株BA-1分枝的qRT-PCR方法。In view of the above problems, the present invention provides a qRT-PCR method for identifying the BA-1 branch of the novel coronavirus Omicron variant strain.
为了达到上述目的,本发明采用了下列技术方案:In order to achieve the above object, the present invention has adopted the following technical solutions:
用名为扩增阻滞突变系统(amplification refractory mutation system,ARMS)的改进PCR方法,通过病毒核酸提取-qRT-PCR替代基因测序的病毒核酸提取 -RT-PCR扩增-PCR产物纯化-上机测试等繁琐操作步骤,应用多数检测单位配备的荧光定量PCR仪即可完成对病毒变异株的准确鉴定,克服对昂贵测序仪的依赖,增加新冠病毒变异株检测方法的普适性。通过96孔或384孔qRT-PCR反应板,并借助TaqMan探针法qRT-PCR的高灵敏度、低成本的点,实现新冠病毒变异株的高灵敏度、高通量、低成本检测。Using an improved PCR method named amplification refractory mutation system (ARMS), viral nucleic acid extraction by viral nucleic acid extraction-qRT-PCR instead of gene sequencing-RT-PCR amplification-PCR product purification-on the machine For tedious operation steps such as testing, the accurate identification of virus variants can be completed by using the fluorescence quantitative PCR instruments equipped by most detection units, overcoming the dependence on expensive sequencers, and increasing the universality of the detection method for new coronavirus variants. Through the 96-well or 384-well qRT-PCR reaction plate, and with the help of the high sensitivity and low cost of TaqMan probe method qRT-PCR, the high-sensitivity, high-throughput, and low-cost detection of new coronavirus variants can be achieved.
基础方法技术体系由2对引物组成,其中一对引物结合变异位点,另一对引物结合原始未变异位点,根据有无扩增片段及片段长度判定是否有变异。The technical system of the basic method consists of two pairs of primers, one pair of primers binds to the variant site, and the other pair of primers binds to the original unmutated site, and determines whether there is variation according to the presence or absence of amplified fragments and the length of the fragments.
本方法为提升检测灵敏度和特异性,引入TaqMan探针;为降低成本,将2 对引物改为1对半引物,即:2条上游引物分别靶向突变位点和原始未变异位点, 1条下游引物为2条上游引物共用。通过降低反应体系中变异引物与未变异病毒核酸和未变异引物与变异病毒核酸的匹配度,造成反应体系中变异引物扩增变异病毒核酸的扩增曲线早于扩增非变异核酸的扩增曲线,同理,非变异引物扩增非变异核酸的扩增曲线早于扩增变异核酸的扩增曲线。应用变异引物和非变异引物两套实验体系检测样品,变异引物体系扩增曲线早于非变异引物出现即判定该检测样品含该变异的病毒。In order to improve the detection sensitivity and specificity, TaqMan probe was introduced in this method; in order to reduce the cost, the two pairs of primers were changed to one pair of half-primers, that is, the two upstream primers targeted the mutation site and the original unmutated site respectively, 1 The downstream primer is shared by the two upstream primers. By reducing the matching degree between the mutated primer and the unmutated viral nucleic acid and the unmutated primer and the mutated viral nucleic acid in the reaction system, the amplification curve of the mutated primer in the reaction system for amplifying the mutated viral nucleic acid is earlier than the amplification curve for amplifying the non-mutated nucleic acid , Similarly, the amplification curve of the non-variant primer for amplifying the non-variant nucleic acid is earlier than the amplification curve for amplifying the variant nucleic acid. Two sets of experimental systems, mutated primers and non-mutated primers, were used to detect samples. The amplification curve of the mutated primer system appeared earlier than that of the non-mutated primers, and the detection sample was determined to contain the mutated virus.
一种鉴定新型冠状病毒Omicron变异株BA-1分枝的qRT-PCR方法,包括以下步骤:A qRT-PCR method for identifying branches of novel coronavirus Omicron variant strain BA-1, comprising the following steps:
步骤1,使用Trizol法提取新冠病毒RNA;Step 1, use the Trizol method to extract the new coronavirus RNA;
步骤2,基于ARMS的qRT-PCR引物探针设计:
步骤2.1,引物设计:按照引物设计通用原则,结合新型冠状病毒印度变种的变异位点附近核苷酸序列,对每个变异位点设计两对引物,其中上游引物3’端分别匹配变异和非变异点,即变异上游引物和非变异位上游引物,两对上游引物共用一个下游引物;Step 2.1, primer design: According to the general principles of primer design, two pairs of primers are designed for each mutation site in combination with the nucleotide sequences near the mutation site of the new coronavirus Indian variant, in which the 3' ends of the upstream primers match the mutation and non-mutation sites respectively. Variation point, i.e. mutated upstream primer and non-variant upstream primer, two pairs of upstream primers share one downstream primer;
当需要鉴别的变异位点为A67V时,变异上游引物的核苷酸序列如SEQ ID NO.1所示:5’-CCAATGTTACTTGGTTCCATGT-3’,非变异上游引物的核苷酸序列如SEQ ID NO.2所示:5’-CCAATGTTACTTGGTTCCATGC-3’,下游引物如SEQ ID NO.3所示:5’-TGTTAGACTTCTCAGTGGAAGC-3’;When the variant site to be identified is A67V, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.1: 5'-CCAATGTTACTTGGTTCCATGT-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO. 2: 5'-CCAATGTTACTTGGTTCCATGC-3', the downstream primer is shown in SEQ ID NO.3: 5'-TGTTAGACTTCTCAGTGGAAGC-3';
当需要鉴别的变异位点为N211I时,变异上游引物的核苷酸序列如SEQ ID NO.4所示:5’-AATATATTCTAAGCACACGCCTATTAT-3’,非变异上游引物的核苷酸序列如SEQ ID NO.5所示:5’-AATATATTCTAAGCACACGCCTATTAA -3’,下游引物如SEQ ID NO.6所示:5’-GAGTCAAATAACTTCTATGTAAAGCA AG-3’;When the variant site to be identified is N211I, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.4: 5'-AATATATTCTAAGCACACGCCTATTAT-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO. Shown in 5: 5'-AATATATTCTAAGCACACGCCTATTAA-3', the downstream primer is shown in SEQ ID NO.6: 5'-GAGTCAAATAACTTCTATGTAAAGCA AG-3';
当需要鉴别的变异位点为S371L时,变异上游引物的核苷酸序列如SEQ ID NO.7所示:5’-GTTGCTGATTATTCTGTCCTATATAATTTA-3’,非变异上游引物的核苷酸序列如SEQ IDNO.8所示:5’-GTTGCTGATTATTCTGTCCTATATAAT TCC-3’,下游引物如SEQ ID NO.9所示:5’-GTCTGACTTCATCACCTCTAATTAC A-3’;When the variant site to be identified is S371L, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.7: 5'-GTTGCTGATTATTCTGTCCTATATAATTTA-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO.8 Shown: 5'-GTTGCTGATTATTCTGTCCTATATAAT TCC-3', the downstream primer is shown in SEQ ID NO.9: 5'-GTCTGACTTCATCACCTCTAATTAC A-3';
当需要鉴别的变异位点为G446S时,变异上游引物的核苷酸序列如SEQ ID NO.10所示:5’-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3’,非变异上游引物的核苷酸序列如SEQ IDNO.11所示:5’-TGGAATTCTAACAATCTTGA TTCTAAGGTTG-3’,下游引物如SEQ ID NO.12所示:5’-GGAAACCATATGATT GTAAAGGAAAGTAAC-3’;When the variant site to be identified is G446S, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.10: 5'-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO.11 Shown: 5'-TGGAATTCTAACAATCTTGA TTCTAAGGTTG-3', the downstream primer is shown in SEQ ID NO.12: 5'-GGAAACCATATGATT GTAAAGGAAAGTAAC-3';
步骤2.2,TaqMan探针设计:按照TaqMan探针设计通用原则,结合步骤 2.1中上下游引物所限定病毒基因组区域序列特点设计TaqMan探针,每个变异位点的两对引物共用一条TaqMan探针;Step 2.2, TaqMan probe design: Design a TaqMan probe according to the general principles of TaqMan probe design, combined with the sequence characteristics of the viral genome region defined by the upstream and downstream primers in Step 2.1, and the two pairs of primers for each variant site share one TaqMan probe;
当需要鉴别的变异位点为A67V时,TaqMan探针的核苷酸序列如SEQ ID NO.13所示:5’-CATGTCTCTGGGACCAATGGTACTAAGAGG-3’;When the variant site to be identified is A67V, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.13: 5'-CATGTCTCTGGGACCAATGGTACTAAGAGG-3';
当需要鉴别的变异位点为N211I时,TaqMan探针的核苷酸序列如SEQ ID NO.14所示:5’-CGTGATCTCCCTCAGGGTTTTTCGGC-3’;When the variant site to be identified is N211I, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.14: 5'-CGTGATCTCCCTCAGGGTTTTTCGGC-3';
当需要鉴别的变异位点为S371L时,TaqMan探针的核苷酸序列如SEQ ID NO.15所示:5’-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3’;When the variant site to be identified is S371L, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.15: 5'-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3';
当需要鉴别的变异位点为G446S时,TaqMan探针的核苷酸序列如SEQ ID NO.16所示:5’-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3’。When the variant site to be identified is G446S, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO. 16: 5'-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3'.
步骤3,基于ARMS进行qRT-PCR实验;Step 3, carry out qRT-PCR experiment based on ARMS;
步骤4,结果判读:
步骤4.1,变异引物体系的扩增曲线出现时间早于非变异引物体系2个循环以上,判定检测样品中发生变异;Step 4.1, when the amplification curve of the variant primer system appears more than 2 cycles earlier than that of the non-variant primer system, it is determined that there is variation in the detected sample;
步骤4.2,非变异引物体系的扩增曲线出现时间早于变异引物体系2个循环以上,判定检测样品中未发生变异。In step 4.2, when the amplification curve of the non-variant primer system appears more than 2 cycles earlier than that of the variant primer system, it is determined that there is no mutation in the test sample.
进一步,所述步骤3基于ARMS进行qRT-PCR实验,具体步骤为:Further, described step 3 carries out qRT-PCR experiment based on ARMS, and concrete steps are:
步骤3.1,配制反应体系:每个反应体系体积为20μL,其中含2X反应液 10μL,50μM上游引物0.2μL,50μM下游引物0.2μL,50μM TaqMan探针0.1μL,无菌无RNase水7.5μL,RNA模板2μL,每个变异位点的检测由两个反应体系构成,一个含变异上游引物,另一个含非变异下游引物,其他上述成分相同;Step 3.1, prepare the reaction system: the volume of each reaction system is 20 μL, which contains 10 μL of 2X reaction solution, 0.2 μL of 50 μM upstream primer, 0.2 μL of 50 μM downstream primer, 0.1 μL of 50 μM TaqMan probe, 7.5 μL of sterile RNase-free water, RNA The template is 2 μL, and the detection of each variant site consists of two reaction systems, one contains the variant upstream primer, the other contains the non-variant downstream primer, and the other components are the same;
步骤3.2,qRT-PCR反应条件:在荧光定量PCR仪上执行以下反应程序: 95℃,3分钟;45个循环的95℃,30秒-60℃,30秒。Step 3.2, qRT-PCR reaction conditions: perform the following reaction program on a real-time PCR instrument: 95°C, 3 minutes; 45 cycles of 95°C, 30 seconds-60°C, 30 seconds.
与现有技术相比本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.提升检测速度、降低对贵重仪器的依赖。应用本发明的方法,将新型冠状病毒变种鉴定速度从4-6小时缩短至2小时,且本方法不依赖于昂贵的测序仪,仅需普通荧光定量PCR仪即可完成,降低了对测序仪等贵重仪器的依赖,使得病毒检测用户在本单位内部即可完成病毒变种鉴定,省去了样本转运等时间,并最大程度降低了不可控因素;1. Improve the detection speed and reduce the dependence on valuable instruments. By applying the method of the present invention, the identification speed of the new coronavirus variant is shortened from 4-6 hours to 2 hours, and the method does not depend on an expensive sequencer, and only needs an ordinary fluorescent quantitative PCR instrument to complete, reducing the need for sequencers. Reliance on other valuable instruments enables virus detection users to complete virus variant identification within the unit, saving time such as sample transfer, and minimizing uncontrollable factors;
2.提升检测灵敏度。基于TaqMan探针法qRT-PCR检测病毒核酸变异,检测灵敏度可达1-15拷贝/微升,qRT-PCR有扩增信号即可实现病毒核酸变异的检测,避免了弱扩增信号对基于基因测序的核酸变异检测的影响。2. Improve detection sensitivity. Based on TaqMan probe method qRT-PCR to detect viral nucleic acid variation, the detection sensitivity can reach 1-15 copies/microliter, qRT-PCR can realize the detection of viral nucleic acid variation with amplification signal, avoiding weak amplification signal to gene-based Impact of sequencing on nucleic acid variant detection.
3.降低检测成本,提升检测通量。本技术全部实验过程仅包括病毒核酸提取和qRT-PCR两步,实验步骤少,所需物资和人力成本大幅降低,且可通过96 孔或384孔反应板,方便实现样品的高通量。3. Reduce the detection cost and improve the detection throughput. The entire experimental process of this technology only includes two steps of viral nucleic acid extraction and qRT-PCR. There are few experimental steps, and the required material and labor costs are greatly reduced, and it can be passed through 96-well or 384-well reaction plates, which is convenient to achieve high throughput of samples.
4.操作污染几率小,易于高通量操作。现有一代测序技术检测病毒变异需病毒RNA提取、RT-PCR扩增、PCR产物纯化、上机测序等多个步骤,批量操作易引入操作污染,本方法仅有病毒RNA提取和qRT-PCR两步操作,步骤减少相应的操作污染几率也降低,较少的操作步骤易于实现一次检测大量样品。4. The probability of operation pollution is small, and it is easy to operate with high throughput. Existing next-generation sequencing technology to detect virus mutation requires multiple steps such as virus RNA extraction, RT-PCR amplification, PCR product purification, and on-machine sequencing. Batch operation is easy to introduce operational pollution. This method only has two methods: virus RNA extraction and qRT-PCR. Step operation, the corresponding operation contamination probability is also reduced, and fewer operation steps are easy to detect a large number of samples at one time.
附图说明Description of drawings
图1为本发明鉴别A67V变异位点的灵敏度结果图;Fig. 1 is the sensitivity result graph that the present invention identifies A67V variation site;
图2为本发明鉴别N211I变异位点的灵敏度结果图;Fig. 2 is the sensitivity result diagram of the present invention to identify N211I variation site;
图3为本发明鉴别S371L变异位点的灵敏度结果图;Fig. 3 is the sensitivity result diagram of the present invention to identify S371L variation site;
图4为本发明鉴别G446S变异位点的灵敏度结果图。Fig. 4 is a graph showing the sensitivity results of identifying G446S variant sites according to the present invention.
具体实施方式Detailed ways
实施例1Example 1
一种鉴定新型冠状病毒Omicron变异株BA-1分枝的qRT-PCR方法,包括以下步骤:A qRT-PCR method for identifying branches of novel coronavirus Omicron variant strain BA-1, comprising the following steps:
步骤1,使用TrizoL法提取新冠病毒RNA;Step 1, use the TrizoL method to extract the new coronavirus RNA;
步骤2,基于ARMS的qRT-PCR引物探针设计:
步骤2.1,引物设计:按照引物设计通用原则,结合新型冠状病毒印度变种的变异位点附近核苷酸序列,对每个变异位点设计两对引物,其中上游引物3’端分别匹配变异和非变异点,即变异上游引物和非变异位上游引物,两对上游引物共用一个下游引物;Step 2.1, primer design: According to the general principles of primer design, two pairs of primers are designed for each mutation site in combination with the nucleotide sequences near the mutation site of the new coronavirus Indian variant, in which the 3' ends of the upstream primers match the mutation and non-mutation sites respectively. Variation point, i.e. mutated upstream primer and non-variant upstream primer, two pairs of upstream primers share one downstream primer;
当需要鉴别的变异位点为A67V时,变异上游引物的核苷酸序列如SEQ ID NO.1所示:5’-CCAATGTTACTTGGTTCCATGT-3’,非变异上游引物的核苷酸序列如SEQ ID NO.2所示:5’-CCAATGTTACTTGGTTCCATGC-3’,下游引物如SEQ ID NO.3所示:5’-TGTTAGACTTCTCAGTGGAAGC-3’;When the variant site to be identified is A67V, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.1: 5'-CCAATGTTACTTGGTTCCATGT-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO. 2: 5'-CCAATGTTACTTGGTTCCATGC-3', the downstream primer is shown in SEQ ID NO.3: 5'-TGTTAGACTTCTCAGTGGAAGC-3';
当需要鉴别的变异位点为N211I时,变异上游引物的核苷酸序列如SEQ ID NO.4所示:5’-AATATATTCTAAGCACACGCCTATTAT-3’,非变异上游引物的核苷酸序列如SEQ ID NO.5所示:5’-AATATATTCTAAGCACACGCCTATTAA -3’,下游引物如SEQ ID NO.6所示:5’-GAGTCAAATAACTTCTATGTAAAGCA AG-3’;When the variant site to be identified is N211I, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.4: 5'-AATATATTCTAAGCACACGCCTATTAT-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO. Shown in 5: 5'-AATATATTCTAAGCACACGCCTATTAA-3', the downstream primer is shown in SEQ ID NO.6: 5'-GAGTCAAATAACTTCTATGTAAAGCA AG-3';
当需要鉴别的变异位点为S371L时,变异上游引物的核苷酸序列如SEQ ID NO.7所示:5’-GTTGCTGATTATTCTGTCCTATATAATTTA-3’,非变异上游引物的核苷酸序列如SEQ IDNO.8所示:5’-GTTGCTGATTATTCTGTCCTATATAAT TCC-3’,下游引物如SEQ ID NO.9所示:5’-GTCTGACTTCATCACCTCTAATTAC A-3’;When the variant site to be identified is S371L, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.7: 5'-GTTGCTGATTATTCTGTCCTATATAATTTA-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO.8 Shown: 5'-GTTGCTGATTATTCTGTCCTATATAAT TCC-3', the downstream primer is shown in SEQ ID NO.9: 5'-GTCTGACTTCATCACCTCTAATTAC A-3';
当需要鉴别的变异位点为G446S时,变异上游引物的核苷酸序列如SEQ ID NO.10所示:5’-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3’,非变异上游引物的核苷酸序列如SEQ IDNO.11所示:5’-TGGAATTCTAACAATCTTGAT TCTAAGGTTG-3’,下游引物如SEQ ID NO.12所示:5’-GGAAACCATATGATT GTAAAGGAAAGTAAC-3’;When the variant site to be identified is G446S, the nucleotide sequence of the variant upstream primer is shown in SEQ ID NO.10: 5'-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3', and the nucleotide sequence of the non-variant upstream primer is shown in SEQ ID NO.11 Shown: 5'-TGGAATTCTAACAATCTTGAT TCTAAGGTTG-3', the downstream primer is shown in SEQ ID NO.12: 5'-GGAAACCATATGATT GTAAAGGAAAGTAAC-3';
步骤2.2,TaqMan探针设计:按照TaqMan探针设计通用原则,结合步骤 2.1中上下游引物所限定病毒基因组区域序列特点设计TaqMan探针,每个变异位点的两对引物共用一条TaqMan探针;Step 2.2, TaqMan probe design: Design a TaqMan probe according to the general principles of TaqMan probe design, combined with the sequence characteristics of the viral genome region defined by the upstream and downstream primers in Step 2.1, and the two pairs of primers for each variant site share one TaqMan probe;
当需要鉴别的变异位点为A67V时,TaqMan探针的核苷酸序列如SEQ ID NO.13所示:5’-CATGTCTCTGGGACCAATGGTACTAAGAGG-3’;When the variant site to be identified is A67V, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.13: 5'-CATGTCTCTGGGACCAATGGTACTAAGAGG-3';
当需要鉴别的变异位点为N211I时,TaqMan探针的核苷酸序列如SEQ ID NO.14所示:5’-CGTGATCTCCCTCAGGGTTTTTCGGC-3’;When the variant site to be identified is N211I, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.14: 5'-CGTGATCTCCCTCAGGGTTTTTCGGC-3';
当需要鉴别的变异位点为S371L时,TaqMan探针的核苷酸序列如SEQ ID NO.15所示:5’-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3’;When the variant site to be identified is S371L, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO.15: 5'-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3';
当需要鉴别的变异位点为G446S时,TaqMan探针的核苷酸序列如SEQ ID NO.16所示:5’-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3’。When the variant site to be identified is G446S, the nucleotide sequence of the TaqMan probe is shown in SEQ ID NO. 16: 5'-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3'.
步骤3,基于ARMS进行qRT-PCR实验,,具体步骤为:Step 3, perform qRT-PCR experiment based on ARMS, the specific steps are:
步骤3.1,配制反应体系:每个反应体系体积为20μL,其中含2X反应液 10μL,50μM上游引物0.2μL,50μM下游引物0.2μL,50μM TaqMan探针0.1μL,无菌无RNase水7.5μL,RNA模板2μL,每个变异位点的检测由两个反应体系构成,一个含变异上游引物,另一个含非变异下游引物,其他上述成分相同;Step 3.1, prepare the reaction system: the volume of each reaction system is 20 μL, which contains 10 μL of 2X reaction solution, 0.2 μL of 50 μM upstream primer, 0.2 μL of 50 μM downstream primer, 0.1 μL of 50 μM TaqMan probe, 7.5 μL of sterile RNase-free water, RNA The template is 2 μL, and the detection of each variant site consists of two reaction systems, one contains the variant upstream primer, the other contains the non-variant downstream primer, and the other components are the same;
步骤3.2,qRT-PCR反应条件:在荧光定量PCR仪上执行以下反应程序: 95℃,3分钟;45个循环的95℃,30秒-60℃,30秒。Step 3.2, qRT-PCR reaction conditions: perform the following reaction program on a real-time PCR instrument: 95°C, 3 minutes; 45 cycles of 95°C, 30 seconds-60°C, 30 seconds.
步骤4,结果判读:
步骤4.1,变异引物体系的扩增曲线出现时间早于非变异引物体系2个循环以上,判定检测样品中发生变异;Step 4.1, when the amplification curve of the variant primer system appears more than 2 cycles earlier than that of the non-variant primer system, it is determined that there is variation in the detected sample;
步骤4.2,非变异引物体系的扩增曲线出现时间早于变异引物体系2个循环以上,判定检测样品中未发生变异。In step 4.2, when the amplification curve of the non-variant primer system appears more than 2 cycles earlier than that of the variant primer system, it is determined that there is no mutation in the test sample.
实施例2Example 2
对本发明的方法做灵敏度实验(模板稀释度106-10-1拷贝/微升),实验结果如下:Sensitivity experiment (template dilution 10 6 -10 -1 copy/microliter) is done to the method of the present invention, and the experimental results are as follows:
如图1所示,当需要鉴别的变异位点为A67V时,检测灵敏度为4.55拷贝/ 微升;如图2所示,当需要鉴别的变异位点为N211I时,检测灵敏度为6.82拷贝/微升;如图3所示,当需要鉴别的变异位点为S371L时,检测灵敏度为1.20 拷贝/微升;如图4所示,当需要鉴别的变异位点为G446S时,检测灵敏度为12.32 拷贝/微升。As shown in Figure 1, when the mutation site to be identified is A67V, the detection sensitivity is 4.55 copies/µL; as shown in Figure 2, when the mutation site to be identified is N211I, the detection sensitivity is 6.82 copies/µL liter; as shown in Figure 3, when the mutation site to be identified is S371L, the detection sensitivity is 1.20 copies/microliter; as shown in Figure 4, when the mutation site to be identified is G446S, the detection sensitivity is 12.32 copies /µl.
实施例3Example 3
重复性实验评价方法的精密度,是指同一标本在一定条件下多次重复测定得到一系列单次测定值之间的接近程度,是反应随机误差大小的指标,分为批内重复性实验、批间重复性实验(日内、日间重复性实验)、操作者/仪器间重复性实验等。The precision of the repeatability test evaluation method refers to the closeness of a series of single measured values obtained by repeated determination of the same sample under certain conditions, and is an indicator of the size of the random error. Inter-batch repeatability (intra-day, inter-day repeatability), operator/instrument repeatability, etc.
我们对本方法的重复性(精密度)进行了考察,以变异系数进行衡量,实验结果见表1。We investigated the repeatability (precision) of this method, which was measured by the coefficient of variation. The experimental results are shown in Table 1.
表1.本方法的重复性(精密度)Table 1. Repeatability (precision) of this method
变异系数的计算方法为:The coefficient of variation is calculated as:
变异系数(%)=(Ct标准差/Ct平均值)×100%。Coefficient of variation (%)=(Ct standard deviation/Ct mean)×100%.
由表1可知:It can be seen from Table 1 that:
A67V的批内实验变异系数范围为0.66%-2.77%,批间实验变异系数范围为0.51%-3.48%;N211I的批内实验变异系数范围为0.53%-2.45%,批间实验变异系数范围为.61%-2.33%;S371L的批内实验变异系数范围为0.23%-2.48%,批间实验变异系数范围为0.48%-2.35%;G446S的批内实验变异系数范围为 0.39%-1.84%,批间实验变异系数范围为0.74%-2.82%;The intra-assay coefficient of variation of A67V ranges from 0.66% to 2.77%, and the inter-assay coefficient of variation is 0.51% to 3.48%; the intra-assay coefficient of variation of N211I ranges from 0.53% to 2.45%, and the inter-assay coefficient of variation is .61%-2.33%; the intra-assay coefficient of variation of S371L is in the range of 0.23%-2.48%, and the inter-assay coefficient of variation is in the range of 0.48%-2.35%; the intra-assay coefficient of variation of G446S is in the range of 0.39%-1.84%, The inter-assay coefficient of variation ranged from 0.74% to 2.82%;
本方法各突变检测引物的批内实验变异系数均小于3%,批间实验变异系数均小于4%。因此本方法具备良好的重复性(精密度)。The intra-assay coefficient of variation of each mutation detection primer in this method was less than 3%, and the inter-assay coefficient of variation was less than 4%. Therefore, the method has good repeatability (precision).
实施例3Example 3
线性与范围(linearity andrange)分析方法的线性是在给定范围内获取与样品中供试物浓度成正比的实验结果的能力,即与实验结果成线性关系的供试物浓度范围,是反应方法检测性能的重要指标。Linearity and range (linearity and range) The linearity of the analytical method is the ability to obtain an experimental result that is proportional to the concentration of the test substance in the sample within a given range, that is, the range of the test substance concentration that is linearly related to the experimental result. It is a reaction method. An important indicator of detection performance.
我们对本方法的线性检测范围进行了考察,实验结果见表2。其中斜率可知,本方法各体系在模板106-101拷贝/微升均可获得与模板量呈线性关系的检测信号,说明本方法具有宽幅线性检测范围。We investigated the linear detection range of this method, and the experimental results are shown in Table 2. The slope shows that each system of this method can obtain a detection signal that is linearly related to the amount of template at 10 6 -10 1 copies/microliter of template, indicating that this method has a wide linear detection range.
表2.本方法的线性检测范围Table 2. Linearity detection range of this method
序列表sequence listing
SEQ ID NO.1:5’-CCAATGTTACTTGGTTCCATGT-3’SEQ ID NO. 1: 5'-CCAATGTTACTTGGTTCCATGT-3'
SEQ ID NO.2:5’-CCAATGTTACTTGGTTCCATGC-3’SEQ ID NO. 2: 5'-CCAATGTTACTTGGTTCCATGC-3'
SEQ ID NO.3:5’-TGTTAGACTTCTCAGTGGAAGC-3’SEQ ID NO. 3: 5'-TGTTAGACTTCTCAGTGGAAGC-3'
SEQ ID NO.4:5’-AATATATTCTAAGCACACGCCTATTAT-3’SEQ ID NO. 4: 5'-AATATATTCTAAGCACACGCCTATTAT-3'
SEQ ID NO.5:5’-AATATATTCTAAGCACACGCCTATTAA-3’SEQ ID NO. 5: 5'-AATATATTCTAAGCACACGCCTATTAA-3'
SEQ ID NO.6:5’-GAGTCAAATAACTTCTATGTAAAGCAAG-3’SEQ ID NO. 6: 5'-GAGTCAAATAACTTCTATGTAAAGCAAG-3'
SEQ ID NO.7:5’-GTTGCTGATTATTCTGTCCTATATAATTTA-3’SEQ ID NO. 7: 5'-GTTGCTGATTATTCTGTCCTATATAATTTA-3'
SEQ ID NO.8:5’-GTTGCTGATTATTCTGTCCTATATAATTCC-3’SEQ ID NO. 8: 5'-GTTGCTGATTATTCTGTCCTATATAATTCC-3'
SEQ ID NO.9:5’-GTCTGACTTCATCACCTCTAATTACA-3’SEQ ID NO. 9: 5'-GTCTGACTTCATCACCTCTAATTACA-3'
SEQ ID NO.10:5’-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3’SEQ ID NO. 10: 5'-TGGAATTCTAACAATCTTGATTCTAAGGTTA-3'
SEQ ID NO.11:5’-TGGAATTCTAACAATCTTGATTCTAAGGTTG-3’SEQ ID NO. 11: 5'-TGGAATTCTAACAATCTTGATTCTAAGGTTG-3'
SEQ ID NO.12:5’-GGAAACCATATGATTGTAAAGGAAAGTAAC-3’SEQ ID NO. 12: 5'-GGAAACCATATGATTGTAAAGGAAAGTAAC-3'
SEQ ID NO.13:5’-CATGTCTCTGGGACCAATGGTACTAAGAGG-3’SEQ ID NO. 13: 5'-CATGTCTCTGGGACCAATGGTACTAAGAGG-3'
SEQ ID NO.14:5’-CGTGATCTCCCTCAGGGTTTTTCGGC-3’SEQ ID NO. 14: 5'-CGTGATCTCCCTCAGGGTTTTTCGGC-3'
SEQ ID NO.15:5’-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3’SEQ ID NO. 15: 5'-CGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCC-3'
SEQ ID NO.16:5’-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3’SEQ ID NO. 16: 5'-CAGGCCGGTAGCACACCTTGTAATGGTGTT-3'
序列表 sequence listing
<110> 山西大学<110> Shanxi University
<120> 一种鉴定新型冠状病毒Omicron变异株BA-1分枝的qRT-PCR方法<120> A qRT-PCR method for identifying branches of novel coronavirus Omicron variant strain BA-1
<160> 16<160> 16
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 2<210> 2
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
ccaatgttac ttggttccat gt 22ccaatgttac ttggttccat
<210> 2<210> 2
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
ccaatgttac ttggttccat gc 22ccaatgttac ttggttccat gc 22
<210> 3<210> 3
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
tgttagactt ctcagtggaa gc 22tgttagactt ctcagtggaa gc 22
<210> 4<210> 4
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
aatatattct aagcacacgc ctattat 27aatatattct aagcacacgc ctattat 27
<210> 5<210> 5
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
aatatattct aagcacacgc ctattaa 27aatatattct aagcacacgc ctattaa 27
<210> 6<210> 6
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
gagtcaaata acttctatgt aaagcaag 28gagtcaaata acttctatgt aaagcaag 28
<210> 7<210> 7
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
gttgctgatt attctgtcct atataattta 30gttgctgatt attctgtcct atataattta 30
<210> 8<210> 8
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
gttgctgatt attctgtcct atataattcc 30gttgctgatt attctgtcct atataattcc 30
<210> 9<210> 9
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gtctgacttc atcacctcta attaca 26gtctgacttc atcacctcta attaca 26
<210> 10<210> 10
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
tggaattcta acaatcttga ttctaaggtt a 31tggaattcta acaatcttga ttctaaggtt a 31
<210> 11<210> 11
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
tggaattcta acaatcttga ttctaaggtt g 31tggaattcta acaatcttga ttctaaggtt g 31
<210> 12<210> 12
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
ggaaaccata tgattgtaaa ggaaagtaac 30ggaaaccata tgattgtaaa ggaaagtaac 30
<210> 13<210> 13
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
catgtctctg ggaccaatgg tactaagagg 30catgtctctg ggaccaatgg tactaagagg 30
<210> 14<210> 14
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
cgtgatctcc ctcagggttt ttcggc 26cgtgatctcc ctcagggttt ttcggc 26
<210> 15<210> 15
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
cgcatcattt tccactttta agtgttatgg agtgtctcc 39cgcatcattt tccactttta agtgttatgg agtgtctcc 39
<210> 16<210> 16
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
caggccggta gcacaccttg taatggtgtt 30caggccggta gcacaccttg taatggtgtt 30
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210187453.4A CN114480742A (en) | 2022-02-28 | 2022-02-28 | A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210187453.4A CN114480742A (en) | 2022-02-28 | 2022-02-28 | A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114480742A true CN114480742A (en) | 2022-05-13 |
Family
ID=81483784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210187453.4A Pending CN114480742A (en) | 2022-02-28 | 2022-02-28 | A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114480742A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506067A (en) * | 2014-10-20 | 2016-04-20 | 江苏所罗门兄弟医学科技有限公司 | AMRMS-qPCR detection kit and detection method for NOSLAP genotyping |
CN113249525A (en) * | 2021-06-25 | 2021-08-13 | 山西大学 | qRT-PCR method for identifying novel coronavirus Indian variety |
WO2021175298A1 (en) * | 2020-03-05 | 2021-09-10 | 浙江东方基因生物制品股份有限公司 | Novel coronavirus detection reagent and detection method |
WO2021189546A1 (en) * | 2020-03-27 | 2021-09-30 | 中国科学院合肥物质科学研究院 | Kit for detecting sars-cov-2 coronavirus, and specific primer and probe thereof |
CN114085928A (en) * | 2022-01-19 | 2022-02-25 | 广东和信健康科技有限公司 | Rapid detection system for typing of novel coronavirus Omicron mutant strain |
-
2022
- 2022-02-28 CN CN202210187453.4A patent/CN114480742A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506067A (en) * | 2014-10-20 | 2016-04-20 | 江苏所罗门兄弟医学科技有限公司 | AMRMS-qPCR detection kit and detection method for NOSLAP genotyping |
WO2021175298A1 (en) * | 2020-03-05 | 2021-09-10 | 浙江东方基因生物制品股份有限公司 | Novel coronavirus detection reagent and detection method |
WO2021189546A1 (en) * | 2020-03-27 | 2021-09-30 | 中国科学院合肥物质科学研究院 | Kit for detecting sars-cov-2 coronavirus, and specific primer and probe thereof |
CN113249525A (en) * | 2021-06-25 | 2021-08-13 | 山西大学 | qRT-PCR method for identifying novel coronavirus Indian variety |
CN114085928A (en) * | 2022-01-19 | 2022-02-25 | 广东和信健康科技有限公司 | Rapid detection system for typing of novel coronavirus Omicron mutant strain |
Non-Patent Citations (2)
Title |
---|
SURESH KUMAR等: "Omicron (BA.1) and Sub-Variants (BA.1, BA.2 and BA.3) of SARS-CoV-2 Spike Infectivity and Pathogenicity: A Comparative Sequence and Structural-based Computational Assessment", BIORXIV, pages 1 - 20 * |
徐昌平;卢亦愚;严菊英;冯燕;高筱萍;: "TaqMan荧光定量RT-PCR快速检测西尼罗病毒的研究", 中国媒介生物学及控制杂志, no. 02, pages 53 - 55 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113249525A (en) | qRT-PCR method for identifying novel coronavirus Indian variety | |
US20150159207A1 (en) | Use of markers including nucleotide sequence based codes to monitor methods of detection and identification of genetic material | |
CN106167833B (en) | A combination of RT-PCR primers and probes and a kit for simultaneously detecting eight arboviruses | |
WO1993002215A1 (en) | Quantitative nucleic acid amplification | |
CN105603123A (en) | Real-time fluorescence RPA reagent kit and test strip RPA reagent kit for rapidly detecting porcine parvovirus and application of reagent kits | |
WO2022246783A1 (en) | Probe composition for identifying or assisting identification of mammalian species, and kit and application thereof | |
CN103451320B (en) | Real-time fluorescent quantitative PCR (polymerase chain reaction) detection method for three genotypes of human parvovirus B19, as well as universal detection primer, TaqMan probe and kit thereof | |
CN104561386B (en) | A kind of apple stem grooving virus real-time fluorescence quantitative PCR detection method | |
CN114480742A (en) | A qRT-PCR method for identifying BA-1 branches of novel coronavirus Omicron variant strain | |
CN114657285A (en) | qRT-PCR method for identifying BA-2 branch of novel coronavirus Omicron variant | |
CN110735003A (en) | Universal primer, kit and detection method for detecting fungal contamination in cell product | |
CN114277194A (en) | qRT-PCR method for identifying novel coronavirus Lambda variant | |
CN118109640A (en) | LAMP primer, kit and method for monkey herpesvirus real-time fluorescence loop-mediated isothermal amplification detection | |
CN115418394A (en) | Composition, kit and method for detecting CHO cell genome DNA | |
CN115725756A (en) | RPA primer group, reagent and kit for detecting treponema pallidum and application of RPA primer group, reagent and kit | |
CN114085924A (en) | Novel coronavirus 4-point mutation S gene identification kit based on high-resolution melting curve and identification method thereof | |
Gulley et al. | Use of spiked normalizers to more precisely quantify tumor markers and viral genomes by massive parallel sequencing of plasma DNA | |
CN115125330A (en) | A detection kit for detecting different variant strains of novel coronavirus and its application | |
CN108330213B (en) | A method for simultaneous HBV DNA quantification, genotyping and RT region mutation detection | |
CN113930418A (en) | Nucleic acid releasing agent and method for releasing nucleic acid | |
CN113774165A (en) | A kind of HBV genotyping detection method and kit | |
CN114164303A (en) | A qRT-PCR method for identification of novel coronavirus Gamma variant strains | |
Wei et al. | CRISPR/Cas13a-based single-nucleotide polymorphism detection for reliable determination of ABO blood group genotypes | |
CN114075594B (en) | Method for detecting DNA content of Sf9 cells | |
CN108118097B (en) | Primer probe, kit and method for quantitatively detecting dysentery amoeba |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |